
Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 1

Workflow Management on BFT Blockchains

Joerg Evermann*,a, Henry Kimb

a Memorial University of Newfoundland, St. John’s, Canada
b York University, Toronto, Canada

Abstract. Blockchains have been proposed as infrastructure technology for a wide variety of applications.
They provide an immutable record of transactions, making them useful when business actors do not trust
each other, and their distributed nature makes them suitable for inter-organizational applications. However,
widely-used proof-of-work based blockchains are computationally inefficient and do not provide final
consensus, although they scale well to large networks. In contrast, blockchains built around Byzantine Fault
Tolerance (BFT) consensus algorithms are more efficient and provide immediate and final consensus, but
do not scale well to large networks. We argue that this makes them well-suited for workflow management
applications, which typically include no more than a few dozen participants. This paper is motivated by
a use case in the resource extraction industry. We develop an architecture for a BFT blockchain based
workflow management system (WfMS) and present a prototype implementation. We discuss its advantages
and limitations with respect to proof-of-work based systems and provide an outlook to future research.

Keywords. Byzantine fault tolerance • blockchain • workflow management • interorganizational workflow •
distributed workflow

1 Introduction

Inter-enterprise business processes may include
stakeholders in adversarial relationships, that
nonetheless have to jointly complete process in-
stances. Trust in the current state of a process
instance and correct execution of activities by
other stakeholders may be lacking. Blockchain
technology can help in such situations by pro-
viding a trusted, distributed workflow execution
infrastructure.

A blockchain cryptographically signs a series
of blocks, containing transactions, so that it is
difficult or impossible to alter earlier blocks in the
chain. In a distributed blockchain, actors inde-
pendently validate transactions, add them to the
blockchain, and replicate the chain across different
nodes. The independent and distributed nature

* Corresponding author.
E-mail. jevermann@mun.ca
Note: A draft version of this paper was published as a
pre-print at http://arxiv.org/abs/1905.12652

of actors requires finding a consensus regarding
the validity and order of transactions and blocks.
In workflow execution, it is important that actors
agree on the “state of work” as this determines the
set of next valid activities in the process. Hence,
it is natural to use blockchain transactions to de-
scribe workflow activities or workflow states.

Blockchain technology admits many different
system designs, and WfMS can be implemented
in many different ways on different kinds of block-
chain infrastructure. In this paper we explore a
novel design for blockchain-based workflow man-
agement. Our contributions are twofold:

First, in contrast to prior work, which has fo-
cused on proof-of-work blockchains, we exam-
ine the use of consensus protocols based on al-
gorithms for Byzantine Fault Tolerance (BFT),
recommended by Viriyasitavat and Hoonsopon
(2018), and show how a BFT-based blockchain can
be used as workflow management infrastructure.
BFT based blockchains are computationally more

jevermann@mun.ca
http://arxiv.org/abs/1905.12652

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

2 Joerg Evermann, Henry Kim

efficient, provide fast and final ordering and con-
sensus, and, depending on the use case, can offer
better resilience to faults or attacks (Viriyasitavat
and Hoonsopon 2018).

Second, in contrast to earlier work, we explore
the architecture of a blockchain-based workflow
management system (WfMS) without smart con-
tracts. Not basing the WfMS on smart contracts
allows the easy adaptation of existing workflow
engines to the blockchain. Even without the use
of smart contracts, the blockchain remains es-
sential as it provides independent validation of
workflow activities, distribution, replication, and
tamper-proofing.

We describe a prototype WfMS system as a
proof-of-concept implementation for an architec-
ture that has not yet seen attention in the literature.
We focus on the interface between the blockchain
and the workflow engine and the architectural
options available for the design of the system.
While our prototype is an important demonstra-
tion of feasibility, our main contribution is in the
identification and discussion of the different ar-
chitectural choices, and highlighting the existence
and feasibility of alternatives to smart contracts
on proof-of-work blockchains.

2 Motivating Example and Use Case

Our motivating example is in the mining and re-
source extraction industry. Resource extraction
involves different parties, including the propo-
nent (the mining or extraction company), national,
regional and municipal governments, various tech-
nical experts and consultants, and, in many coun-
tries, indigenous peoples or nations (Sengupta and
Kim 2020). Indigenous peoples must be consulted
as part of the approval process (OECD 2017). In
Canada, for example, the duty to consult rests
with the federal government. However, it in turn
relies on the extraction industry stakeholders to
carry out the consultation process appropriately
(Canadian Chamber of Commerce 2016; Gray
2015). The approval and consultation process is
complex and frequently suffers from a lack of trust,

due in part to prior broken treaty promises (Sen-
gupta and Kim 2020). Various guidelines exist
for carrying out this process (Canadian Chamber
of Commerce 2016; Government of Canada 2015;
Gray 2015; Nishnawbe Aski Nation 2007; OECD
2017) but the precise process and the involved
actors are specific to each project. In general, the
process involves the preparation and consultation,
working with federal departments and agencies,
responding to government inquiries, environmen-
tal assessment, regulatory decision making, and
ongoing relationship and commitments to indige-
nous groups (Government of Canada 2015). Each
of these in turn involve multiple activities. To
provide but one example, the Nishnawbe Aski
Nation in Ontario, Canada has defined its process
for consultation in 10 major phases (Nishnawbe
Aski Nation 2007).

The important characteristics of this use case
are the following:

1. Lack of trust, primarily by indigenous nations
2. Requirement to verify adequate process execu-

tion by all stakeholders
3. A small number of known actors
4. Resource disparity (extraction companies con-

trol relatively large amounts of financial and
other resources)

Characteristics 1 and 2 suggest the use of block-
chain technology to address the lack of trust and
the verifiability requirements. Characteristic 3
suggests the use of a private blockchain. Charac-
teristic 4 suggests that a proof-of-work blockchain
is not suitable, as the extraction company could
use its resources to undermine the integrity of such
a blockchain. Together, characteristics 3 and 4
suggest the use of Byzantine Fault Tolerance as an
alternative ordering and validation mechanism: It
is relatively harder even for a single well-endowed
stakeholder to control 1/3 of the blockchain nodes
than it is to amass > 50% of hashing power (cf.
Sec. 5).

