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ABSTRACT 

Partial Least Squares (PLS) is a statistical technique that is widely used in the Information Systems 

discipline to estimate statistical models with structural equations and latent variables.  While PLS does 

not provide a statistical test of model fit to data, PLS users apply a set of heuristics to evaluate the quality 

of estimated models. In this paper, we investigate to what extent these heuristics are able to identify 

misspecified models and may be used in place of a statistical test of model fit. The results of our analysis 

and simulation study indicate that existing heuristics are unable to reliably detect typical model 

misspecifications. We discuss the implications of this result for theory testing, prediction, and exploratory 

analysis in Information Systems research. 
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INTRODUCTION 

Information systems (IS) researchers build theories that are intended, among other things, for explanation 

and prediction of IS phenomena (Gregor, 2006). While prediction is an important aspect to theorizing, 

existing IS research has focused primarily on explanation (Shmueli and Koppius, 2011). In the prevalent 

positivist, quantitative paradigm in IS research (Chen and Hirschheim, 2004), explanatory research takes 

the form of proposing causal theories which are subsequently tested against observation. The primary 

goal is for a theory to be correct in the sense that is an isomorphic model of the real-world causal system. 

The nature and increasing complexity of IS phenomena leads researchers to represent their theories in 

models of simultaneous regression equations that include latent and observed variables.  Partial Least 

Squares Path Modeling (PLS) is an increasingly popular technique in IS research to analyze these 

structural equation models (Ringle et al., 2012). IS research is the primary user of PLS analysis (Rouse 

and Corbitt, 2008) and the use of PLS is increasing in high-quality IS and marketing journals (Ringle et 

al., 2012). For example, Information Systems Research published 32 articles using PLS in the ten year 

span between 2000 and 2009, including important methodological studies on PLS (Chin et al., 2003; 

Goodhue et al., 2007). 

PLS is a parametric statistical technique that estimates values of model parameters from a (training) 

sample. Just as theories can be used for explanation and prediction (Gregor, 2006), statistical models and 

techniques can be used for explanation and prediction. For prediction, a statistical technique should 

approximate observations in a training or test sample using the estimated parameters from the training 

sample (Hastie et al., 2009). When used for explanation, a statistical technique should allow population 

parameters of the real-world causal system to be inferred from the sample. It should produce parameter 

estimates that are consistent and unbiased. Because the parameter estimates depend on the form of the 

estimated model, that model must accurately represent the real-world causal system. If the two are not 

isomorphic, the estimated parameters have no real-world counterpart and cannot be interpreted 



 

substantively. Thus, model testing, the determination of whether the model is correct in the sense of being 

isomorphic to the real-world causal system, plays a critical role in explanatory research. 

PLS does not offer a statistical test of model correctness, as covariance-based methods do, and “this issue 

limits PLS-SEMs’s usefulness for theory testing” (Hair et al., 2012, pg. 416). However, a number of 

model evaluation criteria are proposed in the PLS literature. In this paper, we investigate whether the 

existing model evaluation criteria proposed in the PLS literature can, in the absence of a global 

statistical test, provide reliable indications of model correctness.  Given the extent of theory testing 

research in IS using PLS, it is useful to identify to what degree researchers can rely on PLS results to 

support the substantive conclusions they can draw from their studies. This paper contributes an 

examination of the theoretically expected and actual behavior of PLS model quality heuristics under 

various model misspecifications and their usefulness for identifying misspecified models.  

Using a simulation study, we examine the behavior of a set of widely-used model quality heuristics for a 

range of models and conditions. Our results show that, individually or jointly, the proposed model quality 

heuristics do not allow researchers to make a reliable assessment of the correctness of the specified 

model. This is a weakness of PLS when used in explanatory, theory testing research, especially when 

compared to covariance-based alternatives that do provide a reliable test (Hair et al., 2012). While PLS 

may have advantages over other techniques such as increased statistical power for low samples, a better 

ability to estimate formative models, or a lack of distributional assumptions, the fact that researchers 

cannot draw reliable conclusions about the correctness of the estimated model in a theory testing context, 

leads us to recommend against the use of PLS for explanatory, theory testing research.  

The next section briefly introduces existing model quality criteria for PLS estimation. We then describe 

the simulation study followed by a presentation of our results. The paper concludes with a discussion and 

recommendations for researchers. Eight appendices describe details of the Partial Least Squares Path 

Modeling technique (Appendix A), provide an overview of prior empirical work on PLS (Appendix B), 



 

show details of the simulation conditions (Appendix C), describe the data generation and model 

estimation (Appendix D), discuss the effects of cross-loadings and error-variances on reliability estimates 

(Appendices E, F), present detailed findings (Appendix G) and provide details of our classification and 

prediction approach (Appendix H). 

PLS MODEL QUALITY HEURISTICS 

The result of a PLS estimation of a model is evaluated using a number of model quality heuristics (Hair et 

al., 2012; Ringle et al., 2012). These are not statistical tests, as there are no test statistics with a known 

probability distributions, no type I and II error rates, and the recommended values for these heuristics are 

rules of thumb that vary with different authors. In this section, we briefly introduce these model quality 

criteria. They will be described in more detail as we present and discuss our results. A summary of the 

heuristics is provided in Table 1, together with representative references to the literature that recommends 

the use and specific values for these heuristics. 

Table 1: Criteria for assessing quality of models using PLS 

Criterion Recommendation References 

1 Indicator loadings > 0.7 

Chin and Gopal, 1995 

Gefen et al., 2000 

Goetz et al., 2010 

Hair et al., 2012 

Hulland, 1999 

Henseler et al., 2009 

Straub et al. 2004 

2 Cross loadings (relative) 
less than indicator loadings (by 

at least 0.1) 

Chin, 2010 

Gefen et al., 2000 

Gefen and Straub, 2005 

Goetz et al., 2010 

Hair et al., 2012 

Henseler et al., 2009 

Hulland, 1999 

Straub et al., 2004 

3 Cross loadings (absolute) < 0.4 Straub et al., 2004 



 

Criterion Recommendation References 

4 
Reliability 

(Cronbach’s ) 

> 0.7  

or 

 > 0.6 

Gefen et al., 2000 

Goetz et al., 2010 

Hair et al., 2012 

Hulland, 1999 

Straub et al., 2004 

5 
Reliability 

(composite reliability ) 

> 0.7  

or 

 > 0.6 

Gefen et al., 2000 

Hair et al., 2012 

Hulland, 1999 

Straub et al., 2004 

6 AVE > 0.5 

Chin, 1998 

Chin, 2010 

Gefen and Straub, 2005 

Hair et al., 2012 

Henseler et al., 2009 

7 AVE > latent correlations Gefen et al., 2000 

8 Root AVE > latent correlations 

Chin, 1998 

Chin, 2010 

Fornell and Larcker, 1981 

Gefen and Straub, 2005 

Henseler et al., 2009 

Hulland, 1999 

9 
Coefficient of determination 

(r
2
)

 significant (larger is better) 

Chin, 1998 

Hair et al., 2012 

Fornell and Larcker, 1981 

10 AVE >  r
2 

Fornell and Larcker, 1981 

11 Structural Paths significant at 0 .05 
Chin, 2010 

Hair et al., 2012 

12 GoF (relative) > 0.9 
Chin, 2010 

Esposito Vinzi et al., 2010 

13 Predictive Relevance (Q
2
) 

> 0.5 

> 0 

Chin, 2010 

Hair et al., 2012 

 

The evaluation of the measurement model (“outer model”) focuses on heuristics for reliability and 

validity. The assessment of convergent validity focuses on the average variance extracted (AVE) whereas 

discriminant and indicator validity focuses on the loadings and cross-loadings of the indicators on the 

intended latent construct. Reliability is typically assessed using either Cronbach’s  or composite 



 

reliability The evaluation of the structural model (“inner model”) focuses on the coefficient of 

determination (r
2
) for endogenous latent variables and the statistical significance of the estimated 

structural relationships. 

Recognizing the need for an overall measure of model quality, a goodness-of-fit (GoF) metric has 

recently been proposed. However, contrary to its name, this GoF metric is a combination of evaluation 

heuristics for the inner and outer models, and does not indicate the fit of the estimated model to observed 

data.  

Finally, a blindfolding procedure can be used to compute the Q
2
 metrics to assess the predictive ability of 

an estimated PLS model. While this study focuses on identifying misspecified models in an explanatory 

theory-testing context, this heuristic is typically seen as an important model quality indicator (Chin, 2010; 

Hair et al., 2012) and should be reported (Ringle et al., 2012). 

The inner and outer model evaluation metrics are widely used for model quality assessment and 

consistently reported in the literature (Hair et al., 2012; Ringle et al., 2012). However, few studies report 

the goodness-of-fit metric or the test of predictive relevance; the former is a relatively recent development 

(Tenenhaus et al., 2004) and the latter may not be used by researchers who focus on theory testing instead 

of prediction.  

While other model quality heuristics have been proposed in the PLS literature, such as the effect sizes    

or     (Chin, 2010; Ringle et al., 2012; Hair et al., 2012) there are no recommendations of required or 

desired values for these. Similarly, Lohmöller (1989) recommends additional criteria, such as the 

unexplained covariance among the indicators (should be “low enough”), the covariances between 

indicators of different latent variables (should be “near zero”), covariances between residuals of the 

indicators and the latent variable estimates (should be “near zero”), covariances among the residuals of 

the indicators and the residuals of the latent variables (should be “low enough”), but without 



 

recommending required or desired values for these criteria. Hence, we have not investigated these criteria 

and instead focused on criteria that are presented in the form of “hard” constraints, similar to statistical 

tests, and currently recommended in the Information Systems literature. 

Finally, while we focus on PLS model quality criteria, we also estimated each model using CB-SEM and 

used the p-value of the χ 2 statistical test of model fit for comparison.  

