
SN Computer Science manuscript No.
(will be inserted by the editor)

Workflow Management on Proof-of-Work Blockchains —
Implications and Recommendations

Joerg Evermann · Henry Kim

Abstract Blockchain technology, originally popularized by cryptocurrencies,
has been proposed as an infrastructure technology with applications in many
areas of business management. Blockchains provide an immutable record of
transactions, which makes them useful in situations where actors must coop-
erate but may not fully trust each other. In this paper we examine the use
of proof-of-work blockchains for executing inter-organizational workflows. We
discuss architectural options and describe two prototype implementations of
a blockchain-based workflow management system (WfMS), highlighting dif-
ferences to traditional WfMS. Our main contribution is the identification of
potential problems raised by proof-of-work blockchain infrastructure and rec-
ommendations to address them.

Keywords Blockchain · proof-of-work · workflow management · inter-
organizational workflow · distributed workflow · collaboration

Declarations

– The authors received no funding in support of this research.
– The authors have no conflicts of interests or competing interests with re-

spect to this research.
– The authors will make all source code publically available after acceptance.

An earlier version of this paper can accessed at http://arxiv.org/abs/1904.01004.

J. Evermann
Memorial University of Newfoundland, St. John’s, Canada
E-mail: jevermann@mun.ca
https://joerg.evermann.ca

H. Kim
York University, Toronto, Canada

2 J. Evermann and H. Kim

Customer

Producer

Supplier 1 Supplier 2

start

t1
send
order

p1

p21

t2
receive

notification

p2

t3
receive
delivery

p3

t4
receive
invoice

p4

t5
pay p25

p22

t16
receive
order

p23

p24

t24
receive

payment

p11 p12

t17
send

order 1

t18
send

order 2

p13 p26p14 p28

t19
notify

p15 p16

t20
receive

delivery1

t21
receive

delivery2

p17 p18

t22
send

delivery

p19

t23
send

invoice

p20

end

p27

t6
receive
order1

p5

t7
produce1

p6

t8
check1

p7

t9
deliver1

t10
redo1

p29

t11
receive
order2

p8

t12
produce2

p9

t13
check2

p10

t14
deliver2

t15
redo2

Fig. 1 Inter-organizational process modelled as Petri net, adapted from van der Aalst (2000)

1 Introduction

Workflow management (WfM) has traditionally focused on intra-enterprise
applications. Despite its many challenges, inter-organizational WfM has seen
less research attention. Fig. 1 shows an example of an inter-organizational pro-
cess, adapted from van der Aalst (2000). The four shaded areas represent four

Blockchain WFMS 3

different participants in this process, boxes represent activities in the process
to be performed by different participants. In this process, the customer orders
goods from a producer, who in turn relies on two suppliers to provide required
parts. The process begins with the customer sending the order to the pro-
ducer and ends when the producer has received payment. Inter-organizational
processes may include stakeholders that are in adversarial relationships with
each other, but that nonetheless have to jointly complete process instances.
In such situations, trust in the current state of a process instance and the
correct execution of activities may be lacking. Blockchain technology can help
by providing a trusted, distributed, workflow execution infrastructure.

A blockchain cryptographically signs a series of blocks that contain transac-
tions, providing an immutable record. In a distributed blockchain, actors form
a peer-to-peer (P2P) network to independently validate transactions and add
them to the local replicas of the block chain. In inter-organizational workflow
management, actors must agree on the state of work as this determines the
set of valid next activities in the process. Thus, it is natural to use blockchain
transactions to record either workflow activities or workflow states.

Workflow management systems (WfMS) are designed to execute business
processes. They can be implemented in different ways on blockchain infrastruc-
ture. In contrast to earlier work, we do not use smart contracts to implement
workflow engines on a blockchain. While smart contracts have great potential
for workflow management, they are not the only way to integrate blockchain
technology with WfMS. To conclude that the problem is solved is premature at
this time, given that the issue has only very recently received research attention
(Mendling et al., 2018), and in light of the issues we identify in this paper.
Given the extensive investment in WfMS by researchers and practitioners, it
is worthwhile to investigate how existing WfMS can be implemented on block-
chain infrastructure without having to re-implement them in smart contracts.

In this paper, we show that generic or existing workflow engines can be
readily adapted to fit onto a proof-of-work blockchain infrastructure and that
smart contracts are not required. We investigate and propose standard inter-
faces between blockchain infrastructure and workflow engines. We describe two
research prototype WfMS that provide proof-of-concept implementations1 of
our proposed architecture. The distributed nature of a blockchain and the na-
ture of the proof-of-work consensus process raises challenges that are not seen
in centralized WfMS. Our research prototypes have helped us to identify these
challenges and to offer recommendations for future blockchain-based WfMS.

Contribution: While the prototype implementations are important demonstra-
tions of feasibility, they are intended to be research tools only. Our main
contribution is in the lessons learned from their implementation and our rec-
ommendations for proof-of-work blockchain-based WfMS. Specifically, in this
paper we:

1 Source code available from the corresponding author’s website at https://will.be.

added.after.review

4 J. Evermann and H. Kim

1. Demonstrate the feasibility of an alternative to smart contracts for block-
chain-based WfMS, including the development of generic interfaces be-
tween architecture components, and

2. Identify challenges, implications, and recommendations arising from the
use of proof-of-work blockchains for workflow management. These are the
same for smart contract-based architectures and for architectures not based
on smart contracts, as they stem from the properties of the proof-of-work
consensus mechanism.

The remainder of the paper is structured as follows. Sec. 2 introduces
workflow management systems and workflow nets. Sec. 3 reviews related work
on distributed, inter-organizational, and blockchain-based workflow manage-
ment. Sec. 4 provides a primer on proof-of-work distributed blockchains. Sec. 5
presents the main principles of our approach and discusses validity guarantees.
Next, Sec. 6 presents our prototype implementations. Implications of using
blockchain technology for workflow execution are discussed in detail in Sec. 7.
We conclude with recommendations for addressing the identified challenges, a
comparison of architectures, and an outlook to future work (Sec. 8).

2 Workflow Management Systems and Workflow Nets

Workflow management systems (WfMS) manage the flow of work within and
between organizations based on models of a business process, like the one
shown in Fig. 1. Process models for execution by a WfMS are called workflow
models. Whereas a workflow model specifies a process in general, the execution
of a workflow model for a particular case is called a workflow instance. For
example, Fig. 1 specifies an ordering process in general; handling a particular
order, e.g. order number 123, is done by a specific instance of the process. A
workflow activity for a case is called an activity instance or work item, e.g.
activity ”Send Order” for order number 123.

The core of a WfMS is the workflow engine which maintains a set of defined
workflow models, a set of running workflow instances (cases), and the execu-
tion state of each case, i.e. which activities are being or have been completed.
It detects deadlocked and finished cases and removes them from its set of run-
ning cases. Based on the workflow model and execution state, the workflow
engine identifies for each workflow instance the next activities that must be
completed and creates work items for manual or automatic execution, as spec-
ified by the workflow designer. Work items are assigned to resources (human
or other), typically using role- or capability-based allocation mechanisms, and
are managed in worklists. Additionally, the workflow engine maintains case in-
formation, i.e. information that is generated or required by work items. Case
information for the example process in Fig. 1 may consist of purchase or-
ders, production orders, shipping notices, invoices, and payment notices. The
workflow engine may be supported by, or include, services for managing orga-
nizational data such as resources and their roles and capabilities, for managing

Blockchain WFMS 5

worklists, for providing user interfaces for interacting with the work list and
with manual activities, for digital document storage, etc.

For the workflow engine to identify the next activities based on the execu-
tion state of a case, the workflow model must have a well-defined semantics. In
this paper we use workflow models that are based on workflow nets, a special
type of Petri net (van der Aalst, 1998). A Petri net PN is defined as a tuple
PN = (P, T, F,M) where P is a set of places p ∈ P , T is a set of transitions
t ∈ T such that P ∩ T = ∅. F ⊆ (P × T) ∪ (T × P) is the flow relation. The
preset of a transition t is •t = {pi|(pi, t) ∈ F}. The postset of a transition
t is t• = {pi|(t, pi) ∈ F}. The preset of a place p is •p = {ti|(ti, p) ∈ F}.
The postset of a transition p is p• = {ti|(p, ti) ∈ F}. A marking M is a map-
ping of places into the non-negative integers M : P → N0. A transition t is
enabled iff ∀pi ∈ •t : M(pi) ≥ 1. A transition t can fire iff it is enabled. Fir-
ing a transition t changes the marking Mpre to the marking Mpost such that
∀pi ∈ •t : Mpost(pi) = Mpre(pi) − 1 and ∀pi ∈ t• : Mpost(pi) = Mpre(pi) + 1.
A workflow net is a Petri net iff there exists exactly one place psource such
that •psource = ∅ and there exists exactly one place psink such that psink• = ∅
and there exists an initial marking M0(p) = 1 iff p = psource and M0(p) = 0
otherwise.

The example model in Fig. 1 is a workflow net. It shows places as circles,
labelled p1 through p29 together with psource labelled ”start” and psink la-
belled ”end”. The model shows transitions as squares, labelled t1 through t24.
Each transition specifies a workflow activity, e.g. the activity ”Send Order” in
Fig. 1. The execution states of workflow instances are described by workflow
net markings. When a new workflow instance is created, it is assigned an ini-
tial marking M0. A work item is created when a transition is first enabled in
the workflow net for a case. When a work item is completed, the marking for
the case is updated by firing the associated transition. The workflow engine
keeps track of the markings of all running instances.

While we use Petri nets for the workflow models in this paper, any other
modeling language with a sufficiently well-defined execution semantics could
be used; the contributions, recommendations, and conclusions of this paper
are not specific to Petri nets.

3 Related Work

A blockchain-based WfMS can be viewed as a type of distributed, replicated,
inter-organizational WfMS. This section reviews prior research on distributed
and replicated WfMS, inter-organizational WfMS, and the state-of-the art in
blockchain-based WfMS.

3.1 Distributed Workflow Management

Distributed WfMS have seen research interest in the late 1990s and early 2000s.
With the advent of client-server technology, distributed object-oriented stan-

6 J. Evermann and H. Kim

dards such as the Common Object Request Broker Architecture (CORBA),
and the beginnings of P2P networking, researchers identified ways to use these
infrastructure technologies to address technical issues such as fault tolerance,
redundancy, and scalability through distribution and replication.

