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Structural equation models (SEM) are frequently used in Information Systems (IS) to analyze and test theoretical 
propositions. As IS researchers frequently reuse measurement instruments and adapt or extend theories, it is not 
uncommon for a researcher to re-estimate regression relationships in their SEM that have been  examined in 
previous studies. We advocate the use of Bayesian estimation of structural equation models as an aid to cumulative 
theory building; Bayesian statistics offer a statistically sound way to incorporate prior knowledge into SEM 
estimation, allowing researchers to keep a ñrunning tallyò of the best estimates of model parameters. 

This tutorial on the application of Bayesian principles to SEM estimation discusses when and why the use of 
Bayesian estimation should be considered by IS researchers, presents an illustrative example using best practices 
and makes recommendations to guide IS researchers in the application of Bayesian SEM. 
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I. INTRODUCTION 

Theories are statements of causal relationships between constructs [Whetten, 1989; Gregor, 2006]. Constructs are 
imbued with meaning in part by their relationship with other constructs and their relationship with observations. In 
other words, besides the relationships specified in the ñstructuralò model  between one construct and another, the 
relationships in the ñmeasurementò model (those between constructs and observations) are also theoretically 
interesting and important constituents of the theory. 

Constructs are typically represented in statistical models as latent variables (SEM), composites (PLS), components 
(PCA) or common factors (EFA). These  constructs are related to each other and to observed variables, which 
represent a construct's measures or indicators, by linear or non-linear relationships. The relationships are 
parameterized and the parameter values can be estimated using a range of statistical techniques. 

IS researchers are encouraged to adapt and extend existing theories and measurement instruments in order to build 
cumulative knowledge. This advice frequently leads to situations where the same parameter value is estimated 
repeatedly. For example, there are a host of studies that build on or adapt some aspect of the Technology 
Acceptance Model (TAM), one of the most widely cited theories in IS. Between 2004 and 2011 (inclusive), we have 
identified 43 empirical studies in the top IS journals (MISQ, JMIS, ISR, JAIS, and ISJ) that reuse some of the TAM 
constructs and TAM indicators developed by Davis [1989] and Davis et al. [1989]. Given the extensive history of 
parameter estimation and consequently our knowledge of previously estimated values, researchers face the 
question of what to do with this prior knowledge. More importantly, as we show later in the paper (Table 6, Figure 1), 
the parameter estimates reported by these studies differ widely and the differences are statistically significant. 

One option is to ignore previously estimated parameter values and only focus on the statistical significance of the 
parameters in the current study. This is the de-facto standard in IS research, but can lead to a situation where new 
estimates differ significantly, from previous estimates. Another alternative for the measurement model, but not for 
the structural model, is to simply omit the observed variable if it is particularly ñbadly behavedò. However, we agree 
with Evermann and Tate [2011] who argue  that all data deserve an explanation and researchers should not omit 
data merely because it does not fit with pre-existing expectations. Ultimately, ignoring differences in parameter 
estimates can lead to measurement instability, if it occurs in the measurement model, or to divergent theoretical 
conclusions, if it occurs in the structural model. In other words, rather than building cumulative knowledge, we 
accumulate different parameter estimates without being able to reconcile them in a sound and systematic way. 

In this tutorial we present a way to include our prior knowledge into the parameter estimation process, so that new 
estimates are based not only on the new data, but also on our existing knowledge about the likely values of the 
parameters. Bayesian statistical methods provide researchers with a statistically sound way of doing this. One can 
think of this as new studies updating our best estimates of the parameter values, in effect allowing us to keep a 
ñrunning tallyò of our model parameter estimates.  

Structural equation models with latent variables are usually estimated in the IS literature either by means of 
covariance-based techniques (using software like LISREL, EQS, AMOS, Mplus, etc.) or by using partial-least 
squares approaches (with software like PLS-Graph, SmartPLS, WarpPLS, etc.), which are based on a frequentist 
concept of probability. Bayesian estimation provides a third alternative to these methods with some pragmatic 
advantages for researchers which are not offered by currently used methods. These include the ability to integrate 
prior knowledge or assumptions into our model estimation: Bayesian estimation can estimate missing values as part 
of the estimation process, rather than in a separate, prior step, as is done by imputation methods. It also provides 
the ability to explicitly model the missingness of MCAR and NMAR data. As part of the Bayesian estimation, latent 
variable scores are explicitly estimated. In fact,  Bayesian estimation views a latent variable simply as one for which 
all value are missing. Especially for CFA (confirmatory factor analysis models), Bayesian estimation relaxes 
traditional model identification requirements, so that it is possible to estimate cross-loadings. Bayesian estimation 
also relaxes normality assumptions and allows the researcher to explicitly specify appropriate probability 
distributions. As a consequence, Bayesian estimation is naturally suited for ordinal data, such as from Likert scales, 
binary variables, and IRT (item response theory models). We discuss these and other advantages over existing 
methods in Section III. While Bayesian statistics itself are not new, there are few applications in the Information 
Systems literature.  A search of the AIS electronic library (including CAIS, JAIS and AIS conference proceedings) 
with the keyword ñBayesianò showed a handful of Bayesian estimation of regression models that do not include 
latent variables, especially multi-level models, or the use of Bayesian networks in information systems engineering 
contexts.  More specifically, we are aware of only one other paper in the IS literature that discusses a Bayesian 
approach in the context of structural equation modelling. Zheng and Pavlou [2009] offer a novel and effective 
method for inferring possible and plausible structural equation models from a given data set. However, their paper is 
very different from this tutorial in that it does not apply a Bayesian approach to the estimation of parameters in a 
structural equation models. Existing introductory texts on Bayesian methods [e.g. Congdon, 2006; Gelman et al., 
2004] typically focus on regression models, especially multi-level regression models, that do not include latent 
variables. Given the extent of structural equation models (SEM) in information systems, this tutorial is specific to the 
use of Bayesian estimation for SEM.  



 

 

 
Volume xx Article x 

The remainder of this tutorial is structured as follows. To establish some basic terminology, we first introduce the 
Bayesian principle of conditional probabilities on which all of Bayesian statistics is founded. To help researchers 
decide when Bayesian estimation may be appropriate, we then discuss some of the advantages and drawbacks of 
Bayesian statistics. The next section then provides an introductory example for the reader to become familiar with 
model specification and estimation in the Bayesian approach. We use an example from the Technology Acceptance 
Model (TAM) for illustration purposes. Following this, the main section of this tutorial presents a general procedure 
for Bayesian estimation and uses an in-depth example to guide the reader through best-practices of estimation and 
diagnostics. Our conclusion focuses on specific recommendations to researchers who wish to use Bayesian  
structural equation models. 

II. BAYESIAN PRINCIPLES 

In this section, we introduce the basic idea of Bayesian statistical models and focus on conceptual understanding of 
the principles. We show how Bayesian statistics differs from the traditional frequentist perspective and focuses on 
different goals and interpretations. 

Conditional Probabilities 

Bayesian statistics are based on Bayesô principle of conditional probabilities. In its simplest form, this can be written 
as follows: 

ὴ— ȿ ὼὴὼ ὴὼ ȿ —ὴ— 

In this equation, ὴ—ȿ ὼ is the posterior probability that the model parameter — takes on a certain value, conditional 
on the observation of data ὼ. The term ὴὼ ȿ— represents the probability of observing data ὼ conditional on the value 

of model parameter — (i.e. the likelihood of ὼ). The term ὴ— is the prior probability of the values of model parameter 

— and the term ὴὼ is the probability of observing the data ὼ not conditioned on any parameter —.  

In general, the terms — and ὼ are sets (vectors) of model parameters and observations, for example, — represents all 
loadings, latent covariances, and error covariances in a structural equation model (and also the latent variables 
themselves, as we shall see below). The data ὼ includes all observed variables in a structural equation model. 

We do not need to consider ὴὼ as this probability is not parameterized in terms of — and therefore has no bearing 
on the estimation of the values for —. The above equation can therefore be rewritten as a proportionality statement: 

ὴ— ȿ ὼᶿὴὼ ȿ — ὴ— 

The second form of Bayesô principle shows that our belief about the probability of parameter values after observing 
certain data (posterior belief) depends on our prior belief about the probability of parameter values and the 
probability of the observed data under that prior probability. In other words, the posterior beliefs are an update of the 
prior beliefs after observation of data. For specific Bayesian models, the researcher assumes a probability 
distribution for ὴὼ ȿ — based on theoretical considerations and the distribution of ὴ— reflects the existing, prior 
knowledge about parameter values.  