SIMULATION STUDY 

The iterative and complex nature of the parameter estimation in PLS (Appendix A) and the complexity of 

realistic models precludes an analytical derivation of the impact of model misspecifications on many of 

the model quality heuristics. We therefore use a simulation study (Paxton et al., 2001) to investigate the 

extent to which the PLS model quality criteria are able to identify model misspecification. A simulation 

study overcomes the inability to know the true model when real world data is estimated. It is a controlled 

experiment where sample data is repeatedly generated from a known, true model for which the researcher 

specifies the parameter values. These sample data are then used to estimate parameter values for a range 

of misspecified models. 

Models 

Models for simulation studies should be representative of those found in the substantive literature (Paxton 

et al., 2001). PLS models in highly-ranked IS and marketing journals have a median number of 7 to 9 

latent variables with 9 to 11 structural relations (Ringle et al., 2012). Another study on the use of PLS in 

the marketing literature reported a median of 7 latent variables with a median of 8 structural relations 

(Hair et al., 2012). Similarly, the PLS studies published in ISR between 2000 and 2009 have a median of 

9 latent variables and 12 structural relations. Both Ringle et al. (2012) and Hair et al. (2012) report a 

median of 3.5 indicators for each reflective construct, which is similar to PLS studies in ISR, which have 

an average of 3.8 indicators for each reflective construct. Based on these reports, we examine the models 



 

shown in Figures 1 through 3 (for model clarity, indicators are not shown). While models 1 and 2 are 

relatively simple models, model 3 matches the typical characteristics of PLS models in the literature quite 

well. Together, they cover model complexity from low to typical. 

  

Figure 1: Model 1 

 

  

Figure 2: Model 2 

 

  

Figure 3: Model 3 

 

Design Factors 

Sample size, the number of indicators, indicator loadings, structural effect sizes and measurement 

specification (formative or reflective) are important design variables for PLS simulation studies (Aguirre-

Ureta and Marakas, 2008; Goodhue et al., 2007; Goodhue et al., 2012; Reinartz et al., 2009). This study is 

intended to be conservative in its evaluation of the PLS model heuristics and assumes ideal samples in the 

sense of continuous responses, multivariate-normality, and complete data. While there has been much 

recent attention on the specification of formative measurement, the use of reflective measurement is 

dominant for PLS models in the IS literature (Ringle et al., 2012). Further, Ringle et al. (2012) report a 

median sample size of 198 for PLS studies published in MIS Quarterly, and the PLS studies published in 

ISR have a median sample size of 176. Table 2 shows a summary of the experimental factors in this study 

and their levels.  



 

Table 2: Study Design Factors 

Design factor Levels 

s Sample size 100, 250, 750 

i Number of indicators 3, 5, 7 

l Indicator loadings (non-std.) .75, 1, 1.25 

b Effect sizes (,) .25, .75 

— Sampling distribution Normal 

— Response type Continuous 

— Missing values None 

— Measurement model Reflective 

 

HEURISTICS AND THE IDENTIFATION OF MODEL MISSPECIFICATIONS 

We examine four broad types of misspecifications (Paxton et al., 2001). Table 3 presents a summary of 

our theoretical expectations and empirical findings for each of the model quality heuristics of Table 1 

under the four types of misspecifications. Tables C.1, C.2, and C.3 in Appendix C provide detailed lists of 

all misspecifications.  As Table 3 indicates, many of the proposed model quality criteria are not designed 

to identify typical misspecifications (“0” in row “Expectation” in Table 3), as they were developed to 

assess factorial validity (convergent and discriminant). This is reflected in our simulation results 

(“Finding” in Table 3).  

Table 3: Theoretical Expectations and Empirical Findings for Model Quality Heuristics  

Legend:  “0” expectation or finding of no difference,  

“+” expectation or finding of positive difference 

“-“ expectation or finding of negative difference 

“~” expectation or finding of complex difference 

Parentheses indicate expectations or findings only for some conditions or 

misspecifications 

Shading indicates differences between expectations and findings 



 

 
Heuristic  

Measurement 

Misspecification 

Added 

Paths 

Removed 

Paths 

Reversed 

Paths 

M
ea

su
re

m
en

t 
R

el
at

ed
 

1  

(Loadings) 

Expectation 0 0 0 0 

Finding (-) 0 (+) 0 

2  

(Rel. Cross loadings) 

Expectation - 0 0 0 

Finding (-) 0 (~) 0 

3 

 (Abs. Cross loadings) 

Expectation - 0 0 0 

Finding (-) 0 (-) (-) 

4  

(Reliability  ) 

Expectation - 0 0 0 

Finding (~) 0 (+) 0 

5  

(Composite reliability  ) 

Expectation - 0 0 0 

Finding 0 0 0 (-) 

6 (AVE) 
Expectation - 0 0 0 

Finding (-) 0 (+) 0 

S
tr

u
ct

u
re

 R
el

at
ed

 

7 

(AVE-latent correl.) 

Expectation - 0 -  

Finding - - ~ 0 

8 

(Root AVE-latent correl.) 

Expectation - 0 -  

Finding (-) 0 (-) 0 

9 

(  ) 

Expectation 0 0 0  

Finding 0 0 0 0 

10 

(AVE -   ) 

Expectation - 0 +  

Finding (-) 0 (+) (+) 

11 

(Structural paths) 

Expectation 0 - 0  

Finding 0 (-) 0 (-) 

G
lo

b
al

 

12 

(Relative GoF) 

Expectation - - - - 

Finding ~ ~ ~ ~ 

13 

(Predictive relevance   ) 

Expectation + 0 0  

Finding (+) 0 ~ ~ 

 



 

Cross-Loading Misspecifications 

Measurement misspecifications (cross-loadings) can occur when indicators are related to multiple 

concepts and affect discriminant and convergent validity. Such misspecifications may stem from poorly 

designed measurement instruments. Many of the model quality heuristics we examined are designed to 

identify cross-loading misspecifications. This is not surprising as many heuristics express some aspect of 

factorial, i.e. convergent or discriminant, validity (Straub et al., 2004). While heuristics 2 and 3 (relative 

and absolute cross-loadings) should be the most immediate indicators of such misspecifications, other 

heuristics should be affected as well (Appendices E, F). We found that these heuristics do identify 

misspecifications, but not with the consistency and reliability required to allow researchers to draw firm 

conclusions about the model correctness. While heuristic 7, comparing the AVE to latent variable 

correlations, is most reliably affected by measurement misspecifications, we cannot recommend that 

researchers rely on this heuristic, as it is also affected, by design, by structural misspecifications. On the 

other hand, heuristic 2, relative cross-loadings, is least affected by structural misspecifications, but a 

relatively unreliable indictor of measurement misspecifications. 

Removed Paths 

The second group of misspecification conditions contains latent paths in the true, generating model but 

missing in the estimated model. This reflects the fact that researchers may underspecify the model, i.e. fail 

to include structural paths. In these conditions, the measurement model does not change, so that many of 

our heuristics should not be affected. Only heuristics that use structural parameters (latent variable 

correlations and coefficient of determination   ) should be affected. While heuristic 9, the coefficient of 

determination    should be the most immediate heuristic to identify these misspecifications, the fact that 

no firm recommendation can be given, other than the very weak requirement of statistical significance, 

means this heuristic is of little use in identifying misspecified models. We found that the comparison of 

AVE to    (heuristic 10) and comparison of the AVE to latent variable correlations (heuristic 7) were 



 

able to identify some, but not all, of the misspecifications. On the other hand, these two heuristics are also 

affected by measurement misspecification, so that they may be misleading. 

We have also found that these types of misspecifications affect measurement-related heuristics, often in a 

positive way. Thus, the under-specification of theory in the structural model may artificially inflate 

measurement-related heuristics and thereby mask possible measurement misspecifications.  

Added Paths 

The third group is conditions in which latent paths are estimated that are not in the true model. Such 

structural misspecifications can occur when the theoretical foundation is not fully understood. These 

conditions reflect the fact that researchers may over-specify the model, i.e. include additional paths. These 

conditions are relatively harmless if the path estimates for the additional paths are non-significant. In 

these conditions, the measurement model estimates should not change, nor should the structural 

parameters, e.g. coefficient of determination   , change as the additional paths have not corresponding 

paths in the generating model and should therefore not be statistically significant. Only heuristic 11, 

which is an immediate indicator of this misspecification type, should be affected. Our findings confirm 

that this heuristic is able to identify this type of misspecification in most, but not all cases, with most of 

the problems occurring at low sample size where sampling fluctuations and standard errors around 

parameter estimates are relatively large.  

Reversed Paths 

The fourth group are misspecifications that reverse the relationship between latent variables in the 

estimated model. In some cases, this means that exogenous variables are modeled as endogenous and vice 

versa. Reversal of paths represents inverted causality and can occur when theory or construct definitions 

are not well defined or ambiguous. In such cases, researchers might conceivable specify a model that 

includes paths in the opposite direction as the generating model. Ideally, these misspecifications should 



 

have no effect on measurement-related heuristics but the iterative nature of the PLS estimation (Appendix 

A) means that such effects might occur. Further, given the complexity of the estimation and the estimated 

models, we had no expectations of what effects a reversal of paths might have on structure-related 

heuristics. We observed that many heuristics are affected by these types of misspecifications. However, 

no criterion provides a consistent way of identifying these and only these types of misspecifications. 

In comparison, our covariance-based SEM estimation using the χ2 statistical test of model fit was able to 

reliably identify all cross-loading misspecifications, as well as all removed and reversed paths (with the 

exception of covariance equivalent models, which can be identified prior to estimation). Similar to PLS 

heuristic 11, covariance-based SEM identified added paths by estimating the path coefficients to be zero, 

not by changes to model fit. Also similar to heuristic 11, this identification was reliable for medium and 

large sample sizes, but not for small samples when combined with complex models. 