The Exotica/FlowMark system by IBM (Alonso et al., 1995) focuses on
persistent message passing between nodes when the process can be partitioned
onto different workflow nodes. In the Ready system (Eder and Panagos, 1999),
independent WfMS can subscribe to a shared event-publishing system. ME-
TEOR2 coordinates independent workflow systems using distributed workflow
schedulers (Das et al., 1997; Miller et al., 1998). Workflow evolution in dis-
tributed systems has been studied in the ADEPT system (Reichert et al., 2003;
Reichert and Bauer, 2007) while P2P network technology has been used to im-
plement distributed ”web workflow peers” that execute workflows controlled
by a central administration peer (Fakas and Karakostas, 2004). The SwinDeW
system (Yan et al., 2006) is another approach based on P2P technology. Ef-
ficiency of network communication has been the focus of Bauer and Dadam
(1997), who develop optimal algorithms for case transfer of sub-workflows to
distributed servers. A load-balancing approach by Jin et al. (2001) uses a
central decision making component to distribute complete workflow instances
across multiple WfMS. The event-based distributed system EVE (Geppert and
Tombros, 1998) relies on synchronized clocks to distribute workflow activities
to participating service execution nodes. Based on partitioning of state-charts
and incremental synchronization of distributed workflow engines, the Mentor
project (Muth et al., 1998) developed algorithms for optimal communication
and message exchange among distributed WfMS. The Metuflow system (Do-
gac et al., 1998) uses transaction semantics to determine the proper sequence
of activities in a distributed system that is built on a reliable message pass-
ing infrastructure and CORBA message exchange. CORBA also forms the
infrastructure for an approach that uses a common monitor and scheduler to
coordinate multiple ”task managers” that can independently execute workflow
activities (Miller et al., 1996). The Wasa2 system (Vossen and Weske, 1999)
also implements a CORBA-based infrastructure of services to manage business
and workflow objects. Focusing on performance and availability, continuous
time Markov chains are used to derive load models and availability models
for distributed WfMS (Gillmann et al., 2000). Also focusing on performance
and load management, another approach employs dynamic server assignment
where activities are assigned to workflow servers at runtime instead of design
time (Bauer and Dadam, 2000).

Much of the work discussed above assumes a central coordination or deci-
sion-making authority. Key assumptions are either central coordination with
decentralized execution of specific workflow activities, or limited case transfer
to a typically homogeneous set of WfMS. The aims are mostly technical, with
a focus on infrastructure suitability. Blockchain technology may be seen as
another distributed infrastructure technology but it differs in key aspects from
earlier technology:

Blockchain WFMS 7

1. Blockchains replicate all information to all nodes. Selective replication
to optimize or minimize communication requirements is eschewed in the
blockchain context as it runs counter to independent validation.

2. As all actors share a consensus view of the workflow state on the blockchain,
special decision-making or control nodes are unnecessary.

3. Blockchains provide trust by providing a tamper-resistant record. Hence,
building control or trust mechanisms on top of the distributed infrastruc-
ture is unnecessary.

4. The proof-of-work consensus method used in most blockchains takes an
eventual-consistency approach and accepts latency when establishing con-
sistency, which significantly relaxes the technical requirements on the in-
frastructure in terms of performance, security, and reliability.

3.2 Inter-organizational Workflow Management

Multiple organizations can collaborate on a single process instance in different
ways, such as capacity-sharing, chained execution, subcontracting, case trans-
fer, and loosely-coupled workflows (van der Aalst, 1999). Blockchain technol-
ogy can be used to implement all of these collaboration types but may be
best suited for the case-transfer collaboration, where all actors share a process
definition and each actor performs different activities for a case. Much of the
earlier work on distributed workflows (Sec. 3.1), and all of the blockchain-based
WfMS discussed below (Sec. 3.3), assumes this type of collaboration.

The public-to-private approach considers a public workflow definition as a
contract between participating actors (van der Aalst, 2002; van der Aalst and
Weske, 2001; van der Aalst, 2003). Actors can provide private implementa-
tions for their parts of a process that must be compatible with the public con-
tract. Compatibility is defined in terms of projection inheritance: The private
workflows must inherit the public behavior but may offer specific implemen-
tations of this behavior. Public and private workflows are also the foundation
for an architecture focusing on flexibility and respect for privacy, where de-
tails of local processes need not be publically visible (Chebbi et al., 2006).
Inspired by service-oriented architecture (SOA) principles, this approach in-
cludes workflow identification and advertisement on a public registry, workflow
interconnection governed by contracts (”cooperation policies”) and monitor-
ing using a trusted third party. There is no pre-defined global process model
that is partitioned. Instead, the complete process model is dynamically assem-
bled from advertised process interfaces that describe views on hidden, private
processes. In the Crossflow project (Grefen et al., 2000), a process specifica-
tion forms the contract for interaction among service providers. The technical
architecture consists of independent WfMS coordinated by a central contract
manager. The contract manager also monitors quality-of-service guarantees.
Another use of contracts (Weigand and van den Heuvel, 2002) views them as
”glue to link inter-organizational workflows” and provides a formal language
for business communication. Workflows are managed locally and coordinated

8 J. Evermann and H. Kim

among different actors by a central ”contract object” using messages specified
in the contract. Based on P2P networks, Atluri et al. (2007) describe a method
to successively partition a complete process model. Each organization receives
a process model whose initial activities are assigned to that organization. The
organization executes its own activities, then partitions the remainder of the
process for the successive organizations and passes on those partitions. A cen-
tral mechanism is only required to initiate each case by identifying the first
organization(s), and to accept the final results from the last organization(s).

Blockchain technology differs from these inter-organizational approaches:

1. Each organization acts independently. Executing invalid activities simply
leads to transactions that will not be validated by peers and not become
part of the consensus blockchain. Trusted third parties for contract moni-
toring or enforcement are not required.

2. Blockchain infrastructure makes all transactions publically visible. How-
ever, aspects of a workflow may be implemented by each organization pri-
vately and the notion of projection inheritance remains useful for this.

3.3 Blockchain-based Workflow Management

Blockchain-based workflow execution has only recently received research at-
tention (Mendling et al., 2018). Existing work has focused exclusively on the
use of ”smart contracts” to coordinate workflow activities among participants.
A smart contract is a software application that is recorded on the blockchain,
”listens” for transactions sent to it, and executes application logic upon re-
ceipt of a transaction. It can itself generate messages that can be observed by
participating organizations.

Driven by a financial institution, a prototype implementation using smart
contracts on the Ethereum blockchain offers digital document flow for trad-
ing partners in the import/export domain (Fridgen et al., 2018). The project
demonstrates significantly lowered process cost, increased transparency, and
increased trust among trading partners. A project in the real-estate domain,
also using the Ethereum blockchain and smart contracts, concludes that the
lack of a central agency makes it more difficult for regulators to enforce obli-
gations and responsibilities of trading partners (Hukkinen et al., 2017).

The blockchain-based WfMS by Härer (2018) uses workflow models as con-
tracts between collaborators. The system allows distributed, versioned mod-
elling of private and public workflows, consensus building on versions to be
instantiated, and tracking of instance states on the blockchain. The block-
chain provides integrity assurance for models and instance states.

Another implementation of a blockchain-based WfMS uses smart contracts
on Ethereum in two ways (Weber et al., 2016). As a choreography monitor, the
smart contract on the blockchain merely monitors execution status and valid-
ity of workflow messages against a process model. As an active mediator, the
smart contract additionally drives the process by sending and receiving mes-
sages according to the process model. Models defined in the Business Process

Blockchain WFMS 9

Modelling Notation (BPMN) models are translated into the Solidity contract
language. Peers monitor the blockchain for relevant messages from the con-
tract and create messages to the contract. The system checks the acceptability
of a response message by running it against a local copy of the contract before
publishing it to the blockchain. Transaction cost and latency are recognized
as important considerations in the evaluation of the approach. A comparison
between the Ethereum blockchain and the Amazon Simple Workflow Service
shows that blockchain costs are two orders of magnitude higher than those of
a traditional infrastructure (Rimba et al., 2017). Recognizing that optimizing
the space requirements for smart contracts is important, BPMN models can
be translated to Petri Nets, for which minimizing algorithms are available,
which are then compiled into smart contracts to achieve up to 25% reduction
in transaction cost while significantly improving throughput time (Garćıa-
Bañuelos et al., 2017). Building on lessons learned from Weber et al. (2016),
Caterpillar is an open-source blockchain-based WfMS (López-Pintado et al.,
2017). Developed in Node.js and using the Solidity compiler solc and Ethereum
client geth, it provides a distributed execution environment for BPMN-based
process models. Lorikeet is a similar system (Ciccio et al., 2019), also based on
BPMN models that are translated to smart contracts for the Ethereum chain.

Prybila et al. (2020) use the Bitcoin blockchain to implement secure and
verifiable passing of process control between participants using a token-based
approach. This re-purposing of Bitcoin for choreography verification is limited
by the size of Bitcoin transactions, which constrains the size of the processes
and number of cases that can be monitored. The approach relies on off-chain
interactions between participants to construct process handover transactions.
Prybila et al. (2020) provide extensive performance evaluations, but the use
of the public Bitcoin blockchain means limits to block interarrival rates and
block sizes, making their approach suitable for long-running processes, but less
so for fast processes. Like Prybila et al. (2020), our approach makes available
the data and execution state on the blockchain to all participants. However,
we store task completion rather than process handover on the blockchain and
do not require explicit acceptance of control.

Modelling of blockchain-based processes requires blockchain-specific mod-
elling constructs. BlockME provides an extension to BPMN for describing
transaction state changes (Falazi et al., 2019a). It also implements an interface
between blockchains and the workflow engine, allowing workflow tasks to track
transaction status and submit new transactions. BlockME2 adds a measure for
degree of confirmation in different blockchains and access to smart contracts
(Falazi et al., 2019b). Noting that ownership of process control and visibility
of data are changed when processes are executed on blockchain infrastructure,
Ladleif et al. (2019) extend BPMN choreography diagrams with data objects
to represent public information on the blockchain, with sub-choreographies
to limit data visibility, with smart-contract controlled gateways, and with
transaction-driven semantics. Their implementation can generate smart con-
tracts for the Ethereum blockchain.

Our work differs from prior work in the following aspects:

10 J. Evermann and H. Kim

1. Our work does not use smart contracts to implement workflow engines for
specific workflow models.

2. Our work focuses on the use of off-chain, standard workflow engines and
on the interfaces to the blockchain infrastructure.

3. Our work does not re-purpose existing single-purpose blockchains.
4. We are not concerned with conceptual modeling of workflows, but focus on

their execution.

4 Proof-of-Work Blockchains

This section describes blockchains that use a proof-of-work consensus mecha-
nism, as implemented in the Bitcoin cryptocurrency and the popular Ethereum
blockchain. They are the most common types of blockchains and prior work in
blockchain-based WfMS (Sec. 3.3) builds exclusively on such chains. However,
proof-of-work is but one way to achieve a consensus ordering of blocks in a dis-
tributed system when nodes may exhibit Byzantine faults, i.e. nodes may be
unreliable, unavailable, unresponsive, or malicious. Another approach, used in
the Hyperledger Fabric (Androulaki et al., 2017; Sousa et al., 2018) blockchain,
is based on provably live and correct ordering protocols which can be traced
back to a practical method for achieving byzantine fault tolerance (PBFT)
(Castro and Liskov, 2002). These kinds of ordering protocols are faster than
proof-of-work and provide finality of consensus on the order of blocks. On the
other hand, they are not as scalable as proof-of-work blockchains due to their
communications demands (Vukolić, 2015).

A blockchain consists of blocks of transactions (Fig. 2), which can contain
any kind of content. Each block also contains the hash of the content of the
previous block in the chain. Hence, altering the content of a block requires
changing all following blocks in the chain. For example, a change to transaction
Tx12 in block 1 in Fig. 2 results in a different hash for block 1. Hence, block
2’s hash needs to be recalculated, and the same for block 3 and block 4.