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 3

3 Conceptual Modeling of
Inter-organizational Workflows on
Blockchains

bpmn is the current standard for process modelling.
Inter-organizational processes can be described
using choreographies and collaborations. Figure 1
shows a high-level choreography diagram of the
consultation process described by the Nishnawbe
Aski Nation (2007). bpmn uses message passing
for participants to interact and coordinate separate,
independent processes. Each choreography task
in Fig. 1 is equivalent to a pair of message sending
and receiving tasks (or events) in a collaboration.
The choreography in Fig. 1 is presented as an
example of a choreography and to provide an
impression of our motivating use case; it is too
abstract for implementation and the choreography
tasks need to be further decomposed.

While message passing and choreographies are
useful in conceptually modelling multi-party inter-
actions of independent participants and separate,
independent processes, the use case we have de-
scribed (Sec. 2) allows the inter-organizational
process to be simplified. As all stakeholders
jointly define the process, we define a single pro-
cess rather than multiple independent processes
that are coordinated by messages. Hence, we can
describe the process as a bpmn diagram with a
single pool that represents the set of organizations
(stakeholders). In this view, we define each lane
to represent a participating organization (Fig. 2).
In the blockchain context, we define each atomic
lane to also correspond to a blockchain node on
which activities are executed. If a participating
organization provides multiple blockchain nodes,
this should be modelled by nested child lanes.

We note that the process in Fig. 2 is also a
high-level description, and much additional detail
is required for an executable process.

4 Related Work
This section discusses prior work in the two re-
search areas our work is based on: blockchain
technology applied to workflow management, and
BFT ordering applied to blockchains.

4.1 Workflow Management and
Blockchains

Blockchain-based workflow management has only
recently received research attention (Mendling et
al. 2018). Two research challenges are the concep-
tual modelling of blockchain-based workflows and
the use of blockchain infrastructure for workflow
execution (Mendling et al. 2018).

Blockchains and Conceptual Modelling of
Workflows
Blockchains can be used as infrastructure for the
collaborative modelling of workflows. The system
described by Härer (2018) allows distributed, ver-
sioned modelling of private and public workflows,
consensus building on versions to be instantiated,
and tracking of instance states on the blockchain.
The blockchain provides integrity assurance for
models.

Another approach to use blockchains for con-
ceptual modelling are knowledge chains (Fill and
Härer 2018). This approach provides a permis-
sion system for model modifications, a system
for storing model elements in blockchain blocks,
and can track knowledge provenance. It adapts
generic proof-of-work blockchains to store enter-
prise and process model content together with
domain-specific block validation rules.

The modelling of blockchain-based workflows
may require blockchain-specific conceptual mod-
els. Because transactions on proof-of-work
based blockchains are never irrevocably confirmed
(though eventually considered to be sufficiently
confirmed for acting on, cf. Sec. 5), the BlockME
approach provides an extension to bpmn that
allows modellers to deal with transaction state
changes (Falazi et al. 2019a). BlockME also pro-
vides an interface between blockchains and the
workflow engine, so that workflow tasks can re-
ceive messages about transaction status changes
and create and submit new transactions. An exten-
sion (BlockME2) provides a measure for degree of
confirmation in different blockchains and access
to smart contracts (Falazi et al. 2019b).

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

4 Joerg Evermann, Henry Kim

Initiate
Consultation

Government

Indigenous nation

Notify impact /
infringement

Government

Indigenous nation

Provide full
disclosure

Government

Indigenous nation

Knowledge
gathering

Government

Indigenous nation

Information
Analysis

Government

Indigenous nation

Initial community
meeting

Proponent

Indigenous nation

Discuss Impact
Reduction

Government

Indigenous nation

Proceed with
Proposal

Proponent

Indigenous nation

Negotiate
Economic Benefits

Proponent

Indigenous nation

Negotiate Impacts
Agreement

Proponent

Indigenous nation

Discuss Economic
Benefits

Government

Indigenous nation

Initiate Litigation

Government

Indigenous nation

Figure 1: Choreography example for motivating use case (resource extraction consultation process)

C
on

su
lta

to
n

 P
ro

ce
ss

In
di

ge
no

us
 N

at
io

n
P

ro
p

on
en

t
G

ov
er

nm
en

t

Initial
Community

Meeting

Initiate
Consultation

Provide full
disclosure

Initiate Litigation

Proceed with
Proposal

Identify and
notify impact

Knowledge
gathering

Information
Analysis

Discuss Impact
Reduction

Discuss
Economic
Benefits

Negotiate
Impact

Agreement

Negotiate
Economic
Benefits

Impact?

Agreement?

Figure 2: Collaboration example for motivating use case (resource extraction consultation process)

Blockchains and Execution of Workflows
Blockchains can be used as infrastructure for the
execution of workflows. A number of workflow
execution prototypes implementations have been
presented, focusing on the use of “smart contracts”.
A smart contract is a software application that is
recorded and executed on the blockchain. This
application “listens” for relevant transactions sent
to it and executes application logic upon receipt
of a transaction. For example, the widely used
Ethereum1 blockchain has a Turing-complete
virtual machine (VM) for smart contracts and
compilers for different programming languages.

1 https://ethereum.github.io/yellowpaper/paper.pdf

In a project driven by a financial institution,
a workflow implementation using Ethereum and
smart contracts supports digital document flow in
the import/export trading domain (Fridgen et al.
2018, 2017). The project demonstrates lowered
execution cost, and claims increased transparency
and trust among trading partners.