CLASSIFYING PLS MODELS 

Predicting the category of a model, true or misspecified, from the model quality heuristics is a 

classification task, and suitable for statistical classification techniques (Hastie et al., 2009). The outcome 

is a categorical variable, either with two categories (true model, misspecified model) or with multiple 

categories corresponding to specific misspecifications of the model. The Weka data mining suite (Hall et 

al., 2011) provides more than 30 classification algorithms for categorical response variables, including 

parametric models, classification tree-based methods, decision rule-based methods and Bayesian 

methods. Because classification algorithms have different performance on different problem sets, we 

subjected our data to all algorithms in the Weka suite, using cross-validation. Appendix H reports details 

of the application of classification methods to identify misspecified models using the PLS model quality 

heuristics.  

The overall performance of the classification algorithms on our complete PLS data is poor. This suggests 

that it is not possible to provide model classification guidelines that are generalizable to all three models 



 

for all model- and sample-conditions based on the model quality heuristics we have examined. Moreover, 

the performance of even the best algorithms is poor when the sample size is low (s=100) or when 

structural path coefficients are weak (b=0.25). Finally, while it is possible to predict model 

misspecification with acceptable degrees of accuracy for medium to large sample sizes and strong 

structural effects, this must be qualified due to the nature of the classifiers that are built by the software. 

Tree-based classifiers, which are consistently the best type of classifiers on our PLS data, have a tendency 

to build large trees with very specific branching rules. The best classification trees often had dozens or 

hundreds of branches. More interpretable classifiers lead to more parsimonious guidelines for identifying 

model misspecifications but have unacceptably low classification accuracy.  

In summary, applying classification techniques to classify PLS models based on their model quality 

heuristics shows limited success. The relatively low classification success rate for low sample sizes and 

weak structural effects, coupled with the highly complex classification rules that are generated make it 

impractical to provide simple, parsimonious and general guidelines to a researcher using PLS to identify 

misspecified models. Moreover, while we have built classification rules for all three models, given the 

complexity and specificity of the classification rules, it is unlikely that these generalize even to relatively 

similar models and/or sample characteristics. 

DISCUSSION AND RECOMMENDATIONS 

While PLS does not offer a statistical test of model fit, we have examined to what extent the existing 

model quality guidelines can be used to identify misspecified models. We have theoretically examined the 

proposed heuristics with respect to a variety of common model misspecifications and analyzed their 

behavior using a simulation study. We found that many of the model quality heuristics are not able to 

identify misspecifications, nor have they been specifically designed to do so. In the few cases where a 

heuristic was designed and able to identify a certain type of misspecification, its response to 

misspecification was often unreliable, depending strongly on sample-, model- or misspecification 



 

condition. Our attempt to classify PLS models by their model quality heuristics supports the general 

inability to reliably identify misspecified models. One exception was the statistical significance of path 

estimates, which was a reliable indicator for additional paths at medium to large sample size. In contrast, 

we found that covariance-based estimation is able to reliably identify all misspecification conditions for 

medium and large sample sizes, with the exception of covariance-equivalent models which can be 

identified a-priori and are therefore unproblematic. 

We discuss the implications of this finding for three different aspects of the research cycle: Theory 

testing, exploratory theory building, and prediction.  

PLS and Theory Testing Research   

In the broader perspective of the scientific process, theory testing is linked to the Popperian idea of 

falsifiability of theories which recognizes that theories cannot in principle be proven correct, only proven 

wrong (if that). Thus, to advance this scientific process, reliable tests of model correctness are required. 

Many of the model quality heuristics have a valuable place in assessing the quality of a model. It is 

clearly important to establish the reliability and validity of measurement, and the existing heuristics based 

on estimated factor loadings offer appropriate tools to do this. However, the parameter estimates that are 

used in these quality assessments are subject to a properly specified model. Thus, in a theory-testing 

paradigm, which is dominant in quantitative IS research, the primary objective must be to establish the 

overall correctness of the model. Only then can the parameter estimates be used to assess further qualities 

the model, such as measurement validity and reliability, or the proportion of explained variance. 

The fact that researchers using PLS cannot draw reliable conclusions about the correctness of the 

estimated model in a theory testing context, leads us to recommend against the use of PLS for theory 

testing research. Instead, we recommend that researchers use covariance-based methods with medium or 

large samples to establish model correctness. As a corollary, we also recommend that researchers be 



 

cautious when concluding that their model is the true generating model or that their statistical results 

support their theoretical claims even when all model quality criteria are satisfied. 

PLS and Exploratory Research 

Theory testing is but one step in the overall scientific process, where exploration and theory building are 

equally important. PLS is often argued to be suitable for an exploratory approach that is useful for the 

early stages of theory development (e.g. Hair et al., 2011, Esposito Vinzi et al., 2010, Chin et al., 2010) 

and 20% of published PLS studies in MIS Quarterly cite this as a reason for choosing PLS over 

alternative techniques (Ringle et al., 2012), though only 4 of 32 studies in ISR provided this motivation. 

One way to understand exploratory analysis is that it should reveal patterns in the data instead of testing a 

pre-specified model. It is clear that PLS does not have this ability because the model must be completely 

specified prior to the analysis. Another way to understand exploration is as part of theory building or 

theory improvement. However, as Evermann and Tate (2011) have shown, theory building and theory 

improvement using quantitative data relies on strong model tests. We can only build credible theories and 

improve our theories if we are able to recognize a mismatch between model and reality. While theory 

building should proceed primarily based on substantive considerations (Evermann and Tate, 2011), a 

statistical technique can support this process if it is able to point out specific problems with the tested 

model. However, our results show that measurement misspecifications often affect structural parameters 

and quality heuristics, and vice versa. This makes the use of these quality heuristics as diagnostic tools 

problematic. We recommend against the use of PLS for exploratory or theory building research. Instead, 

in line with Evermann and Tate (2011) we recommend the use of covariance-based methods with medium 

or large samples for exploratory theory building.  

Related to this issue, we also note an apparent disconnect between the motivation of PLS studies, and the 

way they are carried out. Many studies that cite exploration or theory development as a reason for 

choosing PLS are in fact presented as theory testing studies: A literature review is followed by the 



 

derivation of causal theory and formal hypotheses, subsequently tested by examining the statistical 

significance of parameters in the estimated model. The majority of studies estimate a single model, 

frequently using the terms “model test” or “testing the model” to describe their analysis. This reflects the 

assessment by Ringle et al. (2012) who lament the lack of analyses such as model comparison, i.e. 

exploration, using the    metric, finite mixture analyses to identify distinct sub-samples (Ringle et al., 

2010), or tetrad analysis for data-based model construction (Scheines et al., 1998). Our own review of 

PLS studies published in ISR shows a similar lack of such exploratory analyses. 

PLS and Predictive Research 

Two approaches to prediction can be distinguished (Shmueli and Koppius, 2011). The first approach to 

prediction is based only on the data (“empirical prediction”). The form of the statistical or computational 

model underlying the prediction is irrelevant in this case, as long as predictive aims are satisfied. The 

second approach predicts based on explanatory theory (“theoretical prediction”) and builds on knowledge 

of the real-world causal system.  

A recent study compares the predictive ability of PLS and covariance-based estimation techniques 

(Evermann and Tate, 2012) and concludes that PLS is superior to covariance-based prediction, based on 

the    predictive ability metric, especially for small sample sizes (     ). This advantage mostly 

disappears for medium to large samples (         ). However, that study also shows that the 

proportion of explained variance in endogenous latent variables,   , was higher for covariance-based 

estimation than for PLS. This suggests that reporting of    rather than endogenous    is important when 

the use of PLS is justified by appeal to predictive ability of the model. 

Prediction is reported as a reason for using PLS by more than 15% of studies published in MIS Quarterly 

(Ringle et al., 2012) and 2 of 32 of studies published in ISR. In empirical prediction, the isomorphism of 

the estimated to the real-world, generating model, i.e. model correctness, is largely irrelevant (Hastie et 



 

al., 2009; Shmueli and Koppius, 2011). Further, prediction does not require statistical inference and 

parameter tests. Hence, it allows typical requirements for these, such as multivariate normality and large 

sample sizes, to be relaxed, making PLS an attractive option. The earlier section on model classification 

and Appendix H provide an example of empirical prediction and discuss some of the available statistical 

techniques. While prediction may be an appropriate area for the use of PLS, we caution that existing 

guidelines for predictive studies (Shmueli & Koppius, 2011) and the goals and techniques for prediction 

(Hastie et al., 2009) suggest that researchers cannot simply claim their PLS-based studies to be predictive 

and expect to follow the same process of data analysis as for theory testing. 

Shmueli & Koppius (2011) also point out the tension between explanation and prediction. Predictive 

models may not be good explanatory models, and vice versa. Similarly, McDonald (1996) notes that “a 

path model … is already ‘explanatory’, and generally suboptimally predictive … If the object of the 

analysis were to predict the response variables … we cannot de better than to use the multivariate 

regression … or the corresponding canonical variate analysis” (pg. 266). The recent study by Evermann 

and Tate (2012) also compared PLS prediction to atheoretical prediction with the expectation 

maximization (EM) method and found that the latter dominated PLS prediction in all experimental 

conditions. Thus, the practice of using a PLS estimated model as for both explanation and predicting is 

likely to yield models that are not optimal for either.  

We therefore recommend that the widespread practice of conflating theory testing and prediction in a 

single model should be discontinued. Instead, we recommend for “theoretical prediction” that 

researchers first establish model correctness using covariance-based techniques, and may subsequently 

use PLS estimation from that model for predictive purposes. For “empirical prediction” we recommend 



 

that researchers also apply techniques such as expectation maximization, canonical regression, PLS 

regression
1
 or principal components regression, which do not rely on a structural model. 