In a distributed blockchain, new blocks and transactions are distributed
among peers. Each peer maintains a pool of transactions to be included in
future blocks. New transactions to be added to this pool are independently
validated by each peer, i.e. it is ensured that they are logically allowed. In the
Bitcoin chain this involves ensuring that transaction inputs reference unspent
transaction outputs; in the workflow context this may mean that executing a
workflow activity is permitted in the current state of a process instance.

4.1 Mining

With sufficient hashing power, it becomes possible for peers to recompute
earlier blocks in the chain faster than new blocks are added. Hence, they are
able to ”alter history” as recorded on the chain. To prevent such tampering,
block hashing must be made difficult or expensive. This is typically done by

Blockchain WFMS 11

Block1 hash
Prev block1 hash
Tx11, Tx12, Tx13, ...

Block0 hash
== null ==
Tx1, Tx2, Tx3, ...

Block2 hash
Prev block1 hash
Tx21, Tx22, Tx23, ...

Block3 hash
Prev block1 hash
Tx31, Tx32, Tx33, ...

Block4 hash
Prev block3 hash
Tx41, Tx42, Tx43, ...

Block2b hash
Prev block1 hash
Tx21b, Tx22, Tx23b, ...

Block3b hash
Prev block2b hash
Tx31b, Tx32, Tx33b, ...

Block6 hash
Prev block5 hash
Tx61, Tx62, Tx63, ...

Fig. 2 Example blockchain with transactions, orphan blocks and side-branch.

requiring block hashes to have a certain number of leading zeros, the ”block
difficulty”. Adding arbitrary content (a ”nonce”) to the block and repeatedly
varying this nonce until a suitable hash is found is known as proof-of-work
mining. Once a new block has been mined, it is published to all peers, and
independently validated by each peer before acceptance.

4.2 Chain Reorganization

Depending on network speed and topology, new blocks and transactions arrive
at peers in different order and at different times. Hence, each peer may have
a different set of blocks and transactions, and hence may also mine different
blocks. For example, Fig. 2 shows blocks 0–4 that reference each other through
their block hashes. At the same time, this peer also possesses block 2b, possibly
mined by a peer that was in possession of a different set of transactions, and
followed by block 3b. Each peer considers the branch with the most mining
work (typically its longest branch) as the current main branch. Each peer mines
new blocks on top of what it considers the head of the current main branch.
Side branches occur when different peers mine different blocks based on the
same main branch. These may contain different transactions, as in Fig. 2, the
same transactions in different order, or just a different value for the nonce.
Importantly, transactions in a side branch are not considered as valid.

When a side branch becomes longer than the current main branch, the
chain undergoes a reorganization. For example, in Fig. 2, assume that block

12 J. Evermann and H. Kim

3b is considered the head of the current main branch and block 3 is the head of
a side branch. As block 4 arrives at this peer, block 4 is now the head of the new
main branch. As a result, all transactions in blocks 2 and 3, as well as those
in the new block 4, must now be validated. At the same time, transactions in
blocks 2b and 3b that are not in the new main branch are considered invalid
and are added back to the transaction pool to be mined again. In our example,
these are transactions 21b, 23b, 31b, and 33b as transactions 22 and 32 are also
contained in blocks 2 and 3. The invalidated transactions will not necessarily
be included in later blocks, as they may logically contradict transactions in
the main branch.

4.3 Transaction Lifecycle

A transaction is said to be submitted when it is in the transaction pool waiting
to be mined, mined once it is in the head block of the chain, and confirmed, i.e.
sufficiently certain to be acted upon, when it has an agreed upon confirmation
depth. For example, in Fig. 2, transactions Tx21, Tx22, Tx23, Tx11, Tx12,
Tx13, Tx1, Tx2, and Tx3 are considered confirmed at confirmation depth
of two, as there are two or more mined successor blocks in the main chain.
Transactions in orphan blocks or side branches are never considered confirmed.
The probability that a transaction is invalidated during chain reorganization
decreases with as more blocks are mined of top of it However, even confirmed
transactions can return to the submitted state during a chain reorganization.

In summary, the main features of proof-of-work consensus are delayed con-
sensus that introduces a confirmation latency and non-finality of consensus.
These features have significant implications for applications like WfMS built
on proof-of-work blockchains.

5 Architecture, Principles, and Validity

Our architecture is for an application-specific blockchain that couples the no-
tion of blockchain transaction validity with the permissibility of a workflow
transaction. A workflow transaction may indicate completion of a work item,
launching of a new case, etc. This is similar to the way in which Bitcoin, also
an application-specific blockchain, couples transaction validity to the permissi-
bility of bitcoin spending by examining unspent transaction outputs (UTXO)
when validating a transaction. Hence, blockchain nodes require access to a
workflow engine to validate workflow transactions. While this requirement ad-
mits many different architectural designs, we have opted for the simplest one:
each blockchain node has a local workflow engine. While a more general n : m
relationship between blockchain nodes and workflow engines may be more
flexible in deployments, it would not allow fully independent transaction vali-
dation by all process participants. Our architecture can be extended to include
other types of transactions for other applications, as long as every node has
access to trusted validation services for such transactions.

Blockchain WFMS 13

In our architecture, a workflow transaction originates from a workflow en-
gine. It is passed to the workflow engine’s local transaction service, which val-
idates the transaction locally, and, if valid, publishes it on the P2P network.
When a node receives a new workflow transaction, it validates the transaction
locally before accepting it. When a node receives a new block, the block and all
of its transactions are validated locally before being accepted. When a block is
accepted, it is passed to the local workflow engine for it to update its workflow
state based on each of the block’s transactions. It is important to differentiate
between the concepts of ”performing” a work item in the sense of a human
user or an external software application completing a task, and ”executing” the
transaction indicating completion of the work item, i.e. recording its perfor-
mance and updating the resulting workflow instance state on the blockchain.
While work items are performed on only one node, the workflow engines on all
nodes execute the corresponding workflow transaction and thereby maintain
a common workflow state.

An alternative design is to use a weaker validity criterion at the blockchain
layer, i.e. to accept all transactions, and let the workflow engine filter out in-
valid ones when they are passed to it for execution. This approach is used
by smart contract based workflow management on generic blockchains like
Ethereum. There, transaction validity is independent of application-specific
semantics of the validity of the action recorded in the transaction. The valid-
ity of a transaction carrying a call to a smart contract method is determined
solely by the correct call parameters and sufficient ”gas”, not by the applica-
tion logic of the smart contract itself. The contract may decide to simply not
update its state when it receives a transaction representing a non-permissible
workflow action. Whereas our architecture rejects non-permissible workflow
transactions before they are encoded on the blockchain, the smart-contract
architecture encodes them on the blockchain, together with the resulting, pos-
sibly unchanged, smart contract state.

In summary, both types of architectures make the same validity guaran-
tees for workflow transactions, and execute only and all permissible workflow
transactions on all correctly operating nodes. As long as a majority of peers
agrees on what constitutes validity, that set of peers will arrive at a consensus
of the blockchain and workflow state.

6 Prototype Implementations

This section presents two implementations of our architecture described in
Sec. 5. These research prototypes have allowed us to explore implications of
using a blockchain infrastructure for WfMS and to identify possible design
choices. For ease of development, they are developed in Java.

Our architecture has three layers. The network layer forms a private P2P
infrastructure with a certificate authority that issues public/private key pairs
to participating actors. To keep our prototype simple, actors are identified
by their internet address, rather than their public keys. However, an address

14 J. Evermann and H. Kim

Network Layer

P2PNode

Worklist UI

Mining
Service

Workflow
Engine

Block
Service

Transaction
Service

Inbound
Message
Handler

Outbound
Server

Inbound
Server

Worklist UI

Inbound
Queue
Handler

Peer
Connection

Outbound
Queue
Handler

One for each connected peer

Workflow Layer

Blockchain Layer

Fig. 3 Components of the prototype implementation, grouped by layer. Some components
run as separate threads as indicated.

BlockRequest Requests a block with a specific hash from a peer
BlockSend Sends a block to one or more peers
PeersRequest Requests a list of known peers from a peer
PeersSend Sends a list of known peers to another peer
TransactionSend Sends a transaction to other peers
TransactionPoolRequest Requests the current transaction pool from a peer
TransactionPoolSend Sends the current transaction pool to a peer
BlockchainRequest Requests the blockchain, beginning at a certain hash from a

peer
BlockChainSend Sends the blockchain beginning at a particular hash to a peer

Table 1 Message types

resolution layer can easily be added. The P2P layer is implemented using Java
sockets and serialization. As indicated in Fig. 3, each node has an outbound
server that establishes connections to other peers, and an inbound server that
accepts and verifies connection requests. Each connection is served by a peer-
connection thread, which in turn uses inbound and outbound queue handler
threads to receive and send messages. Incoming messages are submitted to
the inbound message handler which passes them to the appropriate service.
Messages are cryptographically signed and verified upon receipt to prevent
impersonation of actors and provide non-repudiation. Table 1 describes the
different message types. The P2P protocol is loosely based on that used by
Bitcoin.

The blockchain layer, comprising the transaction service, block service,
and mining service, is implemented on top of the P2P layer. The transaction
service manages the pool of pending transactions, which are created by the
workflow layer or received from the inbound message handler, and are validated
upon receipt. The block service receives blocks from the mining service or
the inbound message handler, validates them, and adds valid blocks to the

Blockchain WFMS 15

blockchain. It manages orphan blocks, side chains and chain reorganization.
For simplicity, our prototypes use fixed-difficulty mining.

The workflow layer, comprised of the workflow engine and the worklist
handler with its user interface, is implemented on top of the blockchain layer.
Each activity in a workflow model is associated with a single participating
node. Fig. 1 indicates this association by the shaded areas. The partitioning
of the process to different nodes only signals the workflow engine whether a
work item is to be handled on the local node. The process designer can provide
further role information, and each node can implement its local work item al-
location using that role information and local organizational information. The
process designer can also describe external method calls, which are executed
by the workflow engine for automated activities.

The data perspective is designed as a key–value store. We admit only simple
Java types to simplify automatic GUI generation in the workflow layer, but
an extension to arbitrary types is readily possible.

6.1 Prototype I: Workflow Actions on the Blockchain

In our first prototype the blockchain stores workflow actions. Figures 4 shows
a UML class diagram of core classes. We focus on the actions of defining a
new workflow model, starting a case and firing a transition. Extensions, for
example to cancel a case or unload (mark as deprecated) a workflow model,
are readily possible.

As seen in Fig. 4, the prototype defines three kinds of transactions. Every
transaction, identified by a universally unique identifier (UUID), contains its
creation timestamp and a PeerCertificate identifying its originator. The peer
certificate is issued and signed by the certificate authority and contains the
peer’s public key. The originator’s private key is used to sign a transaction. A
ModelUpdateTransaction defines a new workflow model through the associated
PetriNet object that it carries as payload. The Petri net in turn contains a set
of Place and Transition objects. For simplicity, we forgo versioning of workflow
models and updates to running cases, as this is not relevant to the blockchain
infrastructure. An InitCaseTransaction indicates the launch of a new case for
a given workflow model. Cases are identified by a UUID and the name of the
Petri net; these attributes are the payload of an InitCaseTransaction.