Bayesian Inferences 

In the traditional frequentist approach to statistical inference, the probability of an event is interpreted as the relative 
frequency of an event given an infinite sequence of samples from an identical (i.e. fixed) probability distribution. This 
notion is made explicit in Null-hypothesis significance testing (NHST), where the researcher asks how likely it is to 
observe the estimated parameter values (i.e.the data), if a Null-hypothesis (which defines the assumed sampling 
distribution) were true. If this likelihood is below a certain threshold  (e.g. 0.05), the researcher rejects the Null-

hypothesis. In other words, the focus in the frequentist paradigm is on ὴ ὼ ȿ—  (more specifically on ὴὼ ȿ—  ), not 

on ὴ—ȿὼ as in the Bayesian approach. In the frequentist approach, the data is treated as random by assuming that 
it is a random sample from a hypothetical probability distribution; the model parameters are assumed as fixed, e.g. in 
the form of a Null-Hypothesis that fixes — π. Importantly, because the p-value in NHST is derived under the 
assumption that the Null hypothesis is true, in rejecting the Null hypothesis researchers lose the ability to make any 
statements about the probability of the observed effect (or any effect, including the Null effect) [Zyphur and Oswald, 
2013]. The only statement is admits is that the Null hypothesis is unlikely. Given that point hypotheses are very 
unlikely to be strictly true, this outcome is not very satisfying [Zyphur and Oswald, 2013]. 

In contrast, the Bayesian approach focuses directly on the probability of an effect, i.e. on the probability of observing 
the estimated parameters given the data, i.e. on ὴ — ȿὼ . Further, in addition to the sampling uncertainty of the data, 
the Bayesian approach also treats the model parameters as uncertain, i.e. assumed as following a probability 
distribution, namely the prior distribution  ὴ—. This more realistic treatment allows the model to make a statement 
about the probability of the obvserved effect, rather than simply rejecting an (unrealistic) Null-hypothesis. 

This difference in interpretation is evident in the reporting of Bayesian analyses. Whereas the frequentist researcher 
provides the p-value to show whether the Null-hypothesis should be rejected, the Bayesian provides a point estimate 
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for the probability of the observed effect given the data (ὴ —ȿὼ, as either the mean or mode of the posterior 
probability distribution. Additionally, Bayesian researchers report credibility intervals (e.g. the 2.5% and 97.5% 
percentile) around this point estimate to show the credible range of the parameter value given the observed data. 
While these credibility intervals can be used for significance testing in the same way as a confidence interval in 
NHST, this is not the main goal of Bayesian analysis. 

III. WHEN TO USE BAYESIAN ESTIMATION OF STRUCTURAL EQUATION MODELS 

While we have motivated this paper by appealing to our desire for integrating prior knowledge into our model 
estimation, Bayesian estimation of structural equation models offers other advantages as well. 

¶ Integration of prior knowledge into the estimation process 

In contrast to covariance-based or partial least squares methods, the Bayesian approach can explicitly 
incorporate prior knowledge of parameter values into the estimation [Kruschke et al., 2012; Scheines et al., 
1999]. Prior knowledge is specified by the probability distribution of model parameters. The mean and 
variance of these prior distributions reflect our ñpoint beliefsò and the certainty about or the precision of our 
prior knowledge. 

¶ Integrated treatment of missing values 

In contrast to missing value imputation prior to model estimation, Bayesian estimation allows missing values 
to be estimated as part of the estimation of the overall model [Asparouhov and Muthen, 2010a; Lunn et al., 
2013]. Hence, missing value estimation is able to use the model structure, rather than relying only on 
sample information, such as when using the EM algorithm. This covers MCAR1 (missing completely at 
random) (missing at random) and MAR data. Moreover, the flexibility of Bayesian models allows the 
researcher to also specify a mechanism to model the missingness, covering NMAR (not missing at random) 
data [Lee, 2007; Lunn et al., 2013; Song and Lee, 2008; 2012]. 

¶ Explicit estimation of latent variable scores 

Latent variables are explicitly modeled and estimated in Bayesian statistics. In fact, the treatment of latent 
variables differs little from the treatment of missing values, and one can view a latent variable as one for 
which all value are missing. Conceptually, missing values and latent variables are closely related in 
Bayesian estimation [Asparouhov and Muthen, 2010b, Lee, 2007; Song and Lee, 2008]. 

¶ Relaxation of model identification requirements 

Traditional estimation methods require a model to be identified. For example, it is impossible in covariance-
based methods to estimate a CFA (confirmatory factor analysis) model in which all cross-loadings are free 
parameters. Bayesian estimation allows researchers to estimate non-identified models if the prior parameter 
distributions sufficiently constrains their values. For example, it is possible to estimate CFA models with 
cross-loadings that are expected to be approximately zero, but are allowed to vary somewhat around these 
values. Such models are argued to be more appropriate in expressing a researcherôs theoretical 
expectations about cross-loadings [Asparouhov and Muthen, 2010a; Scheines et al., 1999; Muthen and 
Asparouhov, 2012]. 

¶ Accuracy at small sample sizes and no reliance on asymptotic (large sample) validity of estimates 

Covariance-based methods make assumptions about the asymptotic distribution of parameter estimates and 
test statistics, which are strictly only valid for very large samples. Partial least squares techniques make no 
such assumptions for the test statistics, but the ñconsistency at largeò theorem means that PLS estimates 
are only unbiased for very large sample. In contrast, Bayesian estimation does not make such large sample, 
asymptotic assumptions for the distribution of model parameter and variable estimates [Asparouhov and 
Muthen, 2010a; Kruschke et al., 2012; Rupp et al., 2004; Scheines et al., 1999]. Moreover, Bayesian 

                                                      
1 Missing completely at random denotes data whose probability of missing does not depend on observed or unobserved data. Missing at random 
denotes data whose probability of missing depends on the observed data. MCAR and MAR data are called ñignorableò because they do not 
provide any information on the data. 
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estimates have been noted as more accurate for small sample sizes than maximum-likelihood (ML) 
estimates [Asparouhov and Muthen, 2010a].  

¶ Relaxation of normality assumptions 

Especially covariance-based methods make assumptions about the (multivariate-)normal distribution of 
variables to arrive at well-defined test statistics. Because the probability distributions for different variables 
are explicitly modeled in Bayesian estimation, it is possible to assign other than normal distributions, if these 
are more appropriate [Scheines et al., 1999], either based on prior knowledge or theoretical considerations. 
However, for the estimation to remain possible, the distributions that can be modeled are often restricted to 
so-called conjugate distribution (see below).  

¶ Easy extensibility to non-continuous observed data 

While some approaches exist to extend covariance analysis to ordinal data, this can be done more naturally 
and explicitly in Bayesian estimation [Asparouhov and Muthen 2010a; 2010b; Lee, 2007; Lee at el., 2010; 
Song et al., 2001]. This allows the easy expression of IRT (item-response-theory) models [Rupp et al., 2004] 
as well a more faithful representation of Likert scales or binary latent variables. Bayesian estimation has 
been shown to be more accurate than covariance-based methods for categorical data with missing variables 
[Asparouhov and Muthen, 2010a]. 

¶ Easy extensibility to multi-level models 

While multi-level structural equation models have not been used to great extent in the IS literature, they may 
be appropriate as organizational theories in IS may include individual-level, firm-level and industry-level 
constructs and relationships. Because the relationships between multiple levels of analysis are explicitly 
modeled and the estimation relies on iterative sampling of (relatively) simple distributions, it is possible to 
easily express multi-level statistical models in Bayesian approaches [Browne and Draper, 2006; Asparouhov 
and Muthen, 2010a; Song and Lee, 2008; Yuan and MacKinnon, 2009]. An easy way to model and estimate 
multi-level relationships may lead to more applications of these models in an IS context. 

¶ Convergence with traditional methods 

Bayesian estimates of parameter values converge to those of traditional methods. Specifically, with 
increasing sample size, Bayesian estimates converge asymptotically on maximum-likelihood estimates 
[Lunn et al., 2013]. Intuitively, this expresses the increasing weight of evidence by the data over prior 
assumptions. Further, a non-informative prior distribution can be chosen to further reduce the effect of the 
prior distribution. 