Again, we note an apparent disconnect between the stated aims of many PLS-based studies and their 

execution and presentation. For example, Shmueli and Koppius (2011) report that only 1 of 11 studies in 

MIS Quarterly that claim prediction as their main uses appropriate predictive analytics while the 

remaining 10 studies do not. Similarly, Ringle et al. (2012) report that none of the PLS studies they 

surveyed, including those that claimed prediction as their main goal, report statistics such as the    

degree of predictive relevance. Our own review of PLS studies published in ISR found that two studies 

motivated the use of PLS by appealing to predictive ability, yet none reported predictive relevance 

statistics.  

The predictive ability of PLS path modeling has to our knowledge not been compared to that of 

competing techniques, such as CB-SEM or OLS. Especially the known under-estimation of structural 

path estimates by PLS (Lohmöller, 1989), and thus of the    values for endogenous constructs, suggests 

that researchers should, at least for the time being, exercise caution when applying PLS path modeling for 

prediction. 

CONCLUSION 

This methodological commentary should be understood as a call for more rigorous theory testing using 

PLS, in the same line as recently argued for covariance-based modelling (Evermann and Tate, 2011); not 

                                                      

1
 The distinction between PLS path modeling and PLS regression is important. PLS regression is widely 

used in predictive analytics research (Hastie et al., 2009) and has been evaluated against other predictive 

techniques such as neural networks. However, this is not the case for PLS path modeling, discussed in 

this paper. 



 

to reject models, but to publish, discuss, improve and learn from them. We acknowledge that this may not 

be a popular position. After all, if PLS cannot test a model, a researcher never finds themselves in a 

position where a model is decisively rejected by the evidence. Given the publication bias in many fields to 

produce “positive” results, a cynic might say that the inability to reject a model is a good reason to stay 

with the status quo. However, as Evermann and Tate (2011) argue, and we have discussed to above, the 

ability to identify misspecified models is critical for improving our theories and is the basis for 

exploratory theory building. In their words, “we believe that there is value in publishing and discussing 

models that do not fit” (pg. 651). The Information Systems area is also not alone in this: A call for more 

rigorous theory testing has recently been voiced in organizational sciences where Gray and Cooper (2010) 

suggest that “our field [organizational science] seems to privilege corroborating over disconfirming 

evidence” (p.622) and argue that “organizational studies ... would benefit from a stronger focus on theory 

development via the pursuit of failure” (p.621).  

The acknowledged lack of overall model test and our findings of an inability to use existing model quality 

criteria in lieu of such a test, compel us to recommend against the use of PLS for theory testing work. In 

light of the availability of a reliable test of model fit for covariance-based estimation, this should be the 

preferred for establishing model correctness in a theory testing context.  

While much of the PLS-based work in Information Systems claims to have either exploratory, theory 

building goals, or predictive goals, recent data on PLS application and predictive analytics (Ringle et al., 

2012; Shmueli and Koppius, 2011) show those claims to be frequently lip-service. We urge researchers 

who wish to use PLS to more strongly focus on appropriate predictive techniques and evaluation 

methods. In support of this, we urge PLS methods researchers to examine and compare the predictive 

ability of PLS path modeling with other predictive analytics techniques. 

While we do not believe that the Information Systems field, as a scientific discipline, should abandon the 

goal of explanation, and especially not because of the choice of statistical method, we agree with Shmueli 



 

& Koppius (2011) that there is room for more predictive studies in Information Systems. We urge 

authors, reviewers, and editors in our field to enter into the discussion of what the right balance for our 

research field, and the right balance for individual studies, should be. 
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APPENDIX A: PARTIAL LEAST SQUARES PATH MODELING 

This appendix briefly illustrates the partial least squares path modeling technique, based on the detailed 

exposition by Lohmöller (1989). The basic statistical model of PLS is given in Equations A.1 and A.2 

where    designates latent variables,     designates manifest indicator   of latent variable  ,   and   

represent regression coefficients, and   and   represent residuals. 

        ∑               (Equation A.1, inner model) 

   
      

     
       

   (Equation A.2, outer model) 

However, this is not the model that is estimated. Instead, for estimation, the latent variables    are 

replaced by a weighted linear composite of their indicators: 

   ∑    
         (Equation A.3) 

The weights    
 are estimated in either of two ways. In mode A estimation, the manifest variables    

are 

regressed on an approximation  ̃  of the composite    : 

   
   ̃  

 ̃     ̃ 
    (Equation A.4, mode A estimation)  

In mode B estimation, the approximation  ̃  of the composite    is regressed on the manifest variables    
: 

 ̃  ∑  ̃  
        ̃     (Equation A.5, mode B estimation)  

With this model, the basic PLS algorithm then follows the steps in Table A.1. 



 

Table A.1: The basic PLS algorithm (Lohmöller, 1989) 

Stage 1: Iterative estimation of weights and LV scores. Starting at step #4, 

repeat steps #1 to #4 until convergence is achieved 

#1 Inner weights 

     {
                                        

          
 

#2 Inside approximation 

 ̃   ∑     
 

 

#3 Outer weights; estimate    
 in Equation A.4 (mode A) or Equation 

A.5(mode B) using ordinary least squares regression 

#4 Outside approximation 

     ∑ ̃  

  

   
 

Stage 2: Estimation of path and loading coefficients by ordinary least 

squares regression from Equation A.1 (path coefficients) and 

Equation A.2 (loadings coefficients) where the latent variables    

are replaced by their estimate    

Stage 3: Estimation of the means of latent and manifest variables as 

weighted sums. 

 



 

APPENDIX B: PRIOR EMPIRICAL STUDIES ON PLS 

Despite the increasing popularity of PLS in the IS and wider management literature, and despite the large 

number of papers offering advice on the use of PLS, there are few empirical studies that examine the 

properties of PLS estimates.  

Most simulation studies investigate the behavior of PLS for correct models under various conditions for 

comparison with other statistical techniques, rather than investigating the behavior of PLS for 

misspecified models. Recent studies by Reinartz et al. (2009) and Goodhue et al. (2006; 2012), as well as 

an early study by Areskoug (1982) compare the statistical power of parameter significance tests of PLS 

and CB-SEM or regression when estimating the true model for different sample sizes, numbers of 

indicators and other factors. Studies by Goodhue et al. (2007) and Rönkkö and Ylitalo (2010) compare 

PLS to OLS regression in terms of power and parameter accuracy of PLS estimates for interaction effects 

(Goodhue et al., 2007) and correlated measurement errors (Rönkkö and Ylitalo, 2010). 

Those comparative studies, as well as a study by Chin and Newsted (1999) on PLS only, have examined a 

variety of conditions, focusing on the sample size (Areskoug, 1982; Chin and Newsted, 1999; Goodhue 

et al., 2006, 2012; Reinarts et al., 2009), the number of indicators (Areskoug, 1982; Chin and Newsted, 

1999; Goodhue et al., 2012; Reinartz et al., 2009), the size of effects between latent variables (Goodhue 

et al., 2006), the loadings of indicators on latent variables (Goodhue et al., 2006, 2012; Reinartz et al., 

2009), and the distribution of observed values (Reinartz et al., 2009).  

The studies by Areskoug (1982), Goodhue et al. (2006, 2007, 2012), Reinarts et al., (2009) and by Chin 

and Newsted (1999) estimate parameters for the true model from which data was generated. However, in 

realistic research settings, the true model is unknown and researchers rely on the statistical technique to 

identify whether their model is a good model, i.e. in close agreement with observations. Only two studies 

(Cassel et al., 1999; Aguiree-Ureta and Marakas, 2008), examine misspecified models using PLS. Cassel 

et al. (1999) investigate the robustness of parameter estimates with respect to the skewness of the 



 

distribution of the observed variables, multi-collinearity among variables, and misspecification of the 

structural model. They conclude that PLS estimates are quite robust to structural misspecification unless 

very important regressors are omitted. Their study examined the parameter bias of the misspecified 

model, but did not examine whether or how misspecifications can be identified in the first place. Their 

study is also limited to structural misspecification and does not examine measurement model 

misspecifications such as cross-loadings. Aguierre-Ureta and Marakas (2008) examine misspecification in 

the PLS context, but limit their study to measurement misspecification of formative or reflective 

indicators. They do not include structural misspecification or cross-loading misspecification of the 

measurement indicators.  

This brief overview of existing studies on PLS shows that we know very little about the behavior of PLS 

under misspecification conditions, and the ability of existing model quality heuristics to identify 

misspecified models. 