A FireTransitionTransaction signals that a work item for a given case,
corresponding to a transition in the workflow model, has been completed.
It carries as payload an ActivityInstance object representing the work item
(Fig. 4). The work item contains the case ID, the Petri net name, input data,
as well as pre- and post-execution values for output data. It is associated with
a Transition object of a PetriNet. Every transition is in turn associated with
an ActivitySpecification, which specifies which blockchain node it is destined
for (host and port attributes) as well as any data constraints, external method
call information, and input and output variables. Work items (ActivityInstance
objects) provide methods to execute and undo them, to check data constraints,

16 J. Evermann and H. Kim

Fig. 4 UML class diagram for prototype I (simplified)

and to execute calls to external methods. Pre-execution values are required for
undo ability (Sec. 7).

Upon receipt of an InitCaseTransaction or a FireTransitionTransaction,
the workflow engine initializes or updates the data values and Petri net mark-
ing in the workflow instance, described by the PetriNetInstance class in Fig. 4.
It then identifies newly enabled transitions that are assigned to the local node,
creates work items for them and adds these to the local worklist or executes
the specified external method calls.

Because the blockchain only stores state changing actions, the workflow
engine needs to maintain the workflow state, represented by the WorkflowState
class in Fig. 4. The workflow state consists of known workflow specifications
and the set of running cases, each with their execution states. The execution
state for each case is described by a PetriNetInstance object, which represents
a running case. Each PetriNetInstance has attributes for the current data
values and the current marking of the associated PetriNet object.

Fig. 5 shows the UML sequence diagram for creating and submitting a new
transaction. The transaction is created by the worklist user interface when the
user completes a work item, which submits it for signing to the P2PNode
before adding it to the TransactionService. The transaction service first vali-

Blockchain WFMS 17

Fig. 5 UML sequence diagram for creating a new transaction (simplified)

dates the transaction with the WorkflowEngine and then, if valid, adds it as
a pending transaction. It then uses the P2PNode to send the new transaction
to other nodes. The P2PNode creates a new Message object, sets the sender
information, signs it, and adds the message to the OutboundQueue object.
When receiving a new transaction from other nodes, the P2PNode uses the
same ”add” method of the TransactionService.

Fig. 6 shows the UML sequence diagram for receiving a new block from
the P2P network through the inbound message handler; new blocks mined by
the local mining service are handled in the same way. The P2PNode passes
the new block to the local BlockService, which first disables the user interface.
It then calls its own append method. As part of this method, the block service
validates the block with the workflow engine; the engine in turn validates each
transaction of the block through a call to the workflow state that it maintains
(Fig. 4). When the block is validated, it is executed by the workflow engine;
each transaction in turn is executed by updating the ActivityInstance and the
PetriNetInstance. Finally, the block service re-enables the user interface.

Fig. 7 shows a screenshot of the prototype, with a list of workflow defini-
tions, running cases, worklisted activities, and pending transactions.

Validity The validation of a ModelUpdateTransaction checks that no Petri net
with the same name exists in other ModelUpdateTransactions in the blockchain
or the pending transactions. Validation of a InitCaseTransaction checks that
a Petri net with the supplied name is defined. Validation of a FireTransition-
Transaction checks that the Petri net transition of the transaction is enabled,
the activity is assigned to the originating node of the transaction, and that
no data constraints are violated. For this, the workflow engine executes the
pending transactions for that workflow instance to ensure the Petri net tran-
sition remains enabled, i.e. the new transaction is not incompatible with any

18 J. Evermann and H. Kim

Fig. 6 UML sequence diagram for receiving a new block (simplified)

Fig. 7 Screenshot of prototype I

Blockchain WFMS 19

→ Validate(transaction, pendingTransac-
tions)

Pending transactions are those in the
transaction pool

→ DoBlock(block) Announces transactions in the block to
the workflow engine for execution

→ UndoBlock(block) Undoes transactions in the block (during
blockchain reorganization)

← GetPredecessor(block) Workflow engine gets predecessor block
← AddTransaction(transaction) Workflow engine submits new transac-

tion

→ AddPendingTransaction(transaction) Transaction service notifies engine of
pending transaction (optional)

Table 2 Interface between blockchain infrastructure and workflow engine in prototype I (→
indicates blockchain infrastructure calling workflow engine, ← indicates reverse direction)

of the pending ones for that workflow instance. It then undoes the pending
transactions in reverse order to restore the current state.

Interface In general, any blockchain infrastructure performs three functions. It
accepts new transactions for inclusion in the blockchain, it provides transac-
tions in new blocks to external applications (as well as invalidated blocks upon
a chain reorganization), and it validates transactions. Because transaction va-
lidity includes the permissibility of workflow actions, transaction validation
requires the workflow engine. These considerations lead to the generic inter-
face in Table 2. First, transaction and block services can call the workflow
engine to validate blocks and transactions. Second, the block service passes
blocks to the workflow engine for execution (to ”do” them). Third, during
blockchain reorganization, the block service notifies the engine to invalidate
blocks, i.e. to ”undo” them. Fourth, in the other direction, the workflow engine
can get predecessor blocks from the block service, used for retrieving blocks at
specified confirmation depths. Fifth, the workflow engine can add new trans-
actions to the transaction pool. Finally, to gain knowledge of all transactions
in the transaction pool, an optional interface for the transaction service to
notify the workflow engine of new transactions in the pool is implemented.
This is not required for the functioning of the WfMS but is useful from the
user perspective (Sec. 7).

6.2 Prototype II: Workflow Instance States on the Blockchain

An alternative to storing workflow activities in transactions on the blockchain
is to store complete workflow instance states, i.e. data values and Petri net
markings. This alternative does not need separate InitCaseTransaction and
FireTransitionTransaction. They are combined into an InstanceStateTrans-
action that represents a complete workflow instance state. The UML class
diagram in Fig. 8 shows this change.

This design implies significant changes. First, because activity execution
information is not available in the blockchain, data constraints cannot be spec-
ified as post-constraints for each activity, but can only be specified for the

20 J. Evermann and H. Kim

Fig. 8 UML class diagram for prototype II (simplified)

entire state, i.e. they apply to the global case data. Comparing Fig. 4 with 8,
the constraint attribute is now with the PetriNet class rather than the Ac-
tivitySpecification class. Second, transactions are not validated by executing
and then undoing pending transactions. Consequently, Fig. 8 does not show
an ”undo” method for the ActivityInstance class. Instead, the workflow engine
checks that the marking of the workflow instance state in a new transaction
is reachable from the marking of the current workflow instance state as well
as the markings of the workflow states in all pending transactions. Third, the
workflow engine does not need not maintain workflow state information as
that is readily available by reading the blockchain backwards from the current
chain head. Hence, the class WorkflowState is no longer present in the UML
class diagram in Fig. 8. This change significantly simplifies the workflow en-
gine. Fourth, the lack of activity execution information means that the user
only knows about pending future states, but not which activities bring about
those states. Because multiple enabled transitions may lead to the same state,
this information cannot be derived from the current and previous state either.

Interface The general interface remains the same, as the blockchain infras-
tructure performs the same three functions. However, instead of the ”Do” and
”Undo” ability for transactions in blocks in prototype I, the block service sim-
ply notifies the workflow engine when a new block is appended to the head
of the chain; the interface is renamed to UpdateHead. During blockchain re-

Blockchain WFMS 21

→ ValidateTransaction(transaction,
pendingTransactions)

Pending transactions are those in the
transaction pool

→ UpdateHead(block) New blockchain head is added
→ ResetHead(block) Blockchain head is reset to specified

block (during blockchain reorganization)
← GetPredecessor(block) Workflow engine gets predecessor block

← GetDepth(block) Workflow engine gets confirmation depth
of block

← AddTransaction(transaction) Workflow engine submits new transac-
tion

→ AddPendingTransaction(transaction) Transaction service notifies engine of
pending transaction (optional)

Table 3 Interface between blockchain infrastructure and workflow engine (→ indicates
blockchain infrastructure calling workflow engine, ← indicates reverse direction)

organization, instead of providing sets of blocks for undo, the block service
notifies the workflow engine that the current blockchain head has been reset
to a different block and the workflow engine reads the blockchain backwards
from the new head to get the new workflow state. Hence, the interface function
is renamed to ResetHead. The remainder of the interface is unchanged. Table 3
shows the interface for this implementation style.

6.3 Performance

Transaction latency and throughput are not meaningful to compare blockchain
deployments as both are affected by block difficulty and block size. While there
are limits on these, their possible ranges makes it difficult to compare block-
chain performance in a generalizable way. Transaction execution cost or storage
cost measured in units of cryptocurrency, as on the Bitcoin or Ethereum block-
chains, is also not meaningful for private blockchain deployments as mining is
not incentivized and paid for.

Computational Expense A meaningful comparison measure is the (relative)
computational expense for validating transactions or blocks and managing the
workflow state. We have profiled both prototypes using the VisualVM2 Java
profiling tool. For each prototype we started with an initially empty block-
chain. We loaded the running example in Fig. 1 onto the blockchain and mined
the model definition transaction to a depth of two blocks, which we assumed
as confirmed. We then created a sequence of 1000 workflow transactions as
follows. We randomly picked a work item from the work list, simulated its
performance, and submitted the corresponding transaction. If the work list
was empty, we created a new case. We specified a block difficulty of 19 leading
zero bits, a maximum block size of 100 transactions, and a mean delay of 200
milliseconds between submitted transactions. After the first 1000 transactions,
we created a second set of 1000 transactions in the same way. We profiled CPU

2 https://www.visualvm.org

22 J. Evermann and H. Kim

performance during this second set of 1000 transactions to ensure a realistic
starting point of a non-empty worklist, that all Java classes are loaded in the
Java virtual machine, and that any object caches are suitably loaded. We eval-
uated both prototypes in the same way on the same hardware (quad-core Intel
i7 4702HQ laptop) and operating system (Ubuntu 18.04) configuration. Both
prototypes required approx. 230 seconds elapsed time to mine the 1000 trans-
actions, for a throughput of approx 4.3 transactions per second. Because raw
performance measures are relative to the particular CPU we have normalized
the CPU time relative to the mean time of computing a block hash.

Table 4 compares the two prototypes in terms of their relative performance.
The table shows the method calls that are identical or similar in purpose for
the two prototypes. The table is hierarchically structured. For example, the
call to ”WorklistUI.addToPendingTx” in line 5 is part of the call to ”Work-
flowEngine.doBlock” in line 4; the CPU times for line 5 are part of those for
line 4. The table is further structured into large sections. Row 1 provides the
baseline numbers of calculating a single block hash during mining, rows 2–11
concern the appending of a new block to the blockchain, rows 12–19 reflect the
creation of a new transaction, row 20 is the action of digitally signing a trans-
action, while rows 21 and 22 reflect our test setup where the list of current
work items is retrieved and completed work items are removed.