However, while Bayesian estimation has many advantages over traditional methods, it also has some drawbacks. 
The most important ones are the following: 

¶ Large computational resource requirements 

Bayesian estimation uses an iterative method of sampling parameter estimates from posterior probability 
distributions. The computational requirements are generally larger than for covariance-based or partial-least-
squares estimation. Further, because all latent variables in the model, including errors, are estimated during 
each iteration, the resulting data volume is significantly larger. However, with the increase in personal 
computer power in recent years, it is now feasible to estimate even complex models in a few seconds. 
Moreover, in some cases, Bayesian estimation is shown to be more computationally efficient than traditional 
estimation approaches [Asparouhov and Muthen, 2010a] 

¶ Dependence of results on prior distributions (even uninformative ones) 

Even as Bayesian estimates are noted as more accurate than ML estimates for small samples, Bayesian 
results for small sample sizes may depend on the specified prior probability distributions of model 
parameters, especially and even for different uninformative distributions [Asparouhov and Muthen, 2010a]. 
While there are no guidelines as to which models are affected at which sample size, researchers are urged 
to check for prior assumption dependence by estimating the model with different prior knowledge 
assumptions [Asparouhov and Muthen, 2010a]. 
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¶ Lack of overall model test (i.e. overidentification test as in covariance analysis) 

In covariance-analysis, the …ς test of model fit (and its robust versions) provides an easy diagnostic tool to 
assess the fit of the estimated model with the sample data [Evermann and Tate, 2011]. There is no such 
statistical test for Bayesian structural equation models. However, the ñposterior predictive p-valueò (PPP) 
[Gelman et al., 1996; Scheines et al., 1999; Muthen and Asprouhov, 2012] has been argued to serve a 
similar role and might be used as a test of model fit: ñThe LRT [likelihood ratio test, i.e. …2 test], appears to 
be more powerful than the PPP é but this is at the cost of incorrect type I error for small sample casesé 
On the other hand, the PPP is always reliable and for sufficiently large sample size has the same 
performance as the LRTò [Asparouhov and Muthen, 2010a, p. 31]. 

Recommendation: Use Bayesian analysis for 

¶ non-standard models that are difficult to express in covariance or partial-least squares  models (such as 
 multi-level models, underidentified models, models with missing values  and/or non-continuous variables) 

¶ estimation that allows the use of prior knowledge about parameter values, and/or 

¶ estimation from small sample sizes 

What Bayesian Estimation is Not 

Bayesian estimation can be related to other concepts in the research methods literature. First, Bayesian statistics is 
not a research methodology. The concept of a research method is broader and encompasses an underlying 
ontology and epistemology that guide the researcher in asking research questions, collecting data, analyzing data, 
and interpreting results. In contrast, Bayesian estimation, in its narrowest interpretation, is a statistical tool for data 
analysis. In  a slightly broader interpretation, it also suggests a different interpretation of the results, differing from 
the frequentist notion of probability. 

Bayesian estimation is not a method that is limited to survey research. Bayesian statistics are suitable for the 
analysis of other types of data [Congdon, 2006; Gelman et al. 2004] and it is up to the researcher to specify the 
appropriate statistical model. However, this tutorial is concerned only with structural equation models. 

Bayesian analysis of structural equation models is not a new way of doing survey research. Recommendations for 
instrument design and data collection remain unaffected by the type of subsequent data analysis method. Bayesian 
estimation of SEM models also does not affect the notions of reliability or validity of measurement instruments. The 
substantive interpretation of the model and its estimated parameters, in terms of validity and reliability of indicators 
[e.g. Gefen et al., 2011] is based on the estimates of parameter values, and does not depend on the type of 
estimation as long as the estimation produces valid estimates (e.g. asymptotically unbiased estimates). 

Bayesian estimation is not meta-analysis, nor an alternative to meta-analysis. Whereas meta-analysis is concerned 
only with a few important parameters and does not typically include new data, Bayesian estimation is concerned with 
all parameters of a model and requires a data set to analyze. 

Finally, Bayesian estimation is not a ñsilver bulletò that fixes all shortcomings of existing methods. In fact, the 
advantages and disadvantages we have outlined should be used as guidelines by researchers to identify if Bayesian 
estimation is suitable, and whether it provides advantages over traditional methods in particular applications. 

Relationship to Meta-Analysis 

As can be seen from our discussion this far, Bayesian estimation, in that it allows researchers to synthesize prior 
estimates, is related to meta-analytic techniques. However, meta-analysis aims only to synthesize existing 
estimates, rather than to incorporate this existing knowledge into the estimation of a new model [King and He, 2005]. 
Meta-analysis is appropriate for synthesizing an existing corpus of studies, but is not a technique for model 
estimation. In contrast, Bayesian estimation is not suitable to synthesizing a set of existing studies, but is concerned 
with the estimation of  particular model with a specific sample.  

Meta-analyses are typically concerned with only a few model parameters of theoretical interest, whereas Bayesian 
analysis estimates all parameters in a model. For example, a meta-analysis of the Technology Acceptance Model 
[Ma and Liu, 2004], a model that we also use for illustration purposes later, only examines the structural 
relationships. On danger in this is what King and He [2005] call the ñapples and orangesò issue, where researchers 
may aggregate results from studies with incommensurable measures. By estimating complete models including 
measurement relations, rather than focusing on a few structural relationships, Bayesian researchers are at least 
aware of the measurement model and can exclude studies with very different operationalizations of constructs.  
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Meta-analysis can also be used with structural equation models [Joseph et al., 2007]. Here too, the focus is typically 
on structural relationships, and again does not allow the estimation of a new model given the known information.  

Meta-analyses can be conducted even if the models are very different from each other, as long as they contain the 
relationship(s) of interest. Similarly, prior estimates need not be available for all parameters in Bayesian model, as 
the Bayesian approach allows the use of uninformative priors when no such knowledge is available.  

In summary, we view meta-analysis as a possible pre-cursor to Bayesian estimation. It provides the researcher with 
a systematic method to identify, collect, and aggregate the parameter estimates from different studies. Such 
systematically derived prior knowledge can then be modeled as part of the Bayesian structural equation model. 
Hence, for integration of prior studies, the researcher chooses a meta-analytic technique. If, in addition, a model is to 
be estimated with a new data set, a subsequent Bayesian approach can integrate the prior knowledge from the 
meta-analysis. 

Recommendation:  

¶ Meta-analysis is a valuable pre-cursor to Bayesian estimation 

¶ Use the meta-analytic results to aggregate data from former studies for use in Bayesian estimation 

IV. A SIMPLE ILLUSTRATION OF BAYESIAN ESTIMATION 

We presented the basic principle of Bayesian statistics in Section II. This section illustrates how that principle is 
applied to the estimation of a simple linear regression model. The aim of the section is to familiarize the reader with 
Bayesian terminology and equip the reader with a basic understanding of Bayesian model specification and model 
estimation. While we illustrate the mathematical specification of the model and the different probabilities and 
likelihoods, we do not provide any derivations, which are conceptually simple but lengthy and somewhat tedious. 
They can be found in any good textbook, such as Congdon [2006] or Gelman et al. [2004] for regression models, 
and Lee [2007] or Song and Lee [2012] for structural equation models.  

Consider a simple linear regression example including two observed variables. For example, in an application to the 
IS context, ώ might be the perceived usefulness in the Technology acceptance model (TAM), while ὼ might 
represent the perceived ease of use of that technology2. 

ώ  ὼ  ‐ (Equation 1) 

Further, we make the standard assumptions that the errors (residuals) are normally distributed with mean zero and 
variance „ : 

‐ ͯ ὔπȟ„  (Equation 2) 

Rewriting equations 1 and 2 in terms of probability distributions shows that the observations ὣ are normally 

distributed with mean ὢ and variance „ :  

ὣ ͯ  ὔὢȟ„  (Equation 3) 

Here, ὣ and ὢ are vectors of the ώ and ὼ respectively. Thus, the likelihood function is the following normal density:  

ὴὣȟὢ ȿ  ȟ„  θ „ ÅØÐ 
ρ

ς „
ὣ ὢ ὣ ὢ  

(Equation 4) 

We now need to specify our prior knowledge about the parameters  and „  by specifying a distribution for the prior 

probability ὴȟ„ . Assuming that the prior mean and variance are independent, we can simplify the prior 
distributions for easier specification: 

ὴȟ„ ὴ ȿ „ ὴ„   (Equation 5) 

Here, ὴ„  represents our prior knowledge about the errors (residuals) in the regression of attitude towards 
technology on perceived usefulness. For our TAM example we might come to have expectations based on e.g. the 

mean and range of reported ὶ values in published studies of perceived ease of use and perceived usefulness. 