Hukkinen et al. (2017) describe a blockchain-
based workflow project in the real-estate domain,
also using Ethereum and smart contracts. Hukki-
nen et al. (2017) claim that the lack of a central
agency will make it difficult for regulators to en-
force obligations and responsibilities of trading
partners.

https://ethereum.github.io/yellowpaper/paper.pdf

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 5

A blockchain-based workflow execution sys-
tem by Weber et al. (2016a,b) uses Ethereum
smart contracts either as choreography monitors,
where the smart contract monitors execution sta-
tus and validity of workflow messages against a
process model, or as an active mediator, where
the smart contract controls the process by sending
and receiving messages2 according to a process
model. bpmn models are translated into smart
contracts. Local nodes monitor the blockchain
for relevant messages from the smart contract and
create transactions for the smart contract. The
cost for executing smart contract transactions and
the execution latency are recognized as important
considerations in the evaluation of the approach.
A comparison between the public Ethereum block-
chain and the Amazon Simple Workflow Service
shows blockchain-based costs to be two orders of
magnitude higher than a traditional infrastructure
(Rimba et al. 2017, 2018). Hence, optimizing
the space and computational requirements for
smart contracts is important (García-Bañuelos et
al. 2017). bpmn models are first translated to Petri
Nets (Dijkman et al. 2008), for which minimizing
algorithms are known. The minimized Petri nets
are then compiled into smart contracts, achieving
up to 25% reduction in execution costs for the re-
quired Ethereum blockchain transactions (Weber
et al. 2016a,b), while also significantly improv-
ing throughput time. Building on lessons learned
from Weber et al. (2016a,b), Caterpillar is an open-
source blockchain-based workflow management
system (López-Pintado et al. 2017). Developed
using the Node.js JavaScript runtime it uses stan-
dard Ethereum tools, like the Solidity compiler
solc and the Ethereum client geth, to provide a dis-
tributed execution environment for bpmn-based
process models. The Caterpillar system has re-
cently been extended to directly interpret bpmn

2 An Ethereum transaction is a message to an externally-
owned account or to an autonomous object (smart contract)
that is signed by an externally-owned account using its public
key identifier. Smart contracts are autonomous objects that
can call other contracts by sending messages. As they do not
possess a public/private key pair for signing messages, those
messages are not considered transactions.

models. In other words, it provides a workflow
management engine developed as a set of Solidity
smart contracts for Ethereum, rather than trans-
lating individual bpmn models to model-specific
smart contract. Lorikeet (Ciccio et al. 2019) is
similar to the original Caterpillar system, also
based on bpmn models that are translated to smart
contracts for the Ethereum blockchain.

Also working with Ethereum, Sturm et al.
(2019) present a system focusing on resource man-
agement and extends smart contracts to implement
a range of resource allocation patterns.

While most implementations use a flow-based
workflow specification, declarative workflows can
also be deployed on a blockchain infrastructure
(Madsen et al. 2018). This approach is also imple-
mented on the Ethereum platform using Solidity
smart contracts.

The replicated nature of blockchains means
that information is available to all participants.
One approach to address this privacy issue in
the context of workflow management is the use
of access control lists and their enforcement in
smart contracts (Pourheidari et al. 2018) or the
use of encryption and key exchange patterns to
limit visibility of information in smart contracts
(Köpke et al. 2019).

Summary and Comparison
With respect to conceptual modeling, in contrast
to (Falazi et al. 2019a,b), our work is not based
on proof-of-work blockchains, but on BFT-based
blockchains with immediate and final ordering
and consensus. Hence, modelling of blockchain
transaction status is not required. In contrast
to (Härer 2018), our system does not include a
collaborative modeling component; this is outside
of our research scope.

With respect to workflow execution, while exist-
ing work varies in terms of architecture, features
and capabilities, all existing blockchain-based
workflow execution systems are based on proof-
of-work blockchains and all use smart contracts.
More specifically, all are based on the Ethereum
blockchain and its smart contract virtual machine.

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

6 Joerg Evermann, Henry Kim

In contrast, our work is based neither on proof-of-
work chains, nor on smart contracts.

4.2 BFT Ordering in Blockchains
Solving the transaction ordering and consensus
problems not with computationally expensive
proof-of-work approaches but with efficient and
provably correct and live algorithms is an impor-
tant motivator for many blockchain projects. The
Hyperledger project of the Linux foundation is an
umbrella for a number of BFT-based blockchain
implementations. Hyperledger Burrow3 is a block-
chain that can execute Ethereum virtual machine
code but is based on the Tendermint4 BFT-based
consensus algorithm. Hyperledger Iroha5 is based
on “YAC”, a proprietary BFT-based consensus
protocol, but does not provide smart contracts.
Hyperledger Indy6 is a blockchain implementa-
tion for decentralized identity management, based
on redundant byzantine fault tolerance (RBFT)
(Aublin et al. 2013). Hyperledger Fabric7 is a
generic blockchain implementation that provides
smart contracts, called “chaincode”, which can
be written in Go or JavaScript using the Node.js
runtime. However, while early implementations
used the BFT-SMART ordering protocol (Sousa
et al. 2018), recent versions have moved to the sim-
pler, crash-fault tolerant (CFT) RAFT algorithm
(Ongaro and Ousterhout 2014).

Examining different blockchain consensus
mechanisms in terms of termination time and fault
tolerance, Viriyasitavat and Hoonsopon (2018)
recommend BFT-based consensus for workflow
execution because “it guarantees safety, liveness,
and some degree of fault tolerance” and proof-
of-work is “impractical since the confirmation
settlement is too long and unreliable”. Addition-
ally, proof-of-work is inefficient as it is essentially
a competition to expend the most hashing power.
This also creates sustainability problems: For ex-
ample, Ethereum’s energy cost per transaction

3 https://www.hyperledger.org/projects/hyperledger-burrow
4 https://tendermint.com/
5 https://www.hyperledger.org/projects/iroha
6 https://www.hyperledger.org/projects/hyperledger-indy
7 https://www.hyperledger.org/projects/fabric

is approx. 33 kWh for a total annual electricity
consumption of over 7 TWh8 .

5 Blockchains

A blockchain records transactions in contiguous
blocks. A transaction can be any kind of con-
tent. Integrity is maintained by applying a hash
function to the content of each block, which also
contains the hash of the previous block in the
chain. Hence, altering a block requires changing
all following blocks. In a distributed blockchain,
nodes are connected using a peer-to-peer network
topology. New transactions may originate on any
node and must be recorded in new blocks. Blocks
are typically distributed to each node for indepen-
dent validation and replicated storage. The key
challenge is to achieve a consensus on the valid-
ity and order of transactions and blocks, despite
nodes that are characterized by “byzantine faults”
(Lamport et al. 1982): they may not respond cor-
rectly, may respond unpredictably, or may become
altogether unresponsive.

5.1 Public and Permissioned Blockchains
Blockchains may be either public or permissioned
(“consortium”). Public blockchains typically have
no access control or identity management. Hence,
no node can be assumed to be trustworthy. In
contrast, a permissioned blockchain has access
controls, node operators are generally known and
invited to participate, and (some) node operators
may be implicitly trusted. The distinction be-
tween public and permissioned is not binary, but a
continuum (Viriyasitavat and Hoonsopon 2018).