The instance counts in Table 4 shows that in both tests, 34 blocks were
created for 1000 transactions. Also in both tests, more than 1000 transactions
were submitted, 151 (134) submitted transactions were invalid. This can occur
when work items are mutually exclusive, which occurs twice in Fig. 1, at places
p7 and p10. There is no work item removed from the work list for invalid
transactions, reflected in the instance count in row 22.

Block mining (row 1) is by far the dominant computational expense and
block hashing times are similar for the two prototypes; after all, they use an
identical blockchain infrastructure.

Appending a block is about 50% more expensive in prototype II than in
prototype I while adding a new transaction is slightly cheaper in prototype II
than in prototype I. Further examining these methods shows that user interface
operations (rows 5, 6, and 14) consume the bulk of the total CPU time for
appending a block or adding a new transaction. User interface methods are
similar in their relative CPU time, as the user interface is identical for both
prototypes. Comparing the validation times for blocks and transactions (rows
8 and 9) shows that prototype II is computationally more expensive than
prototype I. This is also evident when comparing the two prototypes on rows
13 and 14. After accounting for the user interface method in row 14, the
remaining CPU times of the totals in row 13 are much higher for prototype II
than for prototype I.

In summary, transaction validation is more expensive when only the work-
flow state is stored on the blockchain (prototype II) than when workflow ac-
tivities are stored. The reason is that there may be multiple ways in which
a workflow state can be transformed into another: Multiple transitions may
be enabled and there may be many different sequences of transitions firing to

Blockchain WFMS 23

P
ro

to
ty

p
e

I
P

ro
to

ty
p

e
II

M
et

h
o
d

T
o
ta

l
C

P
U

T
im

e
(m

se
c)

In
st

a
n

ce
s

C
P

U
T

im
e

p
er

In
st

a
n

ce
(m

se
c)

R
el

a
ti

v
e

C
P

U
T

im
e

T
o
ta

l
C

P
U

T
im

e
(m

se
c)

In
st

a
n

ce
s

C
P

U
T

im
e

p
er

In
st

a
n

ce
(m

se
c)

R
el

a
ti

v
e

C
P

U
T

im
e

1
B

lo
ck

.c
a
lc

u
la

te
H

a
sh

1
0
8
4
1
4

1
9
7
6
0
2
5
9

0
.0

0
5

1
1
0
4
6
2
1

1
9
8
3
5
0
9
2

0
.0

0
5

1
2

B
lo

ck
S

er
v
ic

e.
a
p

p
en

d
3
8
5
2

3
4

1
1
3
.2

9
4

2
0
6
4
9

6
0
2
9

3
4

1
7
7
.3

2
4

3
3
6
1
9

3
W

o
rk

fl
o
w

E
n

g
in

e.
d

o
B

lo
ck

3
7
6
2

3
4

1
1
0
.6

4
7

2
0
1
6
7

5
3
4
5

3
4

1
5
7
.2

0
6

2
9
8
0
5

5
W

o
rk

li
st

U
I.

a
d

d
T

o
P

en
d

in
g
T

x
1
7
8
4

1
0
0
0

1
.7

8
4

3
2
5

2
4
0
8

1
0
0
0

2
.4

0
8

4
5
7

6
W

o
rk

li
st

U
I.

re
m

o
v
eF

ro
m

P
en

d
in

g
T

x
1
5
8
1

9
9
6

1
.5

8
7

2
8
9

2
3
2
9

1
0
0
0

2
.3

2
9

4
4
2

8
W

o
rk

fl
o
w

E
n

g
in

e.
v
a
li
d

a
te

B
lo

ck
6
7
.4

3
4

1
.9

8
2

3
6
1

4
9
0

3
4

1
4
.4

1
2

2
7
3
2

9
W

o
rk

fl
o
w

E
n

g
in

e.
v
a
li
d

a
te

T
ra

n
sa

ct
io

n
6
5
.9

1
0
0
0

0
.0

6
6

1
2

4
8
8

1
0
0
0

.4
8
8

9
3

1
0

B
lo

ck
S

er
v
ic

e.
v
er

if
y

4
0
.8

3
4

1
.2

0
0

2
1
9

1
8
5

3
4

5
.4

4
1

1
0
3
2

1
1

B
lo

ck
.c

a
lc

u
la

te
M

er
k
le

R
o
o
t

4
0
.2

3
4

1
.1

8
2

2
1
6

1
8
4

3
4

5
.4

1
2

1
0
2
6

1
2

T
ra

n
sa

ct
io

n
S

er
v
ic

e.
a
d

d
8
4
7
2

1
1
5
1

7
.3

6
1

1
3
4
2

6
1
7
1

1
1
3
4

5
.4

4
2

1
0
3
2

1
3

W
o
rk

fl
o
w

E
n

g
in

e.
v
a
li
d

a
te

T
ra

n
sa

ct
io

n
2
5
6
0

1
1
5
1

2
.2

2
4

4
0
5

1
1
8
5

1
1
3
4

1
.0

4
5

1
9
8

1
4

W
o
rk

li
st

U
I.

a
d

d
T

o
P

en
d

in
g
T

x
2
0
7
1

1
0
0
0

2
.0

7
1

3
7
7

2
4
0
8

1
0
0
0

2
.4

0
8

4
5
7

1
5

T
ra

n
sa

ct
io

n
.v

er
if

y
O

ri
g
in

a
to

r
6
6
2

1
1
5
1

0
.5

7
5

1
0
5

7
5
6

1
1
3
4

0
.6

6
7

1
2
6

1
6

P
ee

rC
er

ti
fi

ca
te

.v
er

if
y
S

ig
n

a
tu

re
6
6
0

1
1
5
1

0
.5

7
3

1
0
5

5
5
5

1
1
3
4

0
.4

8
9

9
3

1
7

T
ra

n
sa

ct
io

n
.v

er
if

y
C

o
n
te

n
t

5
7
4

1
1
5
1

0
.4

9
9

9
1

8
9
2

1
1
3
4

0
.7

8
4

1
4
9

1
8

C
ry

p
to

U
ti

ls
.v

er
if

y
O

b
je

ct
S

ig
n

a
tu

re
5
7
0

1
1
5
1

0
.4

9
5

9
0

8
8
9

1
1
3
4

0
.7

8
4

1
4
9

1
9

B
lo

ck
S

er
v
ic

e.
is

T
ra

n
sa

ct
io

n
In

M
a
in

C
h

a
in

2
1
9
2

1
1
5
1

1
.9

0
4

3
4
7

2
6
8
0

1
1
3
4

2
.3

6
3

4
4
8

2
0

P
2
P

N
o
d

e.
si

g
n

T
ra

n
sa

ct
io

n
4
3
2

1
1
5
1

0
.3

7
5

6
8

7
2
9

1
1
3
4

0
.6

4
3

1
2
2

2
1

W
o
rk

fl
o
w

E
n

g
in

e.
g
et

A
ll
W

o
rk

It
em

s
6
8

1
1
5
1

0
.0

5
9

1
1

1
2
8

1
1
3
4

0
.1

1
3

2
1

2
2

W
o
rk

fl
o
w

E
n

g
in

e.
re

m
o
v
eW

o
rk

It
em

7
.1

9
8
4
9

0
.0

0
8

2
8
.8

5
8
6
6

0
.0

1
0

2

T
a
b

le
4

P
ro

fi
li
n

g
re

su
lt

s
fo

r
p

ro
to

ty
p

e
I

a
n

d
II

24 J. Evermann and H. Kim

transform one marking to another. Each of them needs to be checked. When
a specific activity, i.e. a transition, is stored on the blockchain, only the en-
ablement of that transition needs to be checked.

Storage Expense Another important performance consideration is the expense
of storing transactions on the blockchain. While storage in private blockchain
deployments is not paid for through cryptocurrencies, storage is an important
aspect of the scalability of the chain.

The UML class diagrams in Figures 4 and 8 show what is serialized into
each blockchain transaction or block as payload and metadata. The ModelUp-
dateTransaction is similar for both prototypes and stores a PetriNet object
with its associated Transition, Place, and ActivitySpecification objects. The
size of such a transaction depends on the size of the Petri net and the number
of data variables and constraints. Differences between the prototypes occur in
the other transaction types. In prototype I, PetriNetInstance objects are never
stored on the blockchain, only ActivityInstance objects are stored in FireTran-
sitionTransaction objects, while PetriNetInstance objects are maintained and
persisted locally by each workflow engine. In prototype II, ActivityInstance
objects are locally maintained by the workflow engine, while PetriNetInstance
objects are stored on the blockchain in an InstanceStateTransaction. Hence, we
expect prototype II to be less efficient for blockchain storage than prototype I.

After running the experimental evaluations described above, the block-
chain for prototype I stored 234 InitCaseTransaction objects and 1766 Fire-
TransitionTransaction objects. The total payload sizes were 62,010 bytes and
1,988,105 bytes, respectively, for a mean size of 265 bytes for the Petri net name
and case ID in each InitCaseTransaction and of 1126 bytes for the ActivityIn-
stance object of each ModelUpdateTransaction. The blockchain for prototype
II stored 2000 InstanceStateTransaction objects that carry a PetriNetInstance
object as payload. The total payload size was 11,989,445 bytes for on average
PetriNetInstance object size of 5995 bytes. The large difference in transaction
payload size confirms our expectations.

We have not optimized our implementation for speed or storage efficiency.
For example, compressed serialization is an obvious way to reduce storage
space. Decoupling of the user interface from the workflow engine is an easy way
to optimize performance and responsiveness. A careful selection of algorithms
and data structures and improved caching can further improve performance.
However, the prototype implementations are to be understood as proof-of-
feasibility for different architectures and are intended as research vehicles for
exploring the implications of blockchain infrastructure (Sec. 7), rather than as
fully optimized, production-ready implementations.

6.4 Comparison and Discussion

The two prototypes differ in what is stored in a blockchain transaction: work-
flow actions or workflow states. Storing workflow actions is the more intuitive

Blockchain WFMS 25

Prototype I Design Prototype II Design
Blockchain stores workflow actions Blockchain stores workflow states
Workflow engine must provide persistence Workflow engine need not provide persis-

tence
Case-level and work item-level data con-
straints

Case-level data constraints only

Informative pending transactions No informative pending transactions
Low data volume Higher data volume
Cheap validation Expensive validation
Suitable for existing workflow engines Suitable for new workflow engines

Table 5 Major differences between the designs of prototypes I and II

approach but requires a workflow engine that maintains its own state inde-
pendent of the blockchain. This option is useful for porting existing workflow
engines, as they already possess persistence and transaction management capa-
bilities. Additionally, workflow engines are typically built to process workflow
actions, rather than entire states. Storing workflow state on the blockchain
simplifies development of new workflow engines, as the blockchain infrastruc-
ture can be used not only for distribution but also for persistent storage. The
ability to simply read complete workflow states off the blockchain eliminates
the need for persistent storage by the workflow engine. Both alternatives re-
quire the ability to react to changes in the validation state of blocks, which is
arguably easier to implement in the second alternative.