Similarly, ὴ ȿ„  represents our prior knowledge about the regression coefficient in the regression of perceived 
usefulness on perceived ease of use. Again, we might come to have expectations based on the reported values in 

                                                      
2 In the interest of presenting a running example, we use the TAM constructs here as observed variables, even though they should be modelled 
as latent variables, as we do in later sections. For this simple initial example, one could assume these variables as sum scores of their indicators. 



 

 

Volume xx Article x 
9 

prior studies on TAM. Alternatively, for either or both distributions, researchers might choose uninformative prior 
distributions, if no previous knowledge is available. 

Conjugate Prior Distributions and Uninformative Priors 

To make the estimation tractable, the prior probability is typically assumed to have a conjugate distribution to the 

likelihood function ὴὼ ȿ —. This means that the product ὴὼ ȿ — ὴ— (i.e. the posterior probability) is of the same 

distribution family as ὴ —. Table 1 presents a list of frequently used conjugate prior distributions in Bayesian 
estimation. 

For our case of a normal likelihood function (Equation 4), appropriate conjugate prior distributions are another 

normal distribution for ὴ ȿ „  and an inverse Gamma distribution for ὴ„ : 

ὴ ȿ „  ͯ ὔ‘ȟ’ 

ὴ„  ͯ ὭὲὺὋὥάάὥ ὥȟὦ 

(Equation 6) 

(Equation 7) 

Each of these probability distributions has their own parameters, called hyper-parameters, which affect the mean 
and variance of the distribution (Table 1).  

In our TAM example, the hyper-parameters ‘ and ’ in Equation 6 represent our prior knowledge of the mean an 

variance for the regression coefficient Ȣ As an example, from Table 1 we see that setting ‘ πȢυ and ’ υ for the 

hyper-parameters in Equation 6 will yield a mean of 0.5 which represents our prior ñpoint beliefò of . The variance of 
the prior distribution of 5 represents our certainty (or uncertainty) about our prior ñpoint beliefò. For our particular 
example of the regression of perceived usefulness on perceived on ease of use, we look towards an existing meta-
analytic study [Ma and Liu, 2004]. In that study, the authors analyzed 33 correlations between the two variables from 
21 studies. With correlations being equal to standardized regression coefficients in a two-variable linear model we 
may use their point estimate of 0.50 for the hyper-parameter ‘ and their variance estimate of 0.038 for the hyper-
parameter ’ if we use standardized data.  

Similarly, in our TAM example the parameters ὥ and ὦ in Equation 7 represent our prior knowledge of the means 

and variances for the variances of the regression errors ‐ in the regression of attitude on perceived usefulness. For 

example, from Table 1 we see that setting ὥ σ and ὦ ρ yields a mean of 0.5 and a variance of 0.25 as our prior 
estimate of the error variances.  Unfortunately, the meta-analysis by Ma and Liu [2004] does not provide any data on 

the ὶ for a simple regression of perceived usefulness on perceived ease of use. In cases like this, where there is no 
prior knowledge, or our prior knowledge is very uncertain, researchers can use non-informative distributions, e.g. an 
normal distribution with a very large variance, or a uniform distribution. The last column in Table 1 shows frequently 
used choices for uninformative prior distributions. In our TAM example, if we had no prior beliefs about the 

regression parameters of attitude on perceived usefulness, we might specify ‘ π and ’ ρπ which describes a 
zero-centered distribution with very large variance, i.e. it is essentially flat and provide no useful information about 
the parameter  that it describes. Similarly, if we had no prior knowledge about the error (residual) variance in the 
regression, we might choose an uninformative prior gamma distribution with ὥ ρ  and ὦ  π which yields a 
uniform density of 1. 

With the choices of prior distributions in Equations 6 and 7, and the likelihood function as in Equation 4, one can 
analytically derive the form of the normal posterior probability distribution. Conceptually simple, the derivation is too 
space-consuming to show. 

We emphasize that while conjugate priors are useful because they yield analytically derivable, closed form 
expressions for the posterior, and thus make estimation easier, the choice of conjugate priors is not a strict 
requirement. Even when a closed form expression of the posterior is not available, one can sample from it using 
Markov Chain Monte Carlo methods, and particularly the Gibbs sampler, presented next. 

Table 1: Typical conjugate prior distributions used in Bayesian estimation (choices for uninformative priors from 
[Asparouhov and Muthen, 2010b]) 

Likelihood function 
Conjugate prior 

distribution 
Mean Variance 

Example choices 
for uninformative 
prior distribution 

Normal  

(with known variance) 

Normal 

ὔ‘ȟ’ 
‘ ’ ὔπȟρπ  

Normal 

(with known mean) 

(parameterized using 
mean and variance) 

Inverse Gamma 

ὍὋὥȟὦ 

ὦ

ὥ ρ
 

ὦ

ὥ ρ ὥ ς
 

ὍὋπȟπ 

ὍὋρȟπ 

ὍὋπȢππρȟπȢππρ 
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Table 1: Typical conjugate prior distributions used in Bayesian estimation (choices for uninformative priors from 
[Asparouhov and Muthen, 2010b]) 

Likelihood function 
Conjugate prior 

distribution 
Mean Variance 

Example choices 
for uninformative 
prior distribution 

Normal3  

(with known mean) 

(parameterized using 
mean and precision) 

Gamma 

Ὃὥȟὦ 

ὥ

ὦ
 

ὥ

ὦ
 ὋπȢππρȟπȢππρ 

Multivariate Normal 

(parameterized using 
means, covariances 

Inverse Wishart4 

ὍὡɱȟÄ 

ɱ

Ὠ ὴ ρ
 

Proportional to 

ρ

Ὠ ὴ Ὠ ὴ ρ Ὠ ὴ σ
 

Ὅὡπȟὴ ρ 

Ὅὡπȟπ 

ὍὡὍȟὴ ρ 

Multivariate Normal 

(parameterized using 
means, inverse 

covariances 

Wishart5 

ὡ ɱȟÄ 
Ὠɱ   

Exponential, 

Gamma 

Gamma 

Ὃὥȟὦ 

ὥ

ὦ
 

ὥ

ὦ
 ὋπȢππρȟπȢππρ 

 
Uniform6 

Ὗὥȟὦ 

ρ

ς
ὥ ὦ 

ρ

ρς
ὦ ὥ  

Ὗ ρπȟρπ  

Ὗπȟρπ  

Bayesian Estimation with the Gibbs Sampler 

Having developed our statistical model and found a solution for the posterior probability, we are now in a position to 
estimate the parameter values from this posterior distribution. This occurs by sampling values of individual 
parameters from the posterior distribution one parameter at a time, a process referred to as Gibbs sampling, a form 
of a technique called Markov Chain Monte Carlo (MCMC) sampling. Using our example, we have analytically 
determined the posterior probability distribution to be normal (because of the normal likelihood and the conjugate 
prior distribution). We now iteratively sample values from this normal distribution, e.g. first for  from 

ὴ ȿ „ȟὣȟὢȟὥȟὦȟӶȟὛ (Step 1) 

and then for „  from 

ὴ„ ȿ ȟὣȟὢȟὥȟὦȟӶȟὛ (Step 2) 

Every iteration comprises these two steps. In the first iteration, a starting value for „  is either specified by the 
researcher, sampled from the prior distribution, or is the default set by the estimation software. After the first step 
samples a value for , this value becomes input to step 2 in that same iteration and allows sampling of a value for 

„ . These sampled values form the input for the next iteration of these two steps. The iterations continue until the 
sampled values are stable. In our simple example, each sampling step samples a single parameter. In many 
models, multiple parameters have a joint distribution, so that values for a set of parameters will be sampled in each 
step. 

In practice, it is common to begin multiple of these sampling chains from different starting values to ensure 
convergence of samples on the posterior parameter estimate. Final parameter estimates are then computed as the 
mean of the sampled values after a ñburn-inò period where stabilization occurs and whose samples are discarded. 
Typically, there may be up to 10,000 iterations in each of three Markov Chains, with burn-in periods of between 
2,000 and 5,000. These numbers indicate the substantial computational requirements for Bayesian statistics, 
especially for complex structural equation models with dozens or hundreds of parameters. 

                                                      
3 In some Bayesian literature, the normal distribution is parameterized as ὔ‘ȟ’  where ’  is the inverse variance, called precision.  
4 For the inverse Wishart distribution, ɱ  is a positive definite matrix of size ὴ. The variance is a complex formula not shown here, but can be 

influenced by the choice of Ὠ as shown in the table. 
5 For the Wishart distribution, ɱ  is a positive definite matrix of size ὴ. The variance is a complex formula not shown here. 