Public chains are typically created to serve a
large number (thousands or millions) of anony-
mous participants. Their advantages include
anonymity, universal access, and high trustwor-
thiness as a large number of nodes provide inde-
pendent transaction validation. On the other hand,
public chains require incentives for validation, of-
ten in the form of a cryptocurrency, increasing

8 https://digiconomist.net/ethereum-energy-consumption, re-
trieved on 23 Jan 2020

https://www.hyperledger.org/projects/hyperledger-burrow
https://tendermint.com/
https://www.hyperledger.org/projects/iroha
https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/fabric
https://digiconomist.net/ethereum-energy-consumption

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 7

transaction costs. Public chains also provide little
flexibility to adapt to special use cases.

In contrast, permissioned chains are typically
created for specific use cases with a small number
(tens or hundreds) of known participants (Viriy-
asitavat and Hoonsopon 2018). Advantages of
permissioned chains include low transaction costs,
high flexibility to adapt to special use cases, iden-
tifiability of transaction originators, and access
controls. Disadvantages may include relatively
lower trustworthiness due to the smaller number of
validating nodes, in particular for proof-of-work
based blockchains.

Workflow management, and our motivating use
case (Sec. 2), is typically the domain of a small
number of institutional collaborators, rather than
a large number of anonymous participants. As
such, it is a good fit with permissioned blockchains.

5.2 Smart Contracts versus Application
Code

Smart contracts allow code execution as part of
transactions on the blockchain. Advantages in-
clude code integrity, as code is part of the block-
chain, and a tight integration of application logic
with transaction validation. Disadvantages may
be limitations of the smart contract language in-
struction set and the need to re-develop existing
application logic.

In contrast, implementing application logic off-
chain means that existing applications do not need
to be ported, and developers have access to fa-
miliar programming languages, code libraries and
development tools. On the other hand, transaction
validation must call back to the application logic.

Smart contracts ensure that all nodes provide
the same validation results, whereas performing
validation in off-chain logic places the onus on the
developers to ensure identical results for all nodes.
On the other hand, it allows developers to develop
against a behavioural specification without speci-
fying the exact algorithms or implementation to
be used. For WfMS, this means that transparency
is lost about the specific details of the workflow
implementation, but what is gained is that differ-
ent workflow systems can interoperate as long as

all obey the same behavioural semantics of the
workflow specification language; in other words,
they agree on which actions are permissible in a
particular workflow state.

Smart contracts have great potential in the con-
text of workflow management, as witnessed by
the the Caterpillar and Lorikeet approaches (Cic-
cio et al. 2019). However, neither Caterpillar in
its original version, nor Lorikeet provide a bpmn
based generic workflow engine as a smart contract.
Both systems compile individual bpmn to specific
smart contracts. Given the extensive investment in
WfMS by researchers and practitioners, we believe
that investigating if and how standard WfMS can
be implemented on top of blockchain infrastruc-
ture without re-implementation in smart contract
languages is worthwhile.

5.3 Proof-of-Work Consensus
Bitcoin popularized proof-of-work for consensus
finding and securing the blockchain. New trans-
actions are distributed to all nodes, validated, and
added to a transaction pool. Each node can inde-
pendently propose new blocks based on its latest
block and distribute these to other nodes. De-
pending on network speeds and topology, each
node may have a different set of blocks and trans-
actions, and hence may propose different blocks,
leading to side branches. Each node considers
the longest branch as its current main branch and
proposes new blocks based on it. Transactions
in side branches are not considered valid. When
a side branch becomes longer than the current
main branch, the chain undergoes a reorganiza-
tion. What was the side branch is validated and
becomes the main branch. What was the main
branch is considered invalid and becomes a side
branch. Transactions no longer in the main branch
are added back to the transaction pool. Hence,
different nodes may consider different blocks and
transactions as valid, but as proposed blocks are
distributed across the network, nodes will eventu-
ally converge on a consensus regarding the valid
blocks and transactions and their order in the main
branch of the chain.

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

8 Joerg Evermann, Henry Kim

To limit the rate of new block proposals and
to secure the blockchain against attacks, block
proposers must solve a hard problem (“proof-of-
work”, “mining”). Typically, this is to require
the block hash to be less than a certain value. A
limited block rate allows nodes to achieve eventual
consensus, and a hard problem prevents attackers
from “overtaking” the creation of legitimate blocks
with fraudulent one. Hence, a successful attack
requires control of > 50% of the total hashing
power of all nodes.

The probability for a transaction in the main
branch to become invalid decreases with each
block that is mined on top of it, but in principle it
is always possible for a block to become invalid.
Blockchain communities use rules of thumb for the
number of additional blocks required to consider
a transaction safe enough to act on. In addition
to the lack of finality of consensus, this approach
induces significant latency as applications must
wait not only for one block but many to be created.
Furthermore, applications must actively monitor
the status of all transactions of interest, must react
to chain reorganizations, and communicate these
aspects to the user.

5.4 BFT-Based Consensus and State
Machine Replication

In response to the drawbacks of the proof-of-work
consensus, i. e. latencies, no finality of consensus,
and required processing power, provably correct
ordering algorithms based on distributed systems
research have seen a resurgence in interest. Most
of the ongoing research can be traced back to a
practical method for achieving byzantine fault tol-
erance (PBFT) (Castro and Liskov 2002; Lamport
et al. 1982). PBFT achieves consensus on the
order of requests using a set of fully-connected
ordering nodes. Tolerating up to f faulty nodes
requires 3 f + 1 total nodes. However, resilience
is not directly comparable to proof-of-work con-
sensus that requires > 50% of hashing power for
a successful attack. Especially in small networks,
computing power may be easily concentrated in
a single high-powered node, but gaining control
over 1/3 of nodes is difficult when there is lack

of trust among participants, as in our motivating
example (Sec. 2).