 

APPENDIX C: MISSPECIFICATION CONDITIONS 

Table C.1: Model Misspecifications for Model 1 (Only the structural model is shown, 

changes to the base model in bold arrows) 

Misspecification Condition Generating Model Estimated Model 

M1XL1 

True model contains one 

cross-loading from A on C 

and from X on Y 

Not shown in the structural model M1XL2 

True model contains two 

cross-loadings from A on C 

and from X on Y 

M1XL3 

True model contains two 

cross-loadings from A on X 

and from C on Y 

M1L1 
True model contains latent 

path from A to Y 

  

M1L2 
True model contains latent 

path from A to B 

  



 

Misspecification Condition Generating Model Estimated Model 

M1L3 
True model contains latent 

path from X to Y 

  

M1L4 
Combination of M1L1 and 

M1L3 

  

M1L5 
Estimated model contains 

latent path from A to Y 

  

M1L6 

Estimated model contains 

latent path from A to Y and C 

to X 

  



 

Misspecification Condition Generating Model Estimated Model 

M1L7 
Combination of M1L3 and 

M1L6 

  

M1R1 

Estimated model reverses 

paths between B and X and B 

and Y 

  

 

Table C.2: Model Misspecifications for Model 2 (Only the structural model is shown, changes to the 

base model in bold arrows) 

Misspecification Condition Generating Model Estimated Model 

M2XL1 

True model contains one 

cross-loading from W on X 

and from Y on Z 
Not shown in the structural model 

M2XL2 

True model contains one 

cross-loading from A on X 

and from A on Z 



 

Misspecification Condition Generating Model Estimated Model 

M2L1 
True model contains latent 

path from W to X and Y to Z 

  

M2L2 

Estimated model contains 

latent path from W to X and Y 

to Z 

  

M2R1 
Estimated model reverses 

path between A and W 

  

M2R2 

Estimated model reverses 

paths between A and W and A 

and X 

  

 



 

Table C.3: Model Misspecifications for Model 3 (Only the structural model is shown, changes to the 

base model in bold arrows) 

Misspecification Condition Generating Model Estimated Model 

M3XL1 

True model contains one 

cross-loading from A on C 

and from X on Y 

Not shown in structural model M3XL2 

True model contains two 

cross-loadings from A on C 

and from X on Y 

M3XL3 

True model contains two 

cross-loadings from A on X 

and from C on Z 

M3L1 
True model contains latent 

paths from A to L and C to K 

  

M3L2 
True model contains latent 

paths from A to Z and C to X 

 
 

M3L3 
True model contains latent 

paths from K to Z and L to X 

  



 

Misspecification Condition Generating Model Estimated Model 

M3L4 
Estimated model contains 

latent path from A to L 

 
 

M3L5 
Estimated model contains 

latent path from A to Z 

  

M3L6 
Combination of M3L4 and 

M3L5 

  

M3L7 
Combination of M3L3 and 

M3L6 

 
 

M3R1 

Estimated model reverses 

paths from B to K, B to L, K 

to Y, and I to Y 

  

 



 

APPENDIX D: DATA GENERATION AND MODEL ESTIMATION 

Data generation can be done either from a model-implied covariance matrix or by generating values for 

exogenous latent variables, and using the structural and measurement relationships with known 

parameters to create values for endogenous latent and manifest variables (Mattson, 1997). We followed 

the first approach to generate 200 samples from the true model for each experimental condition.  

Using that data, we estimated 3332=54 experimental conditions for each of the 12+7+12=31 true 

model and misspecification conditions, each with 200 bootstrap resamples for parameter significance 

tests. In total, we performed more than 67,294,800 PLS estimations. We used the R statistical system 

(version 2.10), with the plspm (version 0.1-4) and lavaan (version 0.31) packages. Using a cluster of 

four eight-processor virtual machines on Amazon's EC2 compute “cloud”, data generation, model 

estimation, and collection of results took approximately 2 weeks. 

 



 

APPENDIX E: RELIABILITY UNDER CROSSLOADINGS 

For a model with a latent variable    with two indicators       we can write: 

            [                   ]               

We have assumed for simplicity that errors do not covary with latent variables or each other. 

           
                 

           
                 

So that the correlation can be written as 

           
           

√  
                √  

                
 

For the case of equal loadings, equal error variances, and unit latent variance this simplifies to 

            
  

         
 

The variance of the sum can be written as 

        [                                       ] 

After some arithmetic and assumptions that errors do not covary with latent variables and each other, this 

can be simplified to 

         
            

                                       

For the case of equal loadings, equal error variances, and unit latent variance this simplifies to 

                    

So that  



 

   
 

   

            

      
 

    

[         ][           ]
 

Now consider a cross-loading of latent    on indicator    with strength   . With this cross-loading, the 

expression for    changes to 

                   

So that, assuming uncorrelated errors, the variance, covariance, and correlation change to 

         [                               ] 

                                              

             [                         ]                      

            
                  

√  
                √                                    

 

Similarly, the expression for the variance of the sum of the scale changes to 

        [                                                    ] 

After some arithmetic and assumptions that errors do not covary with latent variables and each other, this 

becomes 

          
            

                                          
                

         

For the case of equal loadings, equal error variances, and unit latent variance these expressions simplify to 

            
       

√         √               
 

                           

So that the reliability becomes 



 

   
 

   

           

                     √         √               
 

For comparison purposes, Figure E.1 shows a plot of reliability with and without cross-loadings for a 

range of error variances and unit loadings. 

 

Figure E.1: Reliability under cross-loading conditions 



 

APPENDIX F: CROSS-LOADINGS AND ERROR VARIANCES 

The variance of indicator   of a latent variable   can be written as 

            
                     (Equation F.1) 

Where   is the regression coefficient and   the measurement error of the indicator. Rewriting this, the 

measurement error estimate is 

                  
             (Equation F.2) 

A cross-loading in the generating model inflates the indicator variance: 

             
             

                         (Equation F.3) 

When the estimated model is misspecified and omits the influence of    on indicator  , the estimation 

equation is Equation F.1, not Equation F.3. Hence, the two right-most terms in Equation F.3 will 

comprise the error variance estimate      : 

            
                          (Equation F.4)  



 

APPENDIX G: DETAILED DISCUSSION OF HEURISTICS AND RESULTS 

For each model quality criterion in Table 1, we compared the mean of the criterion for the 200 samples 

for the generating model to the mean of the criterion for the 200 samples for the estimated (true or 

misspecified) model. The following subsections present our expectations and findings for each model 

quality heuristic.  

The complex, iterative nature of the PLS parameter estimation (Appendix A) results in an 

interdependence of measurement and structural parameter estimates, and also precludes the analytical 

derivation of many expectations about the effect of misspecifications on various heuristics. Hence, our 

expectations in Table 3 are partially based on the intent of the heuristic and in that sense represent an 

“ideal” expectation. For example, the cross-loading heuristic 2 is intended to address measurement model 

properties, and we would therefore have an “ideal” expectation of no change for structural 

misspecifications. However, in practice, the interdependence of parameter estimates means that it is 

possible that cross-loadings are affected by changes to the structural model.  

A brief note on terminology: We designate a complete decision rule such as “AVE must be greater than 

0.5 for a good model” as a heuristic; within a heuristic, we designate the value to be considered, e.g. 

“AVE” as the criterion. 

Indicator Loadings (absolute) (Heuristic 1) 

Low measurement loadings indicate unreliable indicators, i.e. those with high error variance. This 

criterion should not be susceptible to the structural misspecifications introduced here. It should also not be 

susceptible to the cross-loading misspecifications introduced here, as cross-loadings that were added to 

the generating model had the same strength as the intended loadings. They should not have lowered the 

intended indicator loadings.  



 

This heuristic is operationalized as the proportion of indicators with loadings greater than 0.7 and should 

be approximately 1 for all true models. We found that this proportion was as low as 0.80 for true models, 

especially for the complex model 3 when sample size was low and structural effects were weak (s=100, 

b=0.25).  

Our data showed a decrease in the proportion of loadings satisfying the heuristic for all cross-loading 

conditions, but only for weak structural relationships (b=0.25) and with a stronger effect for low loadings 

(l=0.75). The decrease in the proportion of indicators satisfying the heuristic depends on the model, as the 

models contain different numbers of indicators (Figure G.1). 

  

Figure G.1: Indicator loadings (absolute) criterion 

(criterion 1) decrease for M2XL2 

Figure G.2: Indicator loadings (absolute) criterion 

(criterion 1) decrease for M3L2  

(note the negative scale extent) 

 

Contrary to our expectations, the criterion was affected by structural misspecifications that removed paths 

in the estimated model. Conditions M2L1, M3L1, M3L2, M3L3 and M3L7 showed a significant increase 



 

(up to 15%) in the proportion of indicators satisfying the heuristic, again only for weak structural 

relationship and a stronger effect for low loadings (Figure G.2). 

In summary, this heuristic is neither designed nor able to reliably identify common model 

misspecifications. 

Cross-Loadings (relative) (Heuristic 2) 

This heuristic was designed to identify the type of cross-loadings introduced here. The heuristic was 

operationalized as the average proportion of indicator cross-loadings that are more than 0.1 below the 

loading on the intended construct. For the true models, this proportion should be 1. This was the case for 

M1, but not for M2 and M3, where the proportion was as low as 0.7 when structural effects were strong 

(b=0.75), independent of sample size.  

We observed that all except two (M1XL1, M1XL2) cross-loading conditions had a significant effect, 

which was more pronounced when structural coefficients were high (b=0.75) (Figures G.3, G.4). 

However, this criterion was also susceptible to structural misspecification in conditions M1L4, M2L1, 

M3L1, M3L3, and M3L7 (decreases) and also in condition M3L2 (improvement) when structural effects 

were high (b=0.75) (Figure G.5).  

In summary, this heuristic correctly identified most conditions it was designed for, but it also incorrectly 

and misleadingly identified many structural misspecifications as measurement problems. 



 

  

Figure G.3: Cross-loadings (relative) criterion 

(criterion 2) decrease for M1XL3 

Figure G.4: Cross-loadings (relative) criterion 

(criterion 2) decrease for M2XL2 

 

 

Figure G.5: Cross-loadings (relative) criterion (criterion 2) decrease for M3L2 



 

Cross-Loadings (absolute) (Heuristic 3) 

This heuristic was also designed to identify the cross-loading misspecifications in this study. It was 

operationalized as the average proportion of indicator cross-loadings less than 0.4. For the true models, 

this proportion should be, and was in fact 1. We expected the same effects on this heuristic as for the 

previous. The criterion behaved in the expected direction for M1XL1, M1XL2, M3XL1, M3XL2 but 

conditions M1XL3 and M3XL3 had no effect on this criterion (Figure G.6). However, this heuristic 

misleadingly affected by the structural misspecifications in conditions M1L4 and M3R1 when structural 

coefficients were high (b=0.75) and decreasing with sample size (s) (Figures G.7, G.8). 