6 The uniform distribution is often used as a ñpseudo conjugateò prior and is an intuitive uninformative distribution. 
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OpenBUGS Model and Script 

Easy to use software for Bayesian SEM has only been developed relatively recently, in the form of the WinBUGS 
and OpenBUGS software [Lunn et al., 2013], and inclusion of Bayesian analysis in popular SEM software packages 
like MPlus. In this tutorial, we focus on the use of open-source software OpenBUGS for estimating Bayesian models, 
and the R system to analyze the results. OpenBUGS is an open-source version of the commercial WinBUGS 
software (ñBayesian Inference Using Gibbs Samplingò), originally developed by the biostatistics unit at Cambridge 
University. Model definitions are fully interchangeable between the two. Another open-source software that is very 
similar to both WinBUGS and OpenBUGS is JAGS (ñJust Another Gibbs Samplerò). OpenBUGS model definitions 
are also usable with JAGS, and OpenBUGS scripts can easily be translated to JAGS scripts. Lunn et al. [2013] 
provide an introduction to BUGS, its syntax and a comparison of the three BUGS implementations (WinBUGS, 
OpenBUGS, JAGS). 

 

Table 2: OpenBUGS model definition for the introductory example 

Line Model 

1 model {  

2   for(i in 1:N) {  

3     mu[i] < -  beta * x[i]  

4     y[i] ~ dnorm(mu[i],psi)  

5   }  

6   beta ~ dnorm(0.5, 5)  

7   psi ~ dgamma(3, 1)  

8 }  

 

Table 2 shows how our introductory TAM example is defined as an OpenBUGS model. The model definition begins 

with the model  keyword in line 1. Line 2 shows that each individual observation is defined separately. Lines 3 and 4 

show the definition of the ώ in the same form as we used in Equation 3. In other words, mu[i]  in line 3 represents 

the expected observation ὼ and line 4 mirrors Equation 3.  Lines 6 and 7 set up the prior probability distributions 
for the two model parameters in the same form as we have done in Equations 6 and 7. 

One important aspect of the OpenBUGS specification is that OpenBUGS parameterizes the normal distribution 
using the mean and precision (inverse variance), instead of the more typical mean and variance. The relationship 
between the two is simple: 

ὼ ͯ Ὃὥάάὥὥȟὦ   O   
ρ

ὼ
 ͯ ὍὲὺὩὶίὩὋὥάάὥὥȟὦ (Equation 8) 

Thus, the specification dnorm (mu[i], psi)  on line 4 uses mean mu[i]  and precision  psi . Accordingly, instead 

of an inverse gamma for the prior distribution of the variance, as in Equation 7, we use a gamma prior distribution for 

the precision psi  (line 8). As per Equation 8, the specification dgamma(3,1)  in line 7 for the precision parameter 

(which yields a mean and a variance of 3, see Table 1) is equivalent to inverse gamma specification on the variance 
parameter (and yields a mean of 0.5 and variance of 0.25, see Table 1).  

This simple example shows that the model definition in OpenBUGS is very explicit in the sense that it is analogous 
to the mathematical definition of the model derived earlier. This has the advantage of being very flexible. For 

example, we could easily specify hetero-skedastic models by introducing different psi  parameters for different 

observations in lines 4 and 8 of Table 2. It is also easy to see how a regression intercept could be added to the 
model in line 3, with the addition of an appropriate prior specification later in the model. On the other hand, this 
explicit specification requires an understanding of the mathematical concepts in this section.  

Having developed the OpenBUGS model specification, the model can be estimated with the OpenBUGS software, 
controlled via a script. This script is shown in Table 3. Line 1 is used to specify the working directory where the 
model and data files are found. Line 2 loads the model and performs a syntactic check. The model data file is loaded 
in line 3. The data file must also include values for all constants in the model, e.g. the number of observations N, 
which is used in line 2 in Table 2. Line 4 compiles the model for three MCMC sampling chains. Initial values are 
automatically generated in line 8. Lines 9 and 10 control for which of the model variables samples are to be 
collected. Line 11 sets up the computation of the Deviance Information Criterion (DIC), an important diagnostic tool. 
We discuss DIC and other diagnostics later. Finally, line 13 writes the sampled values in CODA format (a format that 
is suitable for later analysis using the R software) to the specified file. Lines 14 and 15 print summary statistics for 
the sampled variables and the DIC, respectively. 
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Table 3: OpenBUGS script to control the estimation  

Line Script 

1 modelSetWD('OpenBUGSExample')  

2 modelCheck('model1.txt')  

3 modelData('data1.txt')  

4 modelCompile(3)  

8 modelGenInits()  

9 samplesSet(' beta ')  

10 samplesSet(' psi ')  

11 dicSet()  

12 modelUpdate(5000, 1, 1, 'F')  

13 samplesCoda('*', 'codaoutput')  

14 samplesStats('*')  

15 dicStats()  

 

Recommendation: Use the OpenBUGS software for Bayesian estimation because it is 

¶ Flexible (not limited to certain types of models) 

¶ Expressive (provides a wide range of probability distributions with which to model) 

¶ Extendable (researchers can provide user-defined probability functions) 

¶ Free and open-source (and integrates well with the popular R statistical environment) 

¶ Cross-platform (works well in a heterogenous IT environment) 

¶ Scriptable (rather than relying on graphical user interfaces, scripts can ensure replicability of results) 

V. BEST-PRACTICE EXAMPLE: BAYESIAN ESTIMATION OF TAM CONSTRUCTS 

The previous section presented a simple illustration of how the Bayesian principle can be applied to a linear 
regression problem. That section has provided us with Bayesian terminology and equipped use with a basic 
understanding of Bayesian model specification and model estimation. In this section, we illustrate Bayesian best 
practices using a full example. We follow the steps in Table 4, which are generic steps for every Bayesian 
estimation, whether structural equation model or others. 

We use the Technology Acceptance Model (TAM) as an illustrative example also in this section because its 
constructs have been measured consistently using the same measurement items across multiple studies. Thus, it 
provides a rich set of prior knowledge about parameter estimates for us to use. TAM focuses on the relationship 
among three constructs, Perceived Ease of Use (PEoU), Perceived Usefulness (PU) and Behavioral Intention to use 
(BI). In this section, we focus on a CFA (confirmatory factor analysis) of perceived usefulness and behavioral 
intentions, due to the availability of data for these constructs. Our example uses the TAM data from Chin et al. 
[2008], which was also used in [Evermann and Tate, 2011]. 

 

Table 4: Recommended process steps for Bayesian model estimation 

Step 1 Specify the statistical model 

Step 2 Identify prior knowledge and distributional assumptions 

Step 3 Estimate model 

Step 4 Assess MCMC convergence 

Step 5 Remove burn-in iterations and thin samples 

Step 6 Evaluate model quality 

Step 1: Specify the statistical model 

The two constructs of interest in the TAM model are traditionally measured by six observed indicators each [Davis, 
1989; Davis et al. 1989]. The main difference to our earlier regression model is the inclusion of latent variables, i.e. 
variables for which data is missing. Latent variables in a Bayesian model are treated in a similar way to parameter 
estimates: they are assigned a probability distribution and their values are estimated as part of the model estimation 
process. 
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Table 5: CFA model definition in OpenBUGS (part 1, the basic statistical model) 

Line Model definition 

1 model {  

2   for(i in 1:N){  

3     #measurement equation model  

4     for(j in 1:P){  

5       y[i,j]~dnorm(mu[i,j], errorprec [j])  

6     }  

7     mu[i,1]< - lam[1]*xi[i,1]  

8     mu[i,2]< - lam[2]*xi[i,1]  

9     mu[i,3]< - lam[3]*xi[i,1]  

10     mu[i,4]< - lam[4]*xi[i,1]  

11     mu[i,5]< - lam[5]*xi[i,1]  

12     mu[i,6]< - lam[6]*xi[i,1]  

13     mu[i,7]< - lam[7]*xi[i,2]  

14     mu[i,8]< - lam[8]*xi[i,2]  

15     mu[i,9]< - lam[9]*xi[i,2]  

16     mu[i,10]< - lam[10]*xi[i,2]  

17     mu[i,11]< - lam[11]*xi[i,2]  

18     mu[i,12]< - lam[12]*xi[i,2]  

19     #structural equation model  

20     xi[i,1:2]~dmnorm(u[1:2], latprec [1:2,1:2])  

21   } #end of i  

 

The basic structure of the model specification is similar to the earlier one (Table 2) and is shown in Table 5.  The 
model definition begins on lines 1 and 2. Again, we specify each individual observation Ὥ of ὔ total observations.  
Lines 4 through 6 of Table 5 are a generalization from a single dependent variable to ὖ dependent variables. Both 

the sample size ὔ as well as the number of dependent variables ὖ will be defined in the data file. In our case of the 

TAM model, we have ὖ ρς observed variables, representing the 12 questionnaire items in the original TAM 
instrument. Similar to our earlier regression, we specify a normal likelihood for the observed variables with mean 

mu[i,j]  and precision (inverse variance, see footnote 2) errorprec [j] . The error variance is the same for all 

observations, i.e. a homogenous sample/ a homoskedasticity assumption. We will specify the hyper-parameters in 
the next subsection.  