Protocol
PBFT is a three-stage protocol. Every ordering
consensus is established by a specific set of nodes
(“view”), with a leader or primary node. A client
sends a request to all nodes. The leader proposes
a sequence number for the request and broad-
casts a pre-prepare message. Upon receipt of a
pre-prepare message, a node broadcasts a corre-
sponding prepare message if it has itself received
the request, has not already received another pre-
prepare message for the same sequence number,
and is in the current view. This indicates the
node is prepared to accept the proposed sequence
number. Nodes then wait to receive 2 f matching
prepare messages, indicating that 2 f +1 nodes are
prepared to accept the proposed sequence number
for the request. When a node has received 2 f
identical prepare messages, it broadcasts a com-
mit message to all nodes. Each node then waits to
receive 2 f identical commit messages, indicating
that 2 f + 1 nodes have accepted the proposed se-
quence number for the request. Upon committing,
the node executes the request and sends a reply
message to the client. The client waits for 2 f + 1
identical replies, which indicates that a consensus
has been reached on the sequence number of the
request.

The leader is not a central authority and is
changed by consensus, also using a three-stage
protocol. When a node suspects the leader is
faulty (fails to propose, or sequence numbers too
high or low), it broadcasts a viewchange mes-
sage with information about the current state and
pending requests. When a node has received 2 f
matching viewchange messages, it responds with a
viewchange-acknowledgment message to the pro-
posed new leader, if its current state and pending re-
quests matches those of the viewchange messages.
After receiving 2 f viewchange-acknowledgment
messages, the new leader broadcasts a newview
message with the current agreed state and set of
pending requests (cf. Castro and Liskov (2002) for
details).

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 9

Consensus request sequencing is closely related
to state machine replication (SMR): Every node
maintains a state that can be changed by client
requests. When every node begins with the same
state and executes requests in the same order, the
state machine is replicated.

BFT SMART
BFT-SMART (Bessani et al. 2014) is a software
library built around the PBFT protocol and adds
dynamic view reconfiguration (nodes can join and
leave views), and the MOD-SMART (Sousa and
Bessani 2012) collaborative state transfer system.

Collaborative state transfer is useful when nodes
create state checkpoints at different times (“sequen-
tial checkpointing”). Due to the lack of multiple
identical checkpoints, a simple quorum protocol
cannot be used. Instead, “collaborative state trans-
fer” (Bessani et al. 2013) provides checkpoint and
log information from multiple nodes in a way that
allows a new node to verify its correctness.

BFT-SMART provides a simple programming
interface. The client-side interface allows sub-
mission of requests. Applications implement a
server-side interface, encapsulating the state ma-
chine, that receives ordered requests in consensus
sequence from the library for execution. Replies
are sent back to the requesting client. Operation
requests are simple byte arrays and opaque to the li-
brary, the client- and server-side applications must
serialize and deserialize these in a meaningful
way. View reconfigurations (adding or removing
a node, or changing the level of fault tolerance)
are special types of requests but are treated as any
other request for ordering and consensus purposes.

For state management, the server-side applica-
tion implements methods to fetch and set state
snapshots, also serialized as byte arrays. Requests
are logged and the state is periodically check-
pointed. When a node joins a view, it is sent the
latest checkpointed state using collaborative state
transfer, and any requests after that checkpoint are
then replayed, allowing the server state to catch
up to the consensus state.

BFT-SMART has been proven to be correct and
live, i. e. it will provide the same sequence of oper-
ations to all nodes and will not deadlock (Bessani
et al. 2014). In terms of throughput, a system with
four nodes (f = 1) has been shown to support
more than 15,000 ordering requests (1kB size) per
second with latencies around 10 milliseconds on a
local network. The performance decreases linearly
as fault tolerance (and hence the number of nodes)
increases: A system with 10 nodes (f = 3) has
been shown to support more than 10,000 requests
per second (Bessani et al. 2014). These synthetic
benchmarks do not indicate realistic application
performance: There were neither client-side nor
server-side applications, requests were only or-
dered and then dismissed. We report performance
figures for our WfMS prototype in Sec. 7.

Summary
BFT-based ordering avoids the latency, lack of
finality and computational demands of proof-of-
work consensus. On the other hand, its three-stage
protocol imposes significant communication over-
head and requires fully-connected nodes. Fault
tolerance in BFT increases linearly with the num-
ber of nodes, but performance decreases due to ad-
ditional communication. Vukolić (2015) presents
a comparison of proof-of-work and BFT consen-
sus, shown in Table 1. The different strengths
and weaknesses of the two consensus mechanisms
suggest that BFT-based ordering is a good fit with
small, permissioned blockchains in the workflow
management context.

6 Architecture and Design Choices

The main component of a WfMS is the workflow
engine, which interprets the workflow model and
enables work items for manual execution or ex-
ecution by external applications (Hollingsworth
1995). Prior work (Sec. 4) has deployed the work-
flow engine on the blockchain itself. For example,
by compiling a workflow model to a smart con-
tract, the contract forms a workflow engine for
a specific workflow model. Alternatively, block-
chains can be treated as a trusted infrastructure

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

10 Joerg Evermann, Henry Kim

Proof-of-work BFT ordering
Node identity (typically) open, anonymous permissioned, identified
Consensus finality no yes
Scalability (ordering nodes) excellent limited
Scalability (clients) excellent excellent
Throughput limited excellent
Latency high low
Correctness proof no yes

Table 1: Comparison between proof-of-work and BFT-based blockchains, adapted from Vukolić (2015)

layer for generic off-chain workflow engines, us-
ing the blockchain only for storing and sharing
the state of work and achieving consensus on that
state. To our knowledge, there has been no such
implementation using BFT-based, or any other,
ordering mechanisms.

6.1 Services
Ordering, block management, and the workflow
engine are the three main services in our system
architecture. In contrast to proof-of-work based
blockchains, our architecture requires no mining
service, no transaction service to manage pending
transactions, and no virtual machine to execute or
validate smart contract operations.

Ordering Service
The ordering service in our prototype uses the
BFT-SMART library (Bessani et al. 2014). It
consists of a client adapter and a server. The client
adapter receives new transactions from clients and
submits them to the ordering layer. Once ordered,
the ordering layer submits the transactions in con-
sensus sequence to the ordering service server in
order to add them to the blockchain. The ordering
service server maintains as its state information a
record of the latest block hash and block number,
as well as a queue of pending transactions. When
a sufficient number of transactions has been col-
lected, the ordering service creates a new block
and clears the transaction queue. The ordering
service server returns the hash of its state as a
result to the originating client adapter and client,
allowing clients to detect lack of consensus and

also compare consensus state to their local order-
ing service server state. Clients can also request
the latest block hash.