  

FigureG.6: Cross-loadings (absolute) criterion 

(criterion 3) decrease for M1XL2 

Figure G.7: Cross-loadings (absolute) criterion 

(criterion 3) decrease for M1L4 



 

 

Figure G.8: Cross-loadings (absolute) criterion (criterion 3) decrease for M3R1 

 

Similar to the previous criterion, this cross-loading criterion behaved as expected for some but not all 

conditions that it was intended to identify, and it was, contrary to its design, also susceptible to 

misleadingly identifying some structural misspecifications as measurement problems. In contrast to the 

previous criterion, this criterion appears more robust to variations in sample size, loading and structural 

effects. It also provided a more reliable baseline for the true models. 

Reliability (Cronbach’s ) (Heuristic 4) 

Reliability is “the extent to which measurements are repeatable” (Nunnally, 1967). Reflective 

measurement items are intended to be semantically equivalent and can thus be thought of as repeated 

measures of the same concept. Cronbach’s expresses the idea that repeated measures yield the same 

value, i.e. are reliable, if they are highly correlated. Consequently,  is defined in terms of the correlations 

among the indicators for a latent variable (Peter, 1979): 
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Here,   is the number of indicators for the latent variable,     are the correlations among the indicators,   

is the sample size and     
  is the variance of the sum of the indicators. The numerator expresses the 

covariance among the items, while the denominator expresses the total sample variance of the summed 

scale.  

The definition of this reliability measure shows that at best it is designed to identify measurement 

misspecifications. In the presence of cross-loadings, this reliability measure is expected to decrease 

(Appendix E), whereas structural misspecifications should have no effect as they do not affect the 

correlations among items.  

This heuristic was operationalized as the proportion of latent variables with a Cronbach's  reliability 

greater than or equal to 0.7. We expected this to be 1 for all true models. However, for true models with 

few indicators and low loadings (l=0.75) this criterion ranged between 0.8 and 0.95, indicating that some 

latent variables in the true models did not meet the reliability requirement. In these conditions, we 

observed improvements of this criterion for removed path structural misspecification conditions and some 

measurement misspecifications (Figure G.9).  

In contrast to the decision heuristic, the mean   value behaved as theoretically expected. They ranged 

between 0.77 and 0.90 for the true models and decreased for some measurement misspecifications 

(M1XL1, M1XL2, M3XL1, and M3XL2), though not to the extent that they dropped below the 

recommended 0.7 value. In contrast to our expectations, we observed improvements to the criterion for 

many structural misspecification conditions where paths are removed in the estimated model (M1L1, 

M1L2, M1L3, M1L4, M1L7, M2L1, M2R2, M3L1, M3L2, M3L3, and M3L7) (Figure G.10). 



 

In summary, while Cronbach’s   is affected as expected, the threshold of 0.7 for this heuristic is too low 

to identify measurement misspecifications. The variation of   for true models suggests that this makes a 

poor baseline and model and condition specific thresholds should be identified. The improvement of   for 

removed path misspecifications raises the possibility that the positive effect of a structural 

misspecification can mask the negative effect of a measurement misspecification and suggest a good 

model when in fact the model contains two types of misspecifications.  

  

Figure G.9: Reliability alpha criterion (criterion 4) 

decrease for M3L3 

(note the negative scale extent) 

Figure G.10: Mean reliability alpha decrease for 

M3L2 

(note the negative scale extent) 

 

Composite Reliability () (Heuristic 5) 

In contrast to Cronbach’s  , the composite reliability   is defined not in terms of indicator correlations, 

but in terms of factor loading estimates: 
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The denominator depends on the estimated error variance. In cross-loading measurement 

misspecifications, the estimated error variance is inflated to include that part of the indicator variance that 

is contributed by the cross-loading factor, but which is not explicitly captured by a regression path in the 

estimated model (Appendix F). Hence, composite reliability is expected to decrease for measurement 

misspecifications.  

Our findings showed that there were no latent variables whose composite reliability was less than the 

threshold of 0.7 in any of the misspecified models. The mean  was 0.95 or greater for the true models. 

We observed a decrease of composite reliability for some reversal of path conditions (M2R1, M2R2). 

Other misspecification conditions had no effect.  In summary, this heuristic is unable to identify model 

misspecifications. 

AVE-Absolute (Heuristic 6) 

The average variance extracted (AVE) is also defined in terms of factor loading estimates and expresses 

the average ratio of indicator variance due to the underlying factor over the total indicator variance: 

     
∑    

 

∑   
   ∑          

 

As with composite reliability, the denominator depends on the estimated error variance. In cross-loading 

measurement misspecifications, the estimated error variance is inflated to include that part of the indicator 

variance that is contributed by the cross-loading factor but which is not explicitly captured by a regression 

path in the estimated model (Appendix F). Hence, AVE is expected to decrease for measurement 

misspecifications but it should not be affected by any of the other misspecifications in this study.  

We have operationalized this heuristic as the average proportion of latent variables that satisfy the 0.5 

threshold value. This proportion was 1 for true models, except when loadings and structural paths were 

weak (l=0.75, b=0.25) where this proportion dropped to approx. 0.8 – 0.95. 



 

As expected, this criterion was affected by only very few misspecification conditions. It decreased for 

some, but not all measurement misspecifications. Contrary to expectations, the criterion improved for 

some structural misspecification conditions that remove paths from the estimated model (M2L1, M3L1, 

M3L2, M3L3, M3L7) (Figure G.11) and it decreased for some, but not all measurement misspecifications 

(M2XL1, M2XL2, M3XL1, M3XL2, M3XL3 when l=0.75, b=0.25) (Figure G.12). Similar to the 

reliability heuristic, this is not a reliable heuristic for identifying the intended misspecifications and may 

misleadingly identify structural model problems as measurement issues, possibly masking measurement 

problems by structural problems. 

  

Figure G.11: AVE (absolute) criterion (criterion 6) 

decrease for M3L3 

(note the negative scale extent) 

Figure G.12: AVE (absolute) criterion (criterion 6) 

decrease for M2XL2 

(note the negative scale extent) 

 

(Root) AVE-Latent Correlations (Heuristics 7 and 8) 

This heuristic encompasses properties of both the structural and the measurement model. It is 

operationalized as that proportion of latent variables whose AVE exceeds all of its correlations with other 



 

latent variables. This proportion was 1 for the true M1, but was lower for the true M2 and M3 for weak 

loadings and strong structural effects (as low as 0.3 for M2, as low as 0.95 for M3).  

Because the AVE decreases for cross-loading conditions, this criterion should be affected similarly. 

While the complexity of the models and structural misspecifications precludes a precise prediction, this 

heuristic may be affected by structural misspecifications as these affect the latent variable correlations.  

Our findings confirm these expectations for most misspecification conditions, but with an effect size that 

strongly depends on the model, type of misspecification, and strength of structural coefficients. We 

observed decreases with a small effect size (up to 3% change) for M1L4, M1XL1, M1XL2, and M3XL2, 

and with modest effect size (up to 30% change) for M1XL3, M2L1, M2L2, M3L2, and M3XL3, and with 

strong effects (up to 90% change) for M2XL1 and M2XL2. The models M3L2, M3L3, and M3L7 showed 

improvements for this heuristic for some conditions and decreases in others (Figures G.13, G.14).  

In summary, this heuristic tends to identify true models with weak measurement and strong structural 

effects as poor. It is able to identify misspecifications only when structural effects are strong. This 

heuristic is unsuitable for both weak structural effects (it will not identify misspecified models) and strong 

structural effects (it will mistakenly reject true models).  



 

 
 

Figure G.13: AVE-Latent correlation criterion 

(criterion 10) decrease for M2XL2 

Figure G.13: AVE-Latent correlation criterion 

(criterion 10) decrease for M3L7 

(note the negative scale extent) 

 

Heuristic 8 requires that the square root of the AVE should be greater than the latent variable correlations 

and is a relaxation of heuristic 7. Thus, we expect the effects to be generally less pronounced than for 

heuristic 7, and our findings confirm that this heuristic is too weak to be able to reliably identify 

misspecification conditions.  

Significant R2 (Heuristic 9) 

As in regression models, the coefficient of determination for endogenous latent variables    should be 

significant, but “acceptable levels depend on research context” (Hair et al., 2012). However, the mere 

statistical significance of the coefficient of determination is a low threshold, as none of the 

misspecifications introduced here, especially the number of removed paths, are sufficient to reduce the    

values to insignificant levels. Consequently, our findings indicate no effect of any misspecification 



 

conditions on the statistical significance of the coefficient of determination. We conclude that statistical 

significance of the coefficient of determination is not a sufficiently strict heuristic. 

AVE-R2 (Heuristic 10) 

This heuristic combines the two previously discussed ones; it includes aspects of the measurement model, 

the AVE, and of the structural model, the coefficient of determination   . We operationalized this 

heuristic as the proportion of endogenous latent variables whose AVE is greater than its coefficient of 

determination   .  

For all three true models, this proportion was 1, except when loadings were low and structural effects 

small (l=b=0.75) when the proportion dropped to approx. 0.8. 

Given our expectations for the AVE and the coefficient of determination, we expect this heuristic to 

identify measurement misspecifications, because the AVE should drop while the coefficient of 

determination should not. Because the AVE should be unaffected by structural misspecifications, we 

expect this heuristic to be unable to identify added paths, as these do not correspond to paths in the 

generating model and therefore do not lead to increases in the     value. In contrast, there should be a 

positive effect for removed paths, as the    value is expected to decrease.  

Our findings confirmed the positive effect for almost all conditions where paths are removed, and many 

conditions where paths are reversed: The criterion improved for conditions M1L1, M1L2, M1L3, M1L4, 

M1L7, M1R1, M2L1, M2R1, M3L2, M3L3, M3L7, and M3R1 when l=b=0.75 (Figure G.15). 