Lines 7 ï 18 define the mean of the variables in terms of the loading ‗ (lam[1] ï lam [12] ) and the latent 

variable that the item loads on, either ‚ or ‚ (xi[i,1] or xi[i,2] ) . These definitions cannot be moved into the 

ñforò loop in line 4, because different items load on different latent variables. Finally, line 20 defines the likelihood for 

the two latent variables in terms of a multivariante normal distribution with means u and precision (inverse variance) 

latprec . Note that u is a vector of two quantities, whereas latprec  is a 2x2 matrix of four quantities. We wlil 

define u as fixed, reflecting common practice to assume zero-centered variables, and will specify a prior distribution 

for the variance and covariance of the latent variables, reflecting common practice to estimate them. 

An easy extension to this model is the inclusion of intercepts. In that case, the specification of e.g. line 7 would need 

to change to  mu[I, 1]< - lam[1]*xi[i,1] + alpha[1] where alpha[1] represents the intercept. This 

requires the later specification of a prior distribution for the intercept and it might then also be appropriate to estimate 
the means of the latent variables, rather than fixing them to zero. 

Another easy extension is the inclusion of cross-loadings. In that case, the specification of line 7 would need to 

change to mu[i,j]< - lam[j, 1]*xi[ i , 1] +lam[j,2]*xi[i,2] . In this case, it is possible to include these 

definitions in the ñforò loop of line 4.  

While we did not have sufficient data on the TAM outcome variables and estimates for the structural coefficients of 
the TAM model, the above BUGS model is easily extended to a full SEM model. For example, a full structural model 
of TAM can be expressed using the following specification:  

xi[i]~dnorm( mu[i],prec .xi )  

nu[1,i]< - beta[1]*xi[i]  
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nu[2,i]< - beta[2]*xi[i]+gamma*eta[1,i]  

eta[1,i]~dnorm (nu[1, i], prec .eta1 )  

eta[2,i]~dnorm(nu[2, i], prec .eta2 )  

In this model, xi  (‚) represents the exogenous TAM latent variable PEoU, eta[1,] (–) represents the endogenous 

TAM variable PU and eta[2,]  (–) represents the BI (behavioral intention construct). The indicator specifications 

are similar those in Table 5. 

Given the explicit nature of the model specification, it is also easy to see how identity constraints can be imposed on 
the model. For example, to suggest that loadings on the first and second indicator are the same, one would only 

need to change line 8 to read mu[i,2]< - lam[ 1]*xi[i,1] .  

Finally, we note that, with the estimation of all loadings, latent variances and covariances, and error terms, the 
model is strictly not identified. However, as we see later, it is possible to estimate this model when the prior 
distributions sufficiently constrain the posterior parameter estimates. In fact, Muthen and Asparouhov [2012] 
recommend a model in which all cross-loadings are estimated but with small prior probabilities as more realistic and 
appropriate, given that in practice, cross-loadings are hardly ever exactly zero and the zero-constraint in covariance-
based estimation leads to ill-fitting models that are still of practical interest. Moreover, Asparouhov and Muthen 
[2010a] have shown that the parameterization in which both latent variances and all loadings are estimated, as in 
the model in Table 5, provides considerable advantages in parameter accuracy, especially for small sample sizes 
and a large number of indicators.  

Recommendation: For structural equation models 

¶ Specify a model to estimate latent variances as well as all loadings. 

¶ Estimate all cross-loadings with realistic small prior probabilities with sufficient precision (inverse variance) 
to ensure the model can be estimated. 

Step 2: Identify prior knowledge and distributional assumptions 

To identify previous estimates for the TAM model parameters, we focus on studies published in five IS journals, 
MISQ, JMIS, ISR, JAIS, and ISJ. Through the ISI web of science we identified papers in these journals that cite 
either Davis [1989] or Davis et al. [1989], revealing 263 papers. Of these, 43 are empirical papers that use at least 
some of the TAM indicators developed by Davis [1989] and Davis et al. [1989]. Figure 1 shows box-and-whisker 
plots of reported standardized loadings by items. That data is presented in Table 6 (all surveyed studies use 7-point 
scales). As many of the 43 studies do not use BI as outcome variable, we have compiled prior values only for the 
loadings of the PEoU and PU constructs. A more sophisticated meta-analysis may also use weighting by sample 
size when calculating the mean and variance; however, our focus is on the use of this data in Bayesian estimation. It 
is clear from the variance of the estimates reported in Table 6, as well as the diagram in Figure 1, that many 
parameter estimates reported in the literature are statistically significantly different from others, and from the mean. 
These outliers occur despite a certain ñpublication biasò from recommendations that parameter loadings should be 
greater than 0.7. Hence, significant differences in estimated loadings are quite likely to occur.   

A researcher using PU and PEoU in a new study, and choosing to adopt the instrument pioneered by Davis [1989] 
and Davis et al. [1989], might be faced with the situation that, despite taking all reasonable precautions, her data 
does in fact show statistically significant differences to previously established values in Table 6. When the 
researcher is certain that her instrument does in fact measure the same construct (e.g. changes to the instrument 
have been ruled out, sample characteristics are comparable), the researcher may choose to use Bayesian statistics 
to estimate her model and thus interpret the knowledge from the newly collected sample in light of the prior 
knowledge about the parameter values.  
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Figure 1: Standardized Loadings for TAM measurement item 

 

Table 6: Standardized Loadings by TAM measurement item  

(S.E.M = Standard Error of Mean) 

Item Minimum Median Mean Maximum Variance S.E.M. 

PEoU1 .6370 .8600 .8432 .9700 .00586 .0095 

PEoU2 .5320 .8550 .8202 .9700 .01261 .0154 

PEoU3 .5610 .8600 .8327 .9600 .01028 .0135 

PEoU4 .4967 .8800 .8217 .9400 .01526 .0211 

PEoU5 .5000 .8800 .8344 .9517 .01260 .0158 

PEoU6 .5300 .8800 .8682 .9700 .00562 .0092 

PU1 .4100 .8250 .8199 .9300 .00743 .0127 

PU2 .7800 .8550 .8652 .9800 .00298 .0105 

PU3 .7300 .8800 .8724 .9800 .00421 .0087 

PU4 .6200 .8940 .8728 .9673 .00451 .0124 

PU5 .6200 .8450 .8309 .9500 .00711 .0124 

PU6 .6400 .8600 .8429 .9800 .00622 .0100 

 

With this prior knowledge, we can now  continue the model specification in Table 7. Lines 24-35 specify normal prior 
distributions for the 12 item loadings. The prior mean is set to that calculated in Table 6. In OpenBUGS, the normal 
distribution is specified with the precision (inverse variance), rather than the variance, and we have used the inverse 
of the standard error of the mean as the precision for our prior belief. Bayesian estimation allows the researcher to 
ñweightò the evidence provided by prior information. A higher precision gives relatively more weight to prior 
information, whereas a lower precision gives relatively more weight to the present data. Lines 36 and 37 specify the 
prior distribution of the precision estimate for the indicators, i.e. the inverse error variance. As for the simple 
regression example, because OpenBUGS parameterizes the normal distribution in terms of precision instead of 

variance, we specify a gamma prior distribution. Thus, the specification dgamma(9.0, 4.0)  on line 37 yields a 

prior with mean of 2.25 and variance of 9/16 for the error precision (see Table 1), but a prior with mean of 0.5 and 
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variance of 0.0357 for the error variance (see Table 1). We explicitly model the error variances (inverse precision) on 
line 38 as we require samples of this error variance for later analysis. Lines 40 to 47 specify the prior distribution for 
the variances and covariances of the two latent variables. Because of our assumption that these were normally 
distributed, we use the inverse Wishart distribution as conjugate prior of the multivariate normal distribution (Table 
1). However, just as OpenBUGS parameterizes the normal distribution in terms of mean and inverse variance, the 
multivariate normal distribution is also parameterized as mean and inverse variance. Hence, instead of specifying a 

prior inverse Wishart  distribution, we specify a prior Wishart distribution. (dwish(é) on line 41). The relationship 

between the two is simple, and analogous to Equation 8: 

ὼ ͯ ὡὭίὬὥὶὸɰȟὨ   O   
ρ

ὼ
 ͯ ὍὲὺὩὶίὩὡὭίὬὥὶὸɰ ȟὨ (Equation 9) 

However, to make matters confusing, the Wishart distribution in OpenBUGS is parameterized with the inverse of the 

ɰ matrix. In effect, this means that the matrix V supplied as parameter to dwish (é) on line 41 serves as our prior 

point belief about the variances and covariances of the latent variables. This matrix V is defined in lines 44 to 47. We 

have again modeled the latent covariance matrix explicitly as the inverse of the precision matrix on line 42, and, to 
make the subsequent model analysis easier still, we estimate the latent correlation directly in OpenBUGS (line 43).  