Block Service
The block service stores the blockchain, may ex-
change blocks with other nodes, and verifies the
integrity of the blockchain.

The block service uses a peer-to-peer network
for block exchange with new and recovering nodes.
This network is distinct from the network layer of
BFT-SMART and is not fully connected. Block
exchange is required only when a node begins op-
eration and enters an ordering view. At that point,
the ordering service state is first updated through
the BFT-SMART state replication mechanisms.
The block service then compares its latest block
to the latest hash it requests from the ordering ser-
vice. The latter is assumed to be authoritative as it
reflects consensus. Verification of the blockchain
then proceeds backwards from the block with
the latest hash. Any missing blocks are requested
from other peers and verified prior to adding them.

Workflow Engine
The workflow engine maintains information about
workflow instances (cases) and workflow model
definitions. It receives workflow transactions from
new blocks that are added to the chain, updating
the state of each process instance and creating
work items accordingly. Through the worklist, it
manages user interactions with work items and
execution of external applications by work items.

In principle, a system architecture can encom-
pass l ordering services, m block services, and n

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 11

workflow engines, possibly distributed on different
network nodes. However, as the absence of trust
among participating actors is a key motivation
for the use of blockchains, we assume that every
participant requires its own independent workflow
engine, block service, and ordering service, i. e.
l = m = n. This assumption significantly simpli-
fies the architecture and its implementation. It
allows for tighter coupling of the three compo-
nents using local method calls instead of network
requests with their associated latency and serial-
ization requirements. New blocks can be created
and stored locally on each node from ordered
transactions instead of being propagated on a peer-
to-peer network, and valid transactions can be
immediately executed on each node by the local
workflow engine. Fig. 3 shows the architecture of
our system.

6.2 Basic Operation
The red arrows labeled with numbers in Fig. 3 in-
dicate the steps of handling a workflow transaction
in our system:

1. The user or an external application completes
a work item in worklist.

2. The transaction is created and passed to the
ordering service client adapter.

3. The transaction is submitted to the ordering
service.

4. The transaction is passed in consensus order to
the ordering service server of all nodes.

5. Every ordering service server validates the
ordered transaction with its workflow engine.

6. A new block is created and passed to the local
block service.

7. The block service notifies the workflow engine
of the new block and its transactions.

8. The workflow engine updates the state of run-
ning cases and creates new work items for the
local worklist.

9. Every ordering service server responds to the
requesting ordering service client adapter with
its last block hash and hash of its transaction
pool.

The green arrows labeled with letters in Fig. 3
indicate the block exchange mechanism when a
peer node is started.

A. The block service queries the ordering service
server for latest hash and transaction number.

B. If the block service determines it is missing
blocks, it broadcasts a block request to all other
nodes.

C. The block services receive block requests.
D. The block services assemble blocks into re-

sponse message.
E. The block service receives requested blocks

and verifies the blockchain integrity.

In step A, note that the ordering service is
started before the block service and receives the
latest hash and transaction number through state
exchange from other nodes. The block request
in step B contains the lower and upper block
numbers required by the node. In step B, the block
service begins by querying one random peer. If
it receives no response, it queries an increasingly
larger number of peers for blocks. In step D,
other nodes only respond if they can satisfy at
least the upper block number, as verification of a
blockchain proceeds backwards. In step E, if the
blockchain contains the most recent block but is
missing individual earlier blocks, the block service
will successively request these blocks from the
peer it has most recently received blocks from.
If this fails, it will again broadcast a query for a
specific block. As fragments of the blockchain
and individual blocks are added, the block services
successively verifies the chain integrity beginning
with the latest block and the last hash received
from the ordering service.

6.3 Block Creation
In a typical proof-of-work blockchain, new blocks
are created by a mining service and then distributed
among nodes. The same is possible in our ap-
proach. New blocks can be passed as replies from
the ordering service servers back to the ordering
service client that requested the add-transaction
operation which triggered the block creation. That

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

12 Joerg Evermann, Henry Kim

Ordering
Service
Client

Adapter

BFT SMRT Ordering Service

P2P Block Exchange Service

Block
Service

Blocks

Ordering
Service
Server

• Last Hash
• Last Block#

Tx
Pool

Workflow
Engine

Cases

User

Worklist
UI

Work
Items

Node A

1

2

3

4 4

Ordering
Service
Client

Adapter

Block
Service

Blocks

Ordering
Service
Server

• Last Hash
• Last Block#

Tx
Pool

Workflow
Engine

Cases

User

Worklist
UI

Work
Items

Node B

5 5

6 6

7 7

8 8

A

B C DE 9999

Figure 3: Architecture overview, transaction flow (red arrows, numbers), and block exchange mechanism at node
startup (green arrows, letters)

node’s block service then distributes the new block
to other nodes using the peer-to-peer network. A
more efficient alternative, made possible by the
fact that every node contains both an ordering ser-
vice and a block service, is to have every ordering
service pass the new block directly to the local
block service upon creation. As the order of re-
quests is identical for all nodes, the blocks will be
identical. This tighter coupling between ordering
service and block service reduces the communi-
cation overhead for the peer-to-peer network and
avoids latencies due to the block distribution. The
peer-to-peer network is still required for block
exchange with new or recovering nodes.

6.4 Block Size
In proof-of-work blockchains, blocks contain mul-
tiple transactions. The block size is a trade-off
between desired transaction throughput, available
hashing power, desired block creation rate, avail-
able network bandwidth, and tolerance for latency.
A transaction may be “pending” for some time
until it is included in a block and at a “safe” depth.
In contrast, in BFT-based systems, there is no
expensive mining and, in our architecture, no dis-
tribution of new blocks across a network. Hence,

there is no reason to delay block creation and
for blocks to contain multiple transactions: The
blockchain becomes a chain of transactions.

Moving to a chain of transaction has another
advantage. Proof-of-work systems order transac-
tions between different blocks, but the order of
transactions within a block is not defined: Transac-
tions may be included in the same block as long as
they are not mutually contradictory. Block miners
ultimately impose an order, but this order is arbi-
trary. This means that as pending transactions are
collected, they must be validated against the entire
set of pending transactions to ensure they are not
mutually conflicting. In a chain of transactions, a
new transaction need to be validated only against
the immediately prior one.