We also found that this criterion decreased for many, but not all measurement misspecifications: The 

criterion decreased for conditions M2XL1, M2XL2, M3XL1, M3XL2, and M3XL3 when b=0.75 and 

loadings are low (l=0.75 or l=1.0), for M1XL1, M1XL2 when b=0.75 and for M1XL3 under all 

conditions (Figure G.14).  



 

In general, this appears to be a useful heuristic but only when loadings were low, relative to structural 

effects. This lack of reliability across experimental conditions is problematic. 

  

Figure G.14: AVE-R2 criterion (criterion 10) decrease 

for M1XL2 

Figure G.15: AVE-R2 criterion (criterion 10) decrease 

for M3L3 

(note the negative scale extent) 

 

Significant structural path estimates (Heuristic 11) 

This heuristic concerns only the structural part of the model and requires that all structural path estimates 

be significantly different from zero. This heuristic is operationalized as the proportion of structural 

regressions that are statistically significant. 

We expect that this heuristic is not affected by the removal of paths, as the remaining paths should be 

statistically significant. The addition of paths to the estimated model that are not in the generated model 

should have an effect on this heuristic, as these paths should not be statistically significant. Ideally, 

reversed paths should also have a negative effect, as the reverse path is not in the generating model, 

though bivariate regressions are by their nature invariant under reflection. 



 

Our findings confirmed our expectations of no effects for measurement misspecification and removed 

paths. Our findings also confirmed our expectations for a negative impact of additional paths on this 

heuristic for many but not all conditions. 

Specifically, the proportion of significant paths should drop to .8 for M1L5 (we added one additional path 

to the four already in M1), which we observed except when indicator loadings were low or when 

structural effects were strong and the number of indicators was low. In those cases, there was no change, 

meaning that PLS overestimated the significance of the structural path (Figure G.16). 

For M1L6, M1L7 and M2L2 the proportion should drop to 0.75 as two additional paths were added to the 

four already in M1 or M2, which is what we observed for M1L6 but not for M1L7 or M2L2. For M1L7, 

we saw a drop to 0.84 when b=0.75 or b=0.25 and s=750, and no change when b=0.25 and s=100. For 

M2L2, we saw very complex behavior, depending on sample size, strength of structural relationships, and 

indicator loadings. 

We expected the criterion to drop to approx. 0.88 for M3L4 and M3L5 (we added one additional path to 

the eight already in M3). We observed this for M3L4 only when structural effects were weak and sample 

size was small, and we observed it for M3L5 only when structural effects were weak, independent of 

sample size. 

The criterion should drop to 0.8 for M3L6 and M3L7 (we added two additional paths to the eight already 

in M3). This was observed for M3L7, but not M3L6 for which the criterion showed complex behavior 

depending on strength of structural relationships. 

In summary, it appears that PLS estimates models in such a way that frequently even parameters that do 

not correspond to population parameters are significant. Our data does not show a consistent set of 

conditions under which this is true, instead differing from model to model. This suggests that this 

heuristic is unsuitable for reliably identifying misspecified models in practice. 



 

 

Figure G.16: Significant structural path estimates 

criterion (criterion 17) decrease for M2L2 

 

 

Goodness-Of-Fit (relative) (Criterion 12) 

The relative goodness-of-fit (GoF) index is “a measure of the global goodness of fit as it is a compromise 

between communality and redundancy” (Tenenhaus, 2004). It is defined as the geometric mean of the 

product of mean communality and redundancy of latent variables (Chin, 2010; Esposito Vinzi et al., 

2010): 

    √           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Based on the absolute GoF defined by Tenenhaus et al. (2004), Esposito Vinzi et al. (2010) propose the 

relative GoF index that is bound between 0 and 1 as:  
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Here   is the total number of latent variables,    is the number of endogenous latent variables,     denotes 

indicator   of latent variable  ,    indicates latent variable  ,    are correlation coefficients,    are 

coefficients of determination for endogenous latent variables,   
  is the first/largest eigenvalue of the 

principal component decomposition of the indicators for latent variable   and    is the is the first 

canonical correlation between the matrix of manifest variables for latent variable    and the matrix of 

manifest variables for all predictors of   . 

The relative GoF for all true models was consistently above the recommended thereshold of 0.9 when 

b=0.75 and greater than 0.7 and approaching 0.9 when b=0.25. This suggests that the relative GoF is a 

good baseline when structural effects are strong. 

The complex definition of the relative GoF that includes both structural and measurement model 

properties precludes a simple analytical prediction. Instead, based on the intent of the GoF to capture both 

measurement and structural model quality, this heuristic should be negatively affected by all 

misspecifications in this study. 

The relative GoF decreased for many structural and measurement misspecifications (M1L5, M1L6, 

M1XL1, M2L2, M2XL1, M2XL2, M3L5, M3L6, M3XL1, M3XL2) (Figure G.17), though not 

sufficiently to yield a value less than the recommended threshold of 0.9. However, contrary to 

expectations, the rGoF increased for some structural misspecifications (M1L2, M1L3, M1L4, M1L7, 

M2L1, M2R1, M2R2, M3L1, M3L3, M3L7) and showed complex behavior for other misspecification 

conditions (M1L1, M1R1, M1XL2, M1XL3, M3L2, M3R1, and M3XL3) (Figure G.18). Given this 

complex behavior, the relative GoF index is not a reliable heuristic to identify model misspecifications. 



 

  

Figure G.17: Relative GoF criterion (criterion 12) 

decrease for M2XL2 

 

Figure G.18: Relative GoF criterion (criterion 12) 

decrease for M1R1 

(note the negative scale extent) 

Predictive Relevance (Heuristic 13) 

Predictive relevance is assessed using blindfolding, a procedure where the researcher omits a fraction 
 

 
 of 

observations from the data set, estimates the model parameters, and uses the estimated model to predict 

the omitted observations. The predictions are compared to observations using the squared difference (E). 

At the same time, the difference between the variable mean and the observed values are also compared 

using the squared difference (O). The process is repeated with   different omitted fractions   times and 

the predictive relevance is then calculated as 

      
∑    

∑    
 

Chin (2010) suggests that “in general, a cross-validated redundancy    above 0.5 is indicative of a 

predictive model.” In contrast, the recommendation of 0 by Hair et al. (2012) means that any 



 

improvement in predictive accuracy over the variable mean demonstrates predictive relevance, a very low 

threshold.  

Predictive accuracy is expected to be affected by measurement misspecifications, as the measurement 

cross-loading introduces an additional predictor to some manifest variables, which should improve 

predictive accuracy. Redundancy-based predictive accuracy should also be affected by the coefficient of 

determination    for endogenous latent variables.  A larger    implies a smaller residual, in theory 

yielding improved predictive accuracy. Larger    values might be achieved when structural paths and 

predictors are added. However, in our case, the additional paths do not have corresponding generating 

paths and should therefore have no effect.  

In line with our expectations, our findings did not show any effect of added paths on this criterion. 

However, counter to expectations, this criterion was affected in complex ways by other structural 

misspecification conditions. Our findings also confirmed that predictive ability improved in many, but not 

all, measurement misspecification conditions. Given this complexity of responses and the limited ability 

to identify measurement misspecifications, predictive relevance is not a reliable heuristic to identify 

misspecified models, nor was it designed to be. 

CB-SEM χ 2 Test (Criterion 18) 

For comparison purposes we also used CB-SEM estimation and the χ2 statistical test of model fit to detect 

misspecifications. This criterion is operationalized as the mean p-value of the χ2 test. We expected this to 

be above 0.05 for all true models and below 0.05 for all misspecifications. This was the case for the true 

M1 and M2 except when s=100 and i=7 and for M3 except when s=100 and i=5 or i=7, confirming the 

known fact that the χ2 requires reasonably large sample size. 

The misspecifications M1L1, M1L3, M1L4, M1L7, M1R1, M1XL1, M1XL2, M1XL3, M2L1, M2XL1, 

M2XL2, M3L1, M3L2, M3L3, M3R1, M3XL1, M3XL2, and M3XL3 were reliably identified with the 



 

mean p-value dropping to zero. However, for some models (M1L3, M1L4, M1L7, M1R1, M2L1, 

M2XL2, and M3L1) this required either strong structural effects or a large sample size when structural 

effects were weak (Figure G.19). 

There were no changes in the p-value of the test for models M1L2, M1L5, M1L6, M2L2, M2R1, M2R2, 

M3L4, M3L5, and M3L6. The added path in M1L2 is already captured in the free exogenous covariance, 

thus makes no difference to the model fit, i.e. M1L2 is covariance-equivalent to the true M1. The added 

paths in the models M1L5, M1L6, M2L2, M3L4, M3L5, and M3L6 also make no difference to model fit, 

as their coefficients are simply estimated to be zero. M2R1 and M2R2 can also be shown to be 

covariance-equivalent to the true M2. 

In summary, the χ2 test can reliably identify misspecifications for medium and large samples, a result 

well known from the literature. 

 

Figure G19: CB-SEM χ
2
 test p-value decrease for M1L3 

 



 

APPENDIX H: PREDICTION MODELS 

Predicting the category of a model, true or misspecified, from the model quality heuristics is a 

classification task, and suitable for predictive statistical classification techniques (Hastie et al., 2010). The 

outcome is a categorical variable, either with two categories (true model, misspecified model) or with 

multiple categories corresponding to specific misspecifications of the model. Many classification 

algorithms and heuristics (“classifiers”) have been proposed in the literature. 