Another difference is that prototype II does not make workflow actions,
such as work item completion, explicit. Hence, work item level data constraints
cannot be enforced or validated on the blockchain. Explicitly recording work-
flow actions also allows the blockchain infrastructure to provide meaningful
information about pending changes to workflow users, whereas full workflow
states may not be informative to users. It is of course possible to store both
workflow actions and workflow states on the blockchain to achieve the ad-
vantages of both designs, but this leads to high storage requirements and
significant redundancy.

Finally, storing complete workflow instance states consumes more data
on the blockchain than updates only and validation is computationally more
expensive, which may be expensive for public chains but is not an issue for
private chains.

In summary, unless the rapid and relatively easy development or prototyp-
ing of an entirely new WfMS is envisioned, as we have done here, the design
of prototype I is preferable for adapting or porting existing WfMS onto a
blockchain architecture. Table 5 highlights the differences between the two
prototype designs.

7 Blockchain-specific Issues in Workflow Management

Constructing our research prototypes was useful to identify issues presented
by proof-of-work blockchain-based WfMS that do not exist in traditional, cen-
tralized WfMS, and that have not yet been raised by prior research.

26 J. Evermann and H. Kim

7.1 Latency

Proof-of-work-based blockchains introduce latency. At the very least, this is
the time between submitting a transaction to the transaction pool and it being
mined. A longer latency is introduced when the preferred confirmation depth
requires multiple blocks mined on top of a transaction. For example, the Bit-
coin community recommends that transactions are not considered as confirmed
and acted upon until six or more blocks are added on top of them; Bitcoin
mines a new block approximately every 10 minutes. The Ethereum commu-
nity recommends to assume confirmation at 10 to 15 blocks, with blocks being
mined every 13 seconds. While latency may not be a problem for slow-moving,
long-running workflows where progress is measured in days or weeks, it may
be a considerable problem for fast-moving, short workflows that must progress
within minutes. From the user’s perspective, workflow activities in a proof-of-
work blockchain-based WfMS can remain pending for a significant amount of
time, in contrast to traditional WfMS where actions are completed immedi-
ately. Users must be aware of this latency and its impact on the workflow. The
user interface of a WfMS must show these transaction states; the user requires
insight into the current state for each submitted transaction, as well as for
transactions submitted by other users. To provide this information, workflow
engines need to be adapted to continuously monitor the blockchain and track
the status of all transactions, a significant effort.

7.2 Validating State and Visible State

Workflow transactions go through stages (Table 6), from being accepted to the
transaction pool, to being mined into a block, and finally to being considered
confirmed and therefore actionable. Only the effects of confirmed transactions
should be visible to the user, while the effects of all transactions are used when
validating new transactions and new blocks. This distinction leads to two dif-
ferent workflow states, which we call the ”visible state” and the ”validation
state”. This distinction is a key difference to traditional WfMS. Understanding
the behavior of the WfMS requires the user to have some knowledge about the
underlying blockchain infrastructure. In our prototypes we deal with this is-
sue by showing the status of all pending and mined transactions until they are
considered confirmed. Only then is the user’s worklist, which reflects the ”vis-
ible state”, updated. This can be seen in the bottom part of Fig. 7. Providing
information about pending and mined but not yet confirmed transactions (i.e.
the validation state) allows the user to understand why subsequent activities
may not yet be worklisted, or why certain activities cannot be completed, even
though they are worklisted in the visible state. We illustrate possible problems
due to this discrepancy by examining the sequence and deferred choice work-
flow patterns (van der Aalst et al., 2003).

Sequence Consider the sequence of activities t7 ”produce1” and t8 ”check1” in
Fig. 1. Both activities are assigned to the same node. While the local workflow

Blockchain WFMS 27

Transaction Stage Validation Note
Insert into transac-
tion pool

Validate against trans-
actions in chain and
transaction pool

Reject invalid transactions but do
not remove their work item from
worklist; allow user to retry. Re-
move work items for valid transac-
tions from worklist and report as
pending.

Insert to head of
chain

Validate against trans-
actions in chain

Reject blocks with invalid transac-
tions. No changes to the worklist.

Reach confirmation
depth of chain

Consider work items for transactions
in block as done, and remove them
from worklist. Create work items for
newly enabled activities.

Table 6 Transaction stages, validation points, and workflow actions

engine and user know that ”produce1” has been completed, ”check1” cannot
be worklisted until ”produce1” is considered confirmed. Or can it? One can
imagine a speculative execution of a workflow where the local workflow engine
worklists activity ”check1” immediately, at the risk of having to undo it at a
later stage should activity ”produce1” not be accepted by the consensus chain
or invalidated later. This is a design choice for the particular WfMS. For this,
each node’s workflow engine must track the status of its own submitted trans-
actions. In case a transaction is removed from the blockchain or transaction
pool, e.g. due to conflicts with other transactions during chain reorganization,
it must be undone locally. Speculative execution has not been used to address
confirmation latency of blockchain-based WfMS and is an interesting direction
for future research.

Deferred Choice Consider activity t8 ”check1” in Fig. 1, which is followed by
place p7 and either activity t9 ”deliver1” or t10 ”redo1”. After ”check1” is
completed and confirmed, both ”deliver1” and ”redo1” are worklisted to al-
low the user the choice of which to perform, based on the results of ”check1”.
When ”deliver1” completes, ”redo1” should be withdrawn, and vice versa.
When both activities are assigned to the same node, as in our case, it may
make sense to withdraw ”redo1” as soon as execution of ”deliver1” is com-
pleted and submitted to the transaction pool, as this corresponds to the local
user’s understanding. However, this may conflict with the explicit confirmation
depth requirement of that user, which may be one or more blocks. From that
perspective, ”redo1” should not yet be withdrawn. Our prototypes implement
the latter approach and do not withdraw ”redo1” from the worklist; comple-
tion of ”deliver1” is reported as pending to the user. Of course, completion of
”redo1” cannot be added as a new transaction. Hence, despite ”redo1” being
worklisted, the user is presented with an error notice upon its completion (not
upon its start, as validation is done only when the engine attempts to add
a FireTransitionTransaction to the transaction pool). When ”deliver1” and
”redo1” are allocated to different nodes, the users may not be aware of the
deferred choice situation or the execution status of the other activity. In this
situation, ”redo1” should not be withdrawn when ”deliver1” is submitted to

28 J. Evermann and H. Kim

the transaction pool: It may be that ”deliver1” does not get mined into the
chain, perhaps because the local node mines on what will turn out to be a
side branch, or ”redo1” may be mined into the chain because it arrives at the
winning miner before ”deliver1” does. Without understanding the underlying
blockchain infrastructure, this behavior will be confusing to a user as it differs
greatly from that of a traditional WfMS.

Confusion can also arise because what is considered confirmed and therefore
visible and actionable depends on each node’s required confirmation depth of
transactions. A user on one node may consider a particular state to permit
execution of a following activity, while a user on another node considers that
state as insufficiently confirmed. In sequential workflows, this might lead to
tensions as one user believes another is delaying the workflow unnecessarily.
In a deferred choice situation, this might lead to competitive behavior as one
user can always make the choice before the other.

In summary, it is easy to see how the consensus mechanism in proof-of-work
blockchains can lead to confusion if users do not have a good understanding of
the principles of blockchain infrastructure. To address this, blockchain-based
WfMS will require considerable adaptation to user interfaces, as we have begun
to show in our prototypes, as well as user training.

7.3 Confirmed is not Committed: Undo Required

Sec. 4 described how a transaction, even with mined blocks on top of it, may
still be invalidated because of chain reorganization; there is no final commit in
a proof-of-work blockchain. Because of this, blockchain-based WfMS require
the ability to ”undo” transactions. In prototype I we implement ”undo” by
storing the before-values of all outputs of a work item. An interface of the
workflow engine allows the block service to ask for ”undo” of entire blocks.
In prototype II, the undo is performed by resetting the blockchain head and
reading back the workflow state from the new head.

User issues Consider a deferred choice of two activities A and B that are as-
signed to different nodes. Due to latency, it is possible that activity A is com-
pleted and mined into a block, while activity B is also completed and mined
into a block. Both blocks are the head of the main branch on their originating
nodes, i.e. from the local user’s perspectives the work items are completed and
the corresponding transactions may even be considered confirmed. However,
one of them, assume activity B, will be eventually be ”undone”. Does the user
need to be notified of the undo of the transaction so that she can take ap-
propriate action? If so, when and how should the workflow engine notify the
user and what information should it provide? Our prototypes add the undone
transaction into the list of pending transactions shown to the user, but with-
out highlighting this or raising an alarm for the user. Other implementations
could take a more active approach. To take this example further, consider an
activity X to be performed prior to A or B on some third node. It may be

Blockchain WFMS 29

possible (although unlikely) that X, and therefore both A and B are ”undone”
so that both workflow users are presented again with deferred choice of A or
B. Both users were convinced that the workflow state includes completion of
A or B, respectively, yet both activities are worklisted again. In summary, the
eventual consistency approach in proof-of-work blockchains requires users to
be made aware of the state of the workflow and each transaction, and be able
to understand and make sense of non-intuitive changes to the workflow states.

External effects In contrast to purely financial transactions such as cryptocur-
rency transfers (or other virtual transactions, e.g. transfer of ownership), ac-
tivities in business processes represent considerable human work and other
resource consumption. In the best case, undoing workflow transactions wastes
this work and the consumed resources. In the worst case, they may not be
undoable at all. While financial transactions are reversible by crediting and
debiting appropriate accounts, the performance of workflow activities may
represent substantial and permanent changes of state in the physical world.
Applying greater confirmation depth to transactions merely reduces the prob-
lem, but does not eliminate it.

Compensation To address external effects that cannot be undone, the idea of
compensating activities or workflow fragments may be useful. Compensation in
workflows is a complex issue (e.g. Eder and Liebhart, 1996; Grefen et al., 2001;
Acu and Reisig, 2006) but in the blockchain context it raises further questions
such as when to worklist compensation activities, whether compensation ac-
tivities must pre-empt other work items for that case, whether compensation
should be done on the validating state, the visible state, or both. For example,
consider the blockchain in Fig. 2 and a user with a confirmation depth require-
ment of one block. Assume again that block 4 is a new block to be added and
block 3b is the head of the main branch. During chain reorganization, trans-
action 31b in block 3b is invalidated. However, the user has not yet ”seen”
transaction 31b, as her visible state is only up to block 2b. To offer a com-
pensating activity for 31b will be confusing. A compensating activity for the
invalidated transaction 21b may be appropriate, but which state, the validat-
ing or the visible or both, should be updated with the outputs of this activity?
Moreover, the invalidated transactions may refer to activities performed on
other nodes, but chain reorganization is a local issue. Should compensating
activities be inserted into the original nodes’s worklist; yet, that node may not
experience the chain reorganization? Should results of compensating activities
be confined to the local state only (what about state consensus?) or should
they be broadcast on the blockchain (even though some nodes do not undergo
a chain reorganization)?

Blockchain WfMS based on smart contracts avoid the ”undo” requirement
as the blockchain will, upon chain reorganization, automatically restore a pre-
vious smart contract state because the contract state is encoded on the block-
chain itself. However, this does nothing to address the user issues, external

30 J. Evermann and H. Kim

effects, and compensation problems highlighted here, which remain a problem
also for that architecture.