6.5 Ordering State
As the BFT-SMART library provides exchange of
state information with new and recovering nodes,
a decision must be made on what constitutes the
state of each node. We considered two options.
First, the state can comprise the entire blockchain.
Second, the state can be reduced to comprise only
the latest block hash. The first option means that
the entire blockchain is part of the replicated state

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 13

in BFT-SMART, removing the need for a peer-to-
peer network with block exchange protocol. While
easy to implement by serializing the blockchain
into the BFT-SMART state snapshot, this option
is feasible only for low-volume blockchains due to
the complex and communication-intensive collab-
orative state transfer mechanism in BFT-SMART
(i. e., a few megabyte). However, we anticipate
larger volume for our motivating use case and
typical workflow uses.

6.6 Workflow State or Workflow
Operations

A transaction may represent workflow operations
such as defining a new workflow model, launching
a new case, executing an activity, aborting or can-
celling a case, or removing a workflow model9 .
Upon activity execution by the user or an external
application, the worklist handler submits an activ-
ity execution transaction that includes the activity
name and case ID, as well as input and output data
values. Once received by the workflow engines
after ordering and inclusion in the blockchain, the
workflow engines advance the state of the case
as per the workflow specification semantics (e.g.
workflow nets or bpmn).

Alternatively, a transaction may represent a
workflow instance state, i. e. data values and en-
abled activities, without capturing the activity
execution itself10 . Upon activity execution by
the user or an external application, the worklist
handler advances the state of the case as per the
workflow specification semantics (e.g. workflow
nets or bpmn), and submits this new state as a
transaction.

The first option requires the workflow engine to
maintain its own state of the workflow (i. e. infor-
mation about workflow models, running instances,
data values and enabled activities). Constructing

9 In this paper we focus on workflow execution; management
and versioning of workflows models and updating of running
cases are outside the scope of this work. Conceptually, they
are easily added as another type of transaction to be handled
by the workflow engine in the appropriate way.
10 Here too, model management and versioning is conceptu-
ally easy to add as another transaction type to be handled.

this state means reading the blockchain forwards
from the genesis block and replaying transactions.
State updates are done by executing transactions in
new blocks. While reducing the amount of infor-
mation stored on the blockchain, as only changed
information is recorded, this option requires sig-
nificant effort in managing the separate state and
ensuring it is consistent with the blockchain record.
However, this option is useful when an existing
workflow engine that already maintains state is
to be adapted to the blockchain infrastructure. In
contrast, the second option makes the workflow
state available by reading the blockchain back-
wards from the head to identify the latest state for
each process instance. State updates are done sim-
ply by copying workflow states from blockchain
transactions as new blocks are presented. Not
maintaining separate state significantly simplifies
the workflow engine design but leads to more
information being stored on the chain. In con-
trast to public proof-of-work chains like Ethereum,
where the transaction originator pays for storage
and computation to incentivize mining, this is not
necessary for private BFT-based blockchains.

6.7 Summary
In summary, the trust requirements for blockchains
imply that every node includes an ordering service,
a block service and a workflow engine. Using BFT-
based ordering instead of proof-of-work simplifies
issues such block creation and block size. The
only significant design decision is whether to store
workflow state or operations on the blockchain.
This choice is primarily driven by the design of the
workflow engines; existing engines are likely to
work with operations, not complete workflow in-
stance states. As we developed a custom workflow
engine prototype to demonstrate our architecture,
we chose to simplify the implementation and store
workflow instance states.

7 Prototype Implementation

We implemented a prototype based on the archi-
tecture in Sec. 6 in Java. The source code is

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

14 Joerg Evermann, Henry Kim

available11 , as well as a video demonstration12 .
Fig. 4 shows a screenshot of our prototype.

We implemented a permissioned peer-to-peer
infrastructure with a pre-defined list of partici-
pating actors, each identified by a public/private
key pair. To keep our prototype simple, actors
are identified by their internet address rather than
their public keys, so that we can omit an address
resolution layer. The P2P layer is implemented
using Java sockets and serialization. P2P and
BFT-SMART ordering service messages are cryp-
tographically signed and verified. Table 2 lists the
message types on our peer-to-peer network.

Each P2P node has an outbound server that
establishes connections to other peers, and an in-
bound server that accepts and verifies connection
requests from peers. Each connection is served
by a peer-connection thread, which in turn uses
inbound and outbound queue handler threads to re-
ceive and send messages. Incoming messages are
submitted to the inbound message handler which
passes them to the appropriate service. Nodes
can join and leave the peer-to-peer network at will.
When a node joins, it tries to open connections
to running peers. The first peer to be contacted
will initiate a view change in the BFT-SMART
ordering service to include the new peer on that
layer as well.

Upon starting of a node, the BFT-SMART layer
will first update state information from other nodes
in the view. Next, the block service will identify
missing blocks and request them from peers. Once
the blockchain is complete and verified, the work-
flow engine reads the blockchain to get the latest
state for each workflow instance.

Our system knows two transaction types. A
ModelUpdate transaction installs a new workflow
model definition. An InstanceState transaction
contains a state of a workflow instance. It is sub-
mitted after a new case has been launched or a
work item has been executed. Extensions to ter-
minate cases and invalidate model definitions are

11 https://joerg.evermann.ca/software.html
12 https://joerg.evermann.ca/BlockchainDemo.html

readily possible. We have not included such exten-
sions in order to focus on the relationship between
workflow engine and blockchain infrastructure.

To keep our prototype simple, our workflow
specifications are based on Petri nets (Aalst 1998).
While Sec. 3 presented conceptual models us-
ing bpmn, much of bpmn, including multiple
instances, messages, event-based gateways and
exceptions, is conceptually translatable to Petri
Nets (Dijkman et al. 2008). Each Petri net transi-
tion specifies a workflow activity. The workflow
engine keeps track of the Petri net markings and
case data, and can detect deadlocked and finished
cases to remove them from the worklist.

Each activity is associated with a single node.
Sec. 3 noted that bpmn lanes can be used to specify
blockchain nodes. This partitioning of the process
to different nodes does not form the entire resource
perspective of the workflow but is used only to
signal each node whether to act on a transaction.
Each node can provide its own local resource man-
agement by defining roles or other organizational
concepts and performing further work item alloca-
tion within each node. Our model specifications
provide options for the process designer to specify
this information.