We used version 3.6 of the Weka data mining suite (Hall et al., 2009) to analyze the PLS data we 

collected. This software provides more than 30 classifiers for nominal response variables, including 

parametric models like logistic ridge regression, classification tree-based methods like J48 (an 

implementation of the C4.5 algorithm), decision rule-based methods such as JRip, and Bayesian methods 

(Table H.1). Because classifiers have different performance on different problem sets, we subjected our 

data to all classifiers in the Weka suite. For each classifier, we used the default parameter setting and 

employed 10-fold cross-validation. Cross-validation is similar to the blindfolding test of predictive 

relevance used in PLS analyses in that in a k-fold cross-validation, 
 

 
 of the  data set is treated as test data 

while the remainder is used as training data for the classifier. The average performance statistics for   

repetitions are reported.  

Table H.1: Classifiers in the Weka data mining suite 

Weka Classifier Type Description 

BayesianLogisticRegression Bayesian Bayesian logistic regression with normal priors 

BayesNet Bayesian Bayes network learning classifier 

ComplementNaiveBayes Bayesian Complement class naïve Bayesian classifier 

DMNBtext Bayesian Discriminative multinomial naïve Bayesian 

NaiveBayes Bayesian Naïve Bayes using estimator classes 

NaiveBayesSimple Bayesian Naïve Bayes using normal attribute distribution 

Logistic Functional Logistic ridge regression 



 

Weka Classifier Type Description 

RBFNetwork Functional Normalized Gaussian radial basis function network 

SimpleLogistic 
Functional Boosted linear logistic regression with automatic 

attribute selection 

SMO Functional Support vector machine 

SPegasos 
Functional Stochastic primal estimated sub-gradient solver for 

support vector machines 

HyperPipes Other Hyper-pipe classifier 

IB1 Other 1-Nearest neighbor classifier 

IBk Other k-nearest neighbor classifier 

KStar 
Other Instance-based classifier using entropy-based distance 

function. 

LWL Other Locally weighted learning using decision stumps 

VFI Other Voting feature intervals classifier 

ConjunctiveRule Rule-based Single conjunctive rule learner 

DecisionTable Rule-based Simple decision table majority classifier 

DTNB Rule-based Decision table/ naïve Bayes hybrid classifier 

JRip 
Rule-based Repeated incremental pruning to produce error reduction 

(RIPPER) propositional rule learner 

NNge Rule-based Nearest-neighbor using generalized exemplars 

OneR Rule-based 1R classifier using the minimum-error attribute 

PART 
Rule-based Builds a partial C4.5 decision tree in each iteration and 

makes the "best" leaf into a rule 

Ridor Rule-based Ripple-down rule learner 

ZeroR Rule-based Always predicts mode  

ADTree Tree-based Alternating decision tree learning 

BFTree Tree-based Best-first decision tree classifier 

DecisionStump Tree-based Decision stump based on entropy measure 

FT 
Tree-based Functional trees with logistic regression functions at the 

inner nodes and leaves 

J48 Tree-based C4.5 revision 8 decision tree 

J48graft Tree-based Grafted C4.5 revision 8 decision tree 

LADtree Tree-based Multi-class alternating decision tree using LogitBoost 

LMT Tree-based Logistic model trees 



 

Weka Classifier Type Description 

NBTree Tree-based Decision tree with Naive Bayes classifiers at the leaves 

RandomForest Tree-based Forest of random trees 

RandomTree 
Tree-based Tree that considers K randomly chosen attributes at each 

node, without pruning 

REPTree Tree-based Decision tree learner using reduced-error pruning 

SimpleCart 
Tree-based Minimal cost-complexity pruning classification and 

regression tree 

 

As it may be difficult to provide a single classifier for all experimental conditions, we divided our data 

into sub-sets by sample size, loadings and strength of structural coefficients. Based on the discussion of 

our results in Appendix G, we expect more difficulties in classifying at low sample size due to a relatively 

large effect of sampling variations at small sample size. Further, we expect more difficulties in classifying 

at low structural coefficients, as the effects of the structural relationships on the various model quality 

heuristics would be weaker.  

Each classifier in the Weka suite provides a wealth of performance statistics, such as true positives and 

false positives for each of the two classes (true model, misspecified model), precision and recall. We 

focus on the Cohen’s Kappa statistic which provides a good summary of the agreement of classifier 

prediction with the actual class of the model and takes into account the chance agreement. This is 

important as our data contains only approximately 10% true models. A naïve classifier that by default 

classifies every model as misspecified would still achieve an impressive average precision and recall over 

both classes. Using Cohen’s Kappa statistics takes this into account. 

Table H.2 provides the average F-statistic (precision and recall) over both classes, and Cohen’s Kappa 

statistic of agreement of classification and actual class of model (true, misspecified) for the classifier with 

the highest Kappa value on each subset and the full data set. 



 

Table H.2.: Performance of best classifier on PLS model misspecification prediction for various 

experimental conditions and full sample 

Sample 

Size 
Loadings Beta F (avg) Kappa Classifier 

100 0.75 0.25 .889 .3216 RandomForest 

100 0.75 0.75 .945 .6857 RandomForest 

100 1.00 0.25 .893 .3524 RandomForest 

100 1.00 0.75 .958 .7630 RandomForest 

100 1.25 0.25 .890 .3371 RandomForest 

100 1.25 0.75 .962 .7824 RandomForest 

250 0.75 0.25 .907 .4445 RandomForest 

250 0.75 0.75 .968 .8214 RandomForest 

250 1.00 0.25 .924 .5563 RandomForest 

250 1.00 0.75 .980 .8867 RandomForest 

250 1.25 0.25 .935 .6266 RandomForest 

250 1.25 0.75 .983 .9022 RandomForest 

750 0.75 0.25 .945 .6800 RandomForest 

750 0.75 0.75 .968 .8184 LMT 

750 1.00 0.25 .964 .7941 RandomForest 

750 1.00 0.75 .975 .8582 RandomForest 

750 1.25 0.25 .969 .8253 LMT 

750 1.25 0.75 .984 .9091 LMT 

Full data set .941 .6626 RandomForest 

 

As the results in Table H.2 show, the overall performance of the classifiers on the complete PLS data set 

is poor (Kappa = 0.6626) and suggests that it is difficult to provide model classification guidelines that 

are generalizable to all three models for all model and sample conditions. As we expected, the 

performance of even the best classifiers is poor when sample size is low (s=100) or when structural path 

coefficients are low (b=0.25). Table H.2 indicates that it is possible to predict model misspecification 



 

with acceptable degrees of accuracy (Kappa ≈ 0.8 or better) for medium to large sample sizes and strong 

structural effects. 

However, this result must be qualified due to the nature of the classifiers that are built by the software. 

Given the large size of our data set (334800 PLS estimations), tree-based classifiers, which are 

consistently the best type of classifiers (Table H.2), have a tendency to overfit, i.e. to build large trees 

with very specific branching rules. For example, the tree built by the LMT classifier for (        

           ) has 44 leaves at the end of each is a logistic regression model, the random forest 

classifiers for the other conditions each consist of 10 decision trees, each with dozens or hundreds of 

leaves. While reducing the number of leaves in each decision tree is possible to achieve a more 

parsimonious set of guidelines, this severely degrades the Kappa value of classification accuracy.  More 

interpretable classifiers, such as ADtree, Ridar, PART, and JRip, lead to more parsimonious guidelines 

about identifying model misspecifications, but have unacceptably low Kappa values. Table H.3 shows the 

performance of the full suite of classifiers for (                   ). For example, the tree built 

using the ADtree classifier contains only 21 leaf nodes, but its Kappa value is unacceptably low at 0.7242. 

Tables H.4 and H.5 compare the confusion matrices for the LMT and ADtree classifiers to show the 

implications of the different Kappa values on the number of false positives and false negatives. 

Table H.3. Classifier performance for                     . 

Classifier F (avg) Kappa 

Logistic 0.857 0 

BayesianLogisticRegression 0.857 0 

DMNBtext 0.857 0 

RBFNetwork 0.857 0 

SimpleLogistic 0.857 0 

SMO 0.857 0 

SPegasos 0.857 0 

LWL 0.857 0 



 

Classifier F (avg) Kappa 

ConjunctiveRule 0.857 0 

ZeroR 0.857 0 

DecisionStump 0.857 0 

OneR 0.857 0.0070 

ComplementNaiveBayes 0.678 0.0280 

VFI 0.624 0.1568 

NaiveBayes 0.725 0.2297 

HyperPipes 0.819 0.3660 

DecisionTable 0.912 0.4384 

BayesNet 0.932 0.6359 

ADTree 0.955 0.7242 

DTNB 0.966 0.8079 

RandomTree 0.976 0.8613 

NNge 0.977 0.8664 

NBTree 0.977 0.8683 

IB1 0.978 0.8743 

IBk 0.978 0.8743 

BFTree 0.978 0.8771 

KStar 0.979 0.8806 

Ridor 0.979 0.8828 

FT 0.980 0.8860 

JRip 0.980 0.8881 

SimpleCart 0.981 0.8955 

PART 0.981 0.8963 

REPTree 0.982 0.9008 

J48graft 0.982 0.9015 

J48 0.983 0.9027 

RandomForest 0.984 0.9087 

LMT 0.984 0.9091 



 

 

Table H.4. Confusion matrix of LMT classifier for                     

 
Classified As 

True Misspecified 

Actual Class 
True 1738 62 

Misspecified 247 16553 

 

Table H.5. Confusion matrix of ADtree classifier for                     

 
Classified As 

True Misspecified 

Actual Class 
True 1144 656 

Misspecified 122 16678 

 

In summary, applying predictive modelling techniques to classify models based on their model quality 

heuristics shows limited success. The relatively low classification success rate for low sample sizes and 

weak structural effects, coupled with the highly complex classification rules that are generated make it 

impractical to provide simple, parsimonious and general guidelines to a researcher using PLS to identify 

misspecified models. Moreover, while we have built classification rules for all three models, given the 

complexity and specificity of the classification rules, it is unlikely that these generalize even to relatively 

similar models and/or sample characteristics. 

 

 