In summary, the ”undo” required by proof-of-work-based WfMS highlights
ambiguities in execution order; it complicates user’s understanding of the work-
flow state and requires user understanding of the underlying blockchain archi-
tecture. ”Undo” may not be possible for some activities or may lead to con-
siderable wasted resources and effort for others. Addressing the problem with
compensation may be appealing but raises further difficult questions.

7.4 Data Dependencies

Transactions in the transaction pool and transactions within the same block
are considered unordered because timestamps in a distributed blockchain are
unreliable as there is no central clock. Consider two parallel activities, for ex-
ample t17 ”Send Order 1” and t18 ”Send Order 2”, that both write to the same
data variable. The same user performs ”Send Order 1” followed by ”Send Or-
der 2”. She therefore expects the data variable to have a certain value. In the
absence of control-flow dependencies, the transactions for both work items are
mined into the same block. As the block and its transactions arrive at nodes,
including the originating node, the workflow engines must execute ”Send Or-
der 1” and ”Send Order 2”, but in what order? The issue is similarly present
when undoing workflow actions. During chain reorganization, the system can-
not decide which activity to undo first. Blockchains resolve the ambiguity
by executing transactions in block order or by otherwise fixing the order. In
any case, the order in which they are executed may not match the order in
which they were performed and the value of the data variable may therefore
not match the user’s expectations. One might argue that even in traditional
WfMS the execution order is, in the absence of control-flow dependencies, ar-
bitrary and that, in the presence of data-dependencies, the workflow designer
ought to have specified control-flow dependencies. However, in a traditional
WfMS the execution order is determined by the user’s performance and thus
matches the user’s expectations.

8 Discussion and Conclusions

Previous work on blockchain-based WfMS has focused on smart contracts for
the Ethereum blockchain that implement workflow engines on-chain. In con-
trast, we have worked with traditional off-chain workflow engines in our re-
search prototypes. The workflow engines include case data management, data
constraints, and local resource management using standard workflow engine
designs. We have highlighted issues around workflow state visibility, latency,
transaction confirmation, and data dependencies that have not been consid-
ered in prior research. Our research prototypes are not meant for production
use; they are research tools to explore blockchain-based workflow manage-
ment in a controlled environment. However, the problems we have identified

Blockchain WFMS 31

and our recommendations below are generalizable beyond our implementa-
tions to proof-of-work blockchain-based WfMS in general. They also apply
to smart contract-based implementations, as they stem from the properties
of proof-of-work chains, not from the specific blockchain architecture or our
implementations.

8.1 Recommendations

We have shown that proof-of-work blockchain infrastructure introduces unique
issues that require both user interface adaptations as well as user awareness
and training. We make the following recommendations.

User interfaces The effects of proof-of-work blockchains cannot be hidden from
the user. Rather than trying to hide the infrastructure from the user, we
recommend that WfMS designers provide full visibility. This includes aspects
such as tracking the status of locally and remotely submitted transactions and
indicating their confirmation depth, as we have done in our prototypes. User
interfaces should also provide informative and constructive feedback and alerts,
for example, when users attempt to perform an activity that is incompatible
with pending activities, or when a chain reorganization takes place and leads
to activities that were assumed to be completed to be worklisted again.

User education The recommendations for user interfaces are only useful if users
are aware of at least the general principles of proof-of-work consensus. Again,
hiding the effects of this infrastructure is not possible, so that WfMS users
must be educated on transaction states, causes of latency in the system, and
the possibility and principles of chain reorganizations. Users must not only be
trained on the WfMS, but also on the concepts of blockchains and the proof-of-
work consensus mechanism, both of which are complex concepts. Hence, this
may pose considerable challenges in practice and detract from users’ actual
work.

Process designs One way to mitigate the effects of blockchain infrastructure
is to reduce the number of case transfers between nodes. We recommend
that workflow designers consider the sub-contracting pattern (van der Aalst,
1999), which decomposes activities to sub-workflows of which all activities
are assigned to the same node. A hybrid architecture of local WfMS that
are joined by a blockchain infrastructure can ensure that only the high-level
inter-organizational workflow is affected by the effects of the blockchain in-
frastructure. Lessons learned from distributed WfMS (Sec. 3.1) and the use of
projection inheritance (van der Aalst, 2002, 2003) to ensure behavioral cor-
rectness apply to such hybrid architectures. Workflow designers should also
consider compensation activities to be performed when a transaction cannot
be undone (e.g. Eder and Liebhart, 1996; Grefen et al., 2001; Acu and Reisig,
2006).

32 J. Evermann and H. Kim

Blockchain Use A key motivator for using blockchain-based WfMS is the lack
of trust among process participants. While proof-of-work blockchains, in par-
ticular Ethereum, are popular with WfMS researchers, other blockchain tech-
nologies exist that make the same validity and consensus guarantees but do not
exhibit the drawbacks of proof-of-work blockchains. For example, PBFT-based
systems (Practical Byzantine Fault Tolerance) systems (Androulaki et al.,
2017; Sousa et al., 2018) do not scale well with the number of nodes but
offer very low latency and finality of consensus. Hence, they may be useful
for applications with a small number of organizations and and workflows that
require low latency and final consensus (Vukolić, 2015).

8.2 Smart Contracts versus Application Code

Prior work on blockchain-based WfMS (Sec. 3.3) uses smart contracts. Smart
contracts provide code integrity and visibility/transparency, as the code is part
of the blockchain. Additionally, there is no need to call outside the blockchain
layer for transaction validation, as we do in our architecture. The disadvan-
tages are the need to re-develop existing application logic. The strong focus
on control flow neglects implementation aspects typically handled by workflow
engines such as data management, data transformations, constraints, external
services, scripting, decision tables, organizational data management, role res-
olution, user interfaces, and others. By not porting and reusing traditional
workflow engines, implementing these aspects leads to considerable effort for
a smart contract architecture, which may be exacerbated due to limitations of
the smart contract language instruction set.

In our architecture, the blockchain is treated simply as a trusted infrastruc-
ture layer. It serves only to record and share the state of a workflow execution
and achieve consensus on the validity of that state. This architecture offers
not only the ability to adapt existing workflow engines using simple interfaces
(Sec. 6), avoiding re-implementation effort and relying on proven technologies,
but also offers more freedom to implement features that may not be possible
in the blockchain execution environment. Implementing application logic off-
chain means that developers have access to familiar programming languages,
code libraries and development tools. One drawback is that transaction valida-
tion must call back to the application logic. Unlike smart contracts, performing
validation in off-chain logic places the onus on developers to ensure identical
results if nodes use different workflow engines. However, off-chain validation
allows developers to develop against a behavioural specification, e.g. workflow
net semantics, without specifying the exact algorithms or implementation to
be used: The architecture can use a heterogeneous set of workflow engines, each
best suited to a particular node’s requirements. Table 8.2 lists advantages and
disadvantages of the two architectures.

Blockchain WFMS 33

Workflow Engine on Blockchain Workflow Engine off Blockchain
Requires re-development of workflow en-
gine

Can adapt existing workflow engines

Separates workflow engine from external
services

Workflow engine remains integrated with
external services

Separation of workflow logic from transac-
tion validation

Workflow logic is part of transaction valid-
ity; requires call-back to workflow engine
for transaction validation

Code integrity & visibility Develop against a behavioural specifica-
tion

Ensures identical behavior for all peers Behavior must be independently validated
by each peer

No design freedom for peers Allows heterogeneous engine implementa-
tions

May be limited by blockchain execution
environment

No implementation limitations

May be limited in integrating off-chain
components

Few limitations to integrate off-chain com-
ponents

Table 7 Architectural options for blockchain-based workflow management systems

8.3 Limitations and Future Work

While we have identified many issues around proof-of-work blockchain-based
WfMS and have made recommendations to address them, our work also shows
limitations, which we view as avenues for future research. We see both technical
as well as empirical research opportunities.

Technical research opportunities On the technical side, our work has shown
potential for further refinement and exploration of architectural options, in
particular the following topics:

– Designing processes to minimize the effects of blockchain infrastructure.
– Investigating speculative execution of local activities with possible ”undo”.

Can speculative execution protocols from other areas in computer science
be used and adapted for workflow management?

– Using compensation activities or compensation workflow fragments to sup-
port improved ”undo” of transactions.

– Porting existing workflow engines, such as the open-source YAWL system
(ter Hofstede et al., 2009), to blockchain infrastructure.

– Extending the architecture from a 1 : 1 relationship between blockchain
nodes and workflow engines to an n : m relationship.

– Implementing BFT-based blockchains for WfMS to identify architectural
design issues and implications for WfMS and their users.

Empirical research opportunities Neither this nor prior work has advanced
beyond prototypes and feasibility studies into production settings. Hence, little
large scale or in-depth empirical research on user and organizational issues is
available. Our recommendations, as they affect WfMS users, will eventually
require empirical support. One of the central points is our recommendation

34 J. Evermann and H. Kim

to identify effective ways of communicating workflow and transaction state to
users, and to make users understand the specific implications of using proof-
of-work blockchain infrastructure. Supporting this requires observational or
experimental work with users and explorations of different WfMS user interface
designs, both in a field as well as a laboratory setting. Similarly, the question
of whether our architecture can be applied effectively in production settings
requires empirical work. Investigating the applicability and feasibility of our
architecture needs in-depth case studies into blockchain deployments in inter-
organizational settings.

We believe that application-specific blockchains, like the architecture in-
vestigated here, are easier to deploy for stand-alone, ad-hoc applications where
the participating organizations have not yet invested into a common, generic
blockchain platform. Such situations occur when organizations need to com-
plete workflows in a project setting, instead of a permanent, ongoing basis.
One example of such a situation is the permitting of exploration or extrac-
tion in the natural resources industry, such as mining and petroleum. Such a
process frequently involves multiple stakeholders with different interests and
a reasonably structured process of consultation, negotiation, etc.

Finally, Mendling et al. (2018) point out the ”people” factor in adopting
blockchain-based WfMS, which they view as an acceptance problem from the
enterprise perspective. Through our research, we have identified specific user-
focused challenges, such as interface design and user education in blockchain
technology, solutions to which will help gain user acceptance.

To conclude, this paper has described an architecture and two implemen-
tations for a blockchain-based WfMS that has not yet seen research attention.
Our research shows that workflow engines do not need to be implemented us-
ing smart contracts but that traditional workflow engines and the modelling
languages they support, can be readily adapted to fit onto a blockchain infras-
tructure. The interfaces between workflow engines and blockchain infrastruc-
ture are simple, and independent of the semantics of the workflow description
language. Our work has also highlighted many aspects in which blockchain-
based WfMS differ from traditional systems. We have discussed implications
of these differences and demonstrated how we they can be addressed in our
prototype work.

Conflicts of Interest

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

References

Acu, B. and Reisig, W. (2006). Compensation in workflow nets. In Intnl.
Conference on Application and Theory of Petri Nets, pages 65–83. Springer.

Blockchain WFMS 35

Alonso, G., Mohan, C., Günthör, R., Agrawal, D., El Abbadi, A., and Kamath,
M. (1995). Exotica/FMQM: A persistent message-based architecture for
distributed workflow management. In Information Systems Development
for Decentralized Organizations, pages 1–18. Springer.