 

Table 7: CFA model definition in OpenBUGS (part 2, specification of prior probabilities) 

Line Model definition 

22   #priors on loadings  

23   lam[1]~dnorm(0.8432,105)  

24   lam[2]~dnorm(0.8202,64)  

25   lam[3]~dnorm(0.8327,74)  

26   lam[4]~ dnorm(0.8217,47)  

27   lam[5]~dnorm(0.8344,63)  

28   lam[6]~dnorm(0.8682,108)  

29   lam[7]~dnorm(0.8199,78)  

30   lam[8]~dnorm(0.8652,95)  

31   lam[9]~dnorm(0.8724,114)  

32   lam[10]~dnorm(0.8728,80)  

33   lam[11]~dnorm(0.8309,80)  

34   lam[12]~dnorm (0.8429,100)  

35   #priors on errors  

36   for(j in 1:P){  

37     errorprec [j]~dgamma(9.0, 4.0)  

38   errorvar[j]< - 1/errorprec[j]  

39   }  

40 #priors on latent (co - )variances  

41   latprec[1:2,1:2] ~ dwish(V[,], 5)  

42   latcov[1:2,1:2] < -  inverse(latprec [,])  

43   latcor < -  latcov[1,2]/(sqrt(latcov[1,1])*sqrt(latcov[2,2]))  

44   V[1,1] < -  1 

45   V[1,2] < -  0. 5 

46   V[2,1] < -  V[1,2]  

47   V[2,2] < -  1 

48 } #end of model  
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Recommendation: To specify prior probability distributions,  

¶ Research the literature for previous estimates of model parameters 

¶ Use the appropriate conjugate prior distribution for the type of assumed likelihood 

¶ Use informative prior distributions when sufficient knowledge exists 

¶ Use uninformative prior distributions when now previous knowledge exists. Such prior distributions should 
be ñskepticalò in the sense that they reflect a null hypothesis of ñno effectò, e.g. have a mean of zero for 
regression parameters. 

Step 3: Estimate the Model 

Once the statistical model with all prior probability distributions is specified, the model can be estimated using 
OpenBUGS or WinBUGS. This can be done interactively, but can also be scripted. For easy repeatability of the 
analysis, scripts are preferred. Table 8 shows the script to use for estimating our TAM model. It is similar in structure 
to the one used for the simple example earlier (Table 3). 

 

Table 8: OpenBUGS script to control the estimation 

Line OpenBUGS script 
1 modelSetWD('/home/joerg /OpenBUGSExample')  

2 modelCheck('model.txt')  

3 modelData('data1 .txt')  

4 modelCompile(3)  

5 modelGenInits()  

6 samplesSet('lam')  

7 samplesSet('latcov')  

8 samplesSet('latcor')  

9 samplesSet('errvar')  

10 dicSet()  

11 modelUpdate( 5000, 1, 1, 'F')  

12 samplesCoda('*', ' coda _output')  

13 samplesStats('*')  

14 dicStats()  

 

Lines 1-3 set the working directory, load and syntactically check the model definition, and load the data. The data file 
also needs to contain definitions for all fixed parameters that are not defined in the model file itself. For example, line 
20 in Table 5 references a vector of value u that is not assigned a probability distribution or fixed in the model 
definition. Thus, OpenBUGS expects to find fixed values for u in the data file. Line 4 in Table 8 instructs OpenBUGS 
to set up the model with three MCMC sampling chains. Initial values are generated in line 5 for all three MCM 
chains. Lines 6 through 9 instruct OpenBUGS to keep samples of important model variables.  

Note that we can sample any variables that we define in the model and for which no fixed values or data are 

provided. For example, the variable latcor  was computed in line 43 of Table 7, and we can similarly compute other 

quantities of interest for sampling. More interestingly, if some data was missing completely at random (i.e. there is 
no missingness mechanism to be modelled), one can sample those values, e.g. by specifying 

samplesSet(óy[198,7]ô) to sample the value of the seventh indicator for case 198.  

Line 10 sets up the computation of the DIC (deviance information criterion) for diagnostic purposes later. Line 11 
then instructs OpenBUGS to update the model parameters with 5000 MCMC sampling iterations. Once this is 
completed, line 12 will save all sampled values to a set of files whose names begin with ñcoda_outputò. Lines 13 and 
14 instruct OpenBUGS to display on screen the sample statistics and the DIC statistics. For our example, this script 
took 102 seconds and produced the following output7: 

 

OpenBUGS version 3.2.1 rev 781  

type 'modelQuit()' to quit  

OpenBUGS> OpenBUGS> model is syntactically correct  

OpenBUGS> data loaded  

OpenBUGS> model compiled  

OpenBUGS> initial values generated, model initialized  

OpenBUGS> monitor set  

                                                      
7 Because this is a stochastic process, the exact values will differ a little from repetition to repetition. 
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OpenBUGS> monitor set  

OpenBUGS> monitor set  

OpenBUGS> monitor set  

OpenBUGS> deviance set  

OpenBUGS> 5000 updates took 50 s  

OpenBUGS> CODA files written  

OpenBUGS>  

                         mean      sd        MC_error  val2.5pc  median    val97.5pc start     sample  

 errvar[1]               0.6718    0.06247   6.69E - 4   0.5572    0.6684    0.8023    1         15000  

 errvar[2]               0.4839    0.04695   5.031E - 4  0.3988    0.4816    0.5821    1         15000  

 errvar[3]               0.3647    0.03699   4.285E - 4  0.2977    0.3 628    0.4428    1         15000  

 errvar[4]               0.6458    0.05703   5.458E - 4  0.5424    0.6431    0.7664    1         15000  

 errvar[5]               0.501     0.04875   5.05E - 4   0.4129    0.4982    0.6048    1         15000  

 errvar[6]               0.3263    0.03591   4.991E - 4  0.2623    0.3239    0.4031    1         15000  

 errvar[7]               0.2985    0.02839   3.086E - 4  0.2465    0.2969    0.3588    1         15000  

 errvar[8]               0.3207    0.03024   3.046E - 4  0.2667    0.3191    0.3846    1         15000  

 errvar[9]               0.3637    0.03538   3.878E - 4  0.3       0.3618    0.4386    1         15000  

 errvar[10]              0.3174    0.0315    3.508E - 4  0.2606    0.3157    0.3831    1         15000  

 errvar[11]              0.5 137    0.04801   5.114E - 4  0.4265    0.5112    0.6144    1         15000  

 errvar[12]              0.3376    0.03481   4.281E - 4  0.2744    0.3357    0.4111    1         15000  

 lam[1]                  0.9117    0.05841   0.00252   0.8024    0.9107    1.023     1         15000  

 lam[2]                  0.8547    0.05657   0.002495  0.7491    0.8536    0.964     1         15000  

 lam[3]                  0.8434    0.05501   0.002467  0.7409    0.8418    0.9504    1         15000  

 lam[4]                  0.7158    0.05147   0.002116  0.6192    0.7149    0.8141    1         15000  

 lam[5]                  0.8485    0.05629   0.002461  0.7439    0.8468    0.957     1         15000  

 lam[6]                  0.9039    0.05673   0.002603  0.7967    0.9028    1.014     1         15000  

 lam[7]                  0.7442    0.04686   0.00141   0.6544    0.7433    0.8375    1         15000  

 lam[8]                  0.8007    0.04883   0.001468  0.7079    0.7999    0.8988    1         15000  

 lam[9]                  0.878     0.05142    0.001544  0.7788    0.8772    0.98      1         15000  

 lam[10]                 0.8712    0.05135   0.001594  0.7718    0.8706    0.9722    1         15000  

 lam[11]                 0.9112    0.05623   0.001605  0.8015    0.9107    1.021     1         15000  

 lam[12]                 0.9709    0.05483   0.001699  0.865     0.9702    1.078     1         15000  

 latcor                  0.613     0.04007   4.101E - 4  0.5294    0.6145    0.6867    1         15000  

 latcov[1,1]             2.811     0.4158    0.01707   2.104     2.777     3.735     1         15000  

 latcov[1,2]             1.098     0.1547    0.004086  0.8181    1.087     1.429     1         15000  

 latcov [2,1]             1.098     0.1547    0.004086  0.8181    1.087     1.429     1         15000  

 latcov[2,2]             1.146     0.1529    0.004557  0.8832    1.134     1.475     1         15000  

OpenBUGS>  Dbar Dhat DIC pD  

y 6584.0 6038.0 7130.0 545.7  

tot al 6584.0 6038.0 7130.0 545.7  

 

The output shows the mean, standard deviation, confidence intervals, and sample sizes for the sampled values. 
However, these values should not be relied upon or reported until the diagnostics in the next two steps are attended 
to.  

There are a number of reasons for performing this many iterations. First, each MCMC sampling chain typically 
requires a few hundred samples to converge to the proper posterior distribution. Hence, early samples must be 
discarded from the subsequent analysis of the estimation results. Second, because of the autocorrelation among 
samples, only every k-th sample should be considered to be independent and used for further analysis, i.e. there will 
be a degree of ñthinningò of the samples. The number of remaining samples should be sufficient to provide a stable 
estimate of the posterior probability distributions. Gelman et al. [2004] recommend between 100 and 2000 samples 
be used for inferences, depending on model complexity and desired accuracy. 
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Recommendation: To estimate the model,  

¶ Use at least 3 MCMC chains 

¶ Use at least 5000 sampling iterations (possibly fewer for less complex models) 
Optional: For repeatability of results, 

¶ Set the random number generator seed in OpenBUGS (using model SetRN( é) ) 

¶ Specify initial values, rather than generating them (using modelInits(é) ) 

Step 4: Assess MCMC Convergence 

As any numerical, iterative algorithm, Bayesian estimation can suffer from convergence problems. Before 
interpreting the results of Bayesian estimation, it is therefore important to perform diagnostic evaluations. Two 
distinct checks are important. First, we need to check whether each sampling chain has converged. Second, we 
need to check whether the sampling chain has converged to the right value. Thus, the first issue is to assess intra-
chain convergence, whereas the second can be assessed by examining inter-chain convergence.  

To aid in this analysis we use the CODA package in the R statistical system [Plummer et al., 2006]. As part of our 
OpenBUGS estimation, we saved our MCMC samples to a set of files in CODA format (line12, Table 8). We read 
these files and analyze them using the R script shown in Table 9. Line 1 in Table 9 loads the ñcodaò package into the 
R workspace. Line 2 reads the coda format output that OpenBUGS has produced in the previous step (estimation). 

  

Table 9: R Script for data analysis (Part 1: convergence diagnostics) 

Line R script 

1 library(coda)  

2 mcmc.lis t < -  read.openbugs('coda_output' )  

3 plot(mcmc.list)  

4 geweke.diag(mcmc.list)  

5 Geweke.plot(mcmc.list)  

6 heidel.diag(mcmc.list)  

7 gelman.diag(mcmc.list)  

8 gelman.plot(mcmc.list)  

 

Line 3 plots a sampling trace and a sampling density for every parameter that was sampled and is present in the 
coda file. These plots are useful for assessing both inter- and intra-chain convergence.  

Figure 2 shows a properly converged solution for one parameter of the model. The trace plot on the left of the figure 
shows the sampled values for each of the three chains for the 5000 samples, while the density plot on the right 
shows the overall frequency of sampled values for the three chains. We can see that all three sampling chains 
converge on the same values and each of the three sampling chains has a stable average. The density plot in 
Figure 2 confirms this by showing an approximately normal distribution.  
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Figure 2: Trace plot and density plot for one parameter of the Bayesian CFA model showing a good solution 

In contrast, Figure 3 shows a trace plot and a density plot for one parameter of the CFA model that shows 
convergence problems of the type that one of the chains produces stable values that differ from those of the other 
chains. We can see that one of the chains converged on a different value, which is also reflected in the bimodal 
density plot on the right of Figure 3. In this situation, the estimation should be re-run with different starting values for 
this parameter.  

 

Figure 3: Trace plot and density plot for one parameter of the Bayesian CFA model showing non-
convergence 

 

The second issue is the convergence of each individual chain around a stable mean. Figure 4 below shows a trace 
plot and density plot for a situation where the individual chains did not converge. We can clearly see that the 
sampled values fluctuate wildly around their sliding-window average (solid lines in the trace plot). 
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Figure 4: Trace plot and density plot for one parameter of the Bayesian CFA model showing non-
convergence of the individual sampling chains. 

 

Recommendation: Use trace and density plots for all parameters. 

¶ Density plots should reflect the expected posterior distribution (based on the choice of likelihood and prior) 

¶ Sampling means of each chain become stable 

¶ Sampling means of all chains converge 

 

More formally, a number of statistics can be computed to help identify convergence problems. For example, Geweke 
[1992] suggested testing the equality of means of the first 10% and the last 50% of the values in the sampling chain 
to assess the stability of the estimates. The test statistic is normally distributed and can be used for a z-test. Line 4 
in Table 9 performs these tests on all sampled parameters and line 5 produces diagnostic plots as shown in Figure 
5. The following is an example output (abbreviated and shown only for a single chain) that shows the z-distributed 
test statistics for our data:  

 

[[1]]  

Fraction in 1st window = 0.1  

Fraction in 2nd window = 0.5  

  errvar[1]   errvar[2]   errvar[3]   errvar[4]   errvar[5]   errvar[6]  

    - 0.7398     - 0.6226      0.4811     - 1.1590      0.7641      0.0302  

...  

     latcor latcov[1,1] latcov[1,2]  latcov[2,1] latcov[2,2]  

    - 0.5470     - 1.5084     - 2.2907     - 2.2907     - 1.5105  

 

Line 4 in our analysis script (Table 9) produces a plot like the one shown in Figure 5 for all sampled parameters. The 
plot shows the test statistics and the 95% confidence interval (1.96 standard deviations). For this plot, the first half of 
the Markov chain is divided into 20 segments, then Gewekeôs z-score is repeatedly calculated. The first z-score is 
calculated with all iterations in the chain, the second after discarding the first segment, the third after discarding the 
first two segments, and so on. The last z-score is calculated using only the samples in the second half of the chain. 
This diagnostic tool can show which part of the chain is different from the final part.  
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Figure 5: Plot of Geweke test statistics for a single parameter of a single Gibbs 
sampling chain 

 

Another set of tests has been proposed by Heidelberger and Welch [1983]. The first uses the Cramer-von-Mises test 
to assess whether the sampled values come from a stationary distribution. As with Gewekeôs test, this test is also 
successively applied, first to the entire chain, then after discarding the first 10%, 20%, etc. of the chain.  Line 6 in our 
analysis script (Table 9) performs these tests for all sampled parameters. The following is an example output 
(abbreviated and shown only for a single chain):  

 

[[1]]  

            Stationarity start     p - value  

            test         iteration         

errvar[1]   passed       1         0.659   

errva r[2]   passed       1         0.670   

...   

latcov[2,1] passed       1         0.501   

latcov[2,2] passed       1         0.541                                        

            Halfwidth Mean  Halfwidth  

            test                      

errvar[ 1]   passed    0.671 0.00202   

errvar[2]   passed    0.483 0.00181   

...  

latcov[2,1] passed    1.107 0.01676   

latcov[2,2] passed    1.148 0.01928   

 

The reported start iteration is that iteration at the inclusion of which the stationarity test was passed. In our example, 
the stationarity test was passed even when the entire sample was used (start iteration equals one). The second test 
then takes the sampled values that are accepted by the stationarity test (in our case, the entire sample) and 
constructs a 95% confidence interval for the sampled value. It then compares the half-width of this interval to them 
mean and reports the difference between the two. The half-width of the confidence interval should coincide with the 