Androulaki, E., Cachin, C., De Caro, A., Sorniotti, A., and Vukolic, M. (2017).
Permissioned blockchains and Hyperledger Fabric. ERCIM News, 110:9–10.

Atluri, V., Chun, S. A., Mukkamala, R., and Mazzoleni, P. (2007). A decen-
tralized execution model for inter-organizational workflows. Distributed and
Parallel Databases, 22(1):55–83.

Bauer, T. and Dadam, P. (1997). A distributed execution environment for
large-scale workflow management systems with subnets and server migra-
tion. In Proceedings of the Second IFCIS International Conference on Co-
operative Information Systems, pages 99–108. IEEE Computer Society.

Bauer, T. and Dadam, P. (2000). Efficient distributed workflow management
based on variable server assignments. In Wangler, B. and Bergman, L., ed-
itors, Advanced Information Systems Engineering, 12th International Con-
ference, Proceedings, volume 1789 of LNCS, pages 94–109. Springer.

Castro, M. and Liskov, B. (2002). Practical byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461.

Chebbi, I., Dustdar, S., and Tata, S. (2006). The view-based approach to
dynamic inter-organizational workflow cooperation. Data Knowl. Eng.,
56(2):139–173.

Ciccio, C. D., Cecconi, A., Dumas, M., Garcia-Banuelos, L., Lopez-Pintado,
O., Lu, Q., Mendling, J., Ponomarev, A., Tran, A. B., and Weber, I. (2019).
Blockchain support for collaborative business processes. Informatik Spek-
trum, 42(3):182–190.

Das, S., Kochut, K., Miller, J., Sheth, A., and Worah, D. (1997). ORBWork:
A reliable distributed CORBA-based workflow enactment system for ME-
TEOR2. In Proc. of the 23nd. Intnl. Conference on Very Large Data Bases,
Athens, Greece.

Dogac, A., Gokkoca, E., Arpinar, S., Koksal, P., Cingil, I., Arpinar, B., Tatbul,
N., Karagoz, P., Halici, U., and Altinel, M. (1998). Design and implementa-
tion of a distributed workflow management system: Metuflow. In Workflow
Management Systems and Interoperability, pages 61–91. Springer.

Eder, J. and Liebhart, W. (1996). Workflow recovery. In Proceedings First
IFCIS International Conference on Cooperative Information Systems, pages
124–134. IEEE.

Eder, J. and Panagos, E. (1999). Towards distributed workflow process man-
agement. In Bussler, C., Grefen, P. W. P. J., Ludwig, H., and Shan, M., edi-
tors, Proceedings of the Workshop on Cross-Organisational Workflow Man-
agement and Co-ordination, volume 17 of CEUR Workshop Proceedings.

Fakas, G. J. and Karakostas, B. (2004). A peer to peer (P2P) architecture
for dynamic workflow management. Information & Software Technology,
46(6):423–431.

Falazi, G., Hahn, M., Breitenbücher, U., and Leymann, F. (2019a). Model-
ing and execution of blockchain-aware business processes. SICS Software-

36 J. Evermann and H. Kim

Intensive Cyber-Physical Systems, 34(2-3):105–116.
Falazi, G., Hahn, M., Breitenbücher, U., Leymann, F., and Yussupov, V.

(2019b). Process-based composition of permissioned and permissionless
blockchain smart contracts. In 2019 IEEE 23rd International Enterprise
Distributed Object Computing Conference (EDOC), pages 77–87. IEEE.

Fridgen, G., Radszuwill, S., Urbach, N., and Utz, L. (2018). Cross-
organizational workflow management using blockchain technology - towards
applicability, auditability, and automation. In 51st Hawaii International
Conference on System Sciences HICSS. AIS Electronic Library.

Garćıa-Bañuelos, L., Ponomarev, A., Dumas, M., and Weber, I. (2017). Op-
timized execution of business processes on blockchain. In Carmona, J.,
Engels, G., and Kumar, A., editors, Business Process Management - 15th
International Conference, BPM, Proceedings, volume 10445 of Lecture Notes
in Computer Science, pages 130–146. Springer.

Geppert, A. and Tombros, D. (1998). Event-based distributed workflow exe-
cution with EVE. In Middleware98, pages 427–442. Springer.

Gillmann, M., Weißenfels, J., Weikum, G., and Kraiss, A. (2000). Perfor-
mance and availability assessment for the configuration of distributed work-
flow management systems. In Zaniolo, C., Lockemann, P. C., Scholl, M. H.,
and Grust, T., editors, EDBT 2000, 7th International Conference on Ex-
tending Database Technology, Proceedings, volume 1777 of Lecture Notes in
Computer Science, pages 183–201. Springer.

Grefen, P., Aberer, K., Hoffner, Y., and Ludwig, H. (2000). CrossFlow: Cross-
organizational workflow management in dynamic virtual enterprises. Com-
puter Systems Science and Engineering, 15(5):277–290.

Grefen, P., Vonk, J., and Apers, P. (2001). Global transaction support for
workflow management systems: from formal specification to practical im-
plementation. The VLDB Journal, 10(4):316–333.

Härer, F. (2018). Decentralized business process modeling and instance track-
ing secured by a blockchain. In Bednar, P. M., Frank, U., and Kautz, K.,
editors, 26th European Conference on Information Systems ECIS, page 55.
AIS Electronic Library.

Hukkinen, T., Mattila, J., Seppälä, T., et al. (2017). Distributed workflow
management with smart contracts. Technical report, The Research Institute
of the Finnish Economy.

Jin, L., Casati, F., Sayal, M., and Shan, M. (2001). Load balancing in dis-
tributed workflow management system. In Lamont, G. B., editor, Pro-
ceedings of the 2001 ACM Symposium on Applied Computing (SAC), pages
522–530. ACM.

Ladleif, J., Weske, M., and Weber, I. (2019). Modeling and enforcing
blockchain-based choreographies. In International Conference on Business
Process Management, pages 69–85. Springer.

López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., and Weber, I. (2017).
Caterpillar: A blockchain-based business process management system. In
Clarisó, R., Leopold, H., Mendling, J., van der Aalst, W. M. P., Kumar,
A., Pentland, B. T., and Weske, M., editors, Proceedings of the BPM Demo

Blockchain WFMS 37

Track co-located with 15th International Conference on Business Process
Modeling, volume 1920 of CEUR Workshop Proceedings.

Mendling, J., Weber, I., van der Aalst, W. M. P., vom Brocke, J., Cabanillas,
C., et al. (2018). Blockchains for business process management - challenges
and opportunities. ACM Trans. Management Inf. Syst., 9(1):4:1–4:16.

Miller, J. A., Palaniswami, D., Sheth, A. P., Kochut, K., and Singh, H. (1998).
Webwork: Meteor2’s web-based workflow management system. J. Intell. Inf.
Syst., 10(2):185–215.

Miller, J. A., Sheth, A. P., Kochut, K. J., and Wang, X. (1996). CORBA-
based run-time architectures for workflow management systems. Journal of
Database Management (JDM), 7(1):16–27.

Muth, P., Wodtke, D., Weißenfels, J., Dittrich, A. K., and Weikum, G. (1998).
From centralized workflow specification to distributed workflow execution.
J. Intell. Inf. Syst., 10(2):159–184.

Prybila, C., Schulte, S., Hochreiner, C., and Weber, I. (2020). Runtime veri-
fication for business processes utilizing the bitcoin blockchain. Future Gen-
eration Computer Systems, 107:816–831.

Reichert, M. and Bauer, T. (2007). Supporting ad-hoc changes in distributed
workflow management systems. In Meersman, R. and Tari, Z., editors, OTM
Confederated International Conferences CoopIS, DOA, ODBASE, GADA,
and IS, Proceedings, Part I, volume 4803 of Lecture Notes in Computer
Science, pages 150–168. Springer.

Reichert, M., Rinderle, S., and Dadam, P. (2003). Adept workflow manage-
ment system. In International Conference on Business Process Manage-
ment, pages 370–379. Springer.

Rimba, P., Tran, A. B., Weber, I., Staples, M., Ponomarev, A., and Xu, X.
(2017). Comparing blockchain and cloud services for business process exe-
cution. In 2017 IEEE International Conference on Software Architecture,
ICSA, pages 257–260. IEEE Computer Society.

Sousa, J., Bessani, A., and Vukolic, M. (2018). A byzantine fault-tolerant
ordering service for the Hyperledger Fabric blockchain platform. In 2018
48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 51–58. IEEE.

ter Hofstede, A. H., van der Aalst, W. M., Adams, M., and Russell, N. (2009).
Modern Business Process Automation: YAWL and its support environment.
Springer Science & Business Media.

van der Aalst, W. (2000). Loosely coupled interorganizational workflows: Mod-
eling and analyzing workflows crossing organizational boundaries. Informa-
tion & Management, 37(2):67–75.

van der Aalst, W. M., ter Hofstede, A. H., Kiepuszewski, B., and Barros, A. P.
(2003). Workflow patterns. Distributed and parallel databases, 14(1):5–51.

van der Aalst, W. M. P. (1998). The application of petri nets to workflow
management. Journal of Circuits, Systems, and Computers, 8(1):21–66.

van der Aalst, W. M. P. (1999). Process-oriented architectures for electronic
commerce and interorganizational workflow. Inf. Syst., 24(8):639–671.

38 J. Evermann and H. Kim

van der Aalst, W. M. P. (2002). Inheritance of interorganizational workflows to
enable business-to-business. Electronic Commerce Research, 2(3):195–231.

van der Aalst, W. M. P. (2003). Inheritance of interorganizational workflows:
How to agree to disagree without loosing control? Information Technology
and Management, 4(4):345–389.

van der Aalst, W. M. P. and Weske, M. (2001). The P2P approach to in-
terorganizational workflows. In Dittrich, K. R., Geppert, A., and Norrie,
M. C., editors, Advanced Information Systems Engineering, 13th Interna-
tional Conference, CAiSE, Proceedings, volume 2068 of Lecture Notes in
Computer Science, pages 140–156. Springer.

Vossen, G. and Weske, M. (1999). The WASA2 object-oriented workflow man-
agement system. In Delis, A., Faloutsos, C., and Ghandeharizadeh, S., edi-
tors, SIGMOD 1999, Proceedings ACM SIGMOD International Conference
on Management of Data, pages 587–589. ACM Press.

Vukolić, M. (2015). The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication. In International workshop on open problems in network
security, pages 112–125. Springer.

Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., and Mendling,
J. (2016). Untrusted business process monitoring and execution using block-
chain. In Rosa, M. L., Loos, P., and Pastor, O., editors, Business Process
Management - 14th International Conference, BPM, Proceedings, volume
9850 of Lecture Notes in Computer Science, pages 329–347. Springer.

Weigand, H. and van den Heuvel, W. (2002). Cross-organizational workflow
integration using contracts. Decision Support Systems, 33(3):247–265.

Yan, J., Yang, Y., and Raikundalia, G. K. (2006). Swindew-a p2p-based de-
centralized workflow management system. IEEE Trans. Systems, Man, and
Cybernetics, Part A, 36(5):922–935.