External method calls are specified as calls
to static Java methods, and are performed syn-
chronously by the workflow engine upon work
item enablement.

The data perspective is implemented as a key–
value store. We currently admit only simple Java
types as we implement a GUI for these; an exten-
sion to arbitrary types is readily possible. Each
workflow instance has a set of data variables.
When a transition is enabled, a work item is cre-
ated for it and its input values are filled from
the values of the workflow instance. The work
item is then added to the local worklist or exter-
nally executed. After a work item is completed
(manually or through execution of an external ap-
plication), output values are written back to the
workflow instance which is then submitted as an
InstanceState transaction to the ordering service.
The workflow designer can specify constraints
on data values using arbitrary Java expressions.

https://joerg.evermann.ca/software.html
https://joerg.evermann.ca/BlockchainDemo.html

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 15

Figure 4: Screenshot of prototype

BlockRequest Requests a block with a specific hash from one or more peers
BlockSend Sends a block to one or more peers
BlockChainRequest Requests multiple blocks within a hash range from one or more peers
BlockChainSend Sends multiple blocks to one or more peers

Table 2: Message types

Constraints are checked during validation of an
InstanceState transaction.

The ordering service, workflow engine and the
block service have a simple interface (Table 3).
The ordering and block services can call on the
workflow engine to validate transactions against
the current workflow state. Validation checks that
a workflow instance’s new Petri net marking is
reachable from the current Petri net marking of
the workflow instance. Validation also checks the
data constraints. The block service receives new

blocks from the ordering service and passes them
to the workflow engine. In the other direction, the
workflow engine or the worklist UI can submit
new transactions to the ordering service after
a work item has been completed. Finally, the
block service can request the latest hash from
the ordering service on joining the network or
recovering from a fault.

From the user’s perspective, our system is little
different from a traditional WfMS. In proof-of-
work systems, the user or the workflow must be

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

16 Joerg Evermann, Henry Kim

→ validateTransaction(tx) Ordering service asks workflow engine to validate a transaction (cf. arrow
5 in Fig. 3)

→ receiveBlock(block) Block service receives a new block, stores it, and passes it to the workflow
engine (cf. arrow 6 in Fig. 3)

← addTransaction(tx) Workflow engine or worklist UI submits a new transaction to the ordering
service (cf. arrow 2 in Fig. 3)

← getLatestHash() Block service requests the latest hash from the ordering service (cf. arrow
A in Fig. 3)

Table 3: Interfaces between ordering service, block service and workflow engine (directions from the perspective of
the ordering service)

aware of and react to possible transaction inval-
idation, blockchain reorganization, eventual (de-
layed) consensus and transactions pending their
required ”assume safe” mining depth, as witnessed
by the BPMN extensions developed by Falazi et al.
(2019a,b). In contrast, because of immediate and
final consensus, our prototype behaves similar to
traditional prototypes, with no pending transac-
tions or latency for block mining. The execution
status of workflow activities cannot change and
need not be monitored or reported to the user.
The user experiences a fast and responsive system,
even in this prototype state.

8 Evaluation

This section evaluates our architecture and proto-
type on two dimensions. The first subsection exam-
ines performance, especially transaction through-
put, while the second subsection evaluates the
strength of the correctness guarantees made by
our architecture and implementation.

8.1 Performance
While BFT-SMART has been subjected to syn-
thetic benchmarks (Sec. 5.4), those indicate best-
case performance and do not include application
performance. In tests of our prototype work-
flow system, we achieved a throughput rate on a
laptop computer with an Intel i7 4702HQ CPU
(quad-core) and 16 GB RAM of approx. 85 work-
flow transactions per second. These transactions
included launching cases (Petri nets with 7 tran-
sitions and 8 places) and performing workflow

activities for each case to completion. We exe-
cuted four WfMS nodes on the same machine,
i. e. tolerating one faulty node. We have not yet
profiled our prototype for code optimization. Im-
proved performance could also be achieved by
using separate machines on a local network or
using the batch processing mechanism of BFT-
SMART. However, our results compare well to
those reported for a proof-of-work approach by
Rimba et al. (2018), who report an average of
5.7 workflow transactions per second on a private
Ethereum blockchain using an AWS m3.xlarge
instance with more powerful CPUs.

While throughput (transactions per seconds) is a
key performance metric for many blockchains and
consensus algorithms, we believe it is less impor-
tant in the workflow management context. Espe-
cially workflows with mostly manual activities and
use cases with few participating actors (dozens),
such as in our motivating example (Sec. 2), are un-
likely to require a high sustained throughput. Even
the largest organizations are unlikely to require
sustained throughput of thousands of workflow
transaction ordering operations per second.

8.2 Correctness Guarantees
Smart contract based systems like Caterpillar that
deploy the workflow engine (model-specific or
interpreted) on the blockchain enforce workflow
consensus for every node as the workflow state is
represented by the smart contract state. Submit-
ting a transaction for an illegal workflow activity
by a faulty or malicious node will cause the smart
contract to retain the legal state and dismiss the

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 17

workflow activity. Submitting a transaction with
an invalid smart contract state will cause the trans-
action to be ignored by miners.

In contrast, our approach guarantees that the
majority of nodes (and workflow engines) will
arrive at a consensus about the current workflow
state, assuming that the majority of nodes is not
faulty or malicious (BFT approaches can toler-
ate up to 1/3 malicious nodes). When a node
submits a transaction for an illegal workflow ac-
tivity, the non-malicious majority nodes will each,
individually and separately, reject the workflow
activity. Hence, the majority consensus response
is a “no change” response (specifically, the con-
sensus ordering nodes return the hash of the last
block instead of a new one), signaling that the
workflow state has not changed. This indicates to
the requester that it is either faulty or malicious.
The requester can then, if faulty, request the cor-
rect BFT ordering state and rebuild its blockchain
by transferring blocks from consensus nodes. A
limitation of this approach is that faulty nodes
can only detect their own fault once they submit
a transaction; i. e. they cannot detect their own
faults while they are only receiving transactions
in new blocks.

When a node needs to catch up with the block-
chain, the BFT-SMART state replication ensures
that it receives the consensus last hash as state
from the running ordering nodes. With this, it
is able to detect incoming bad blocks as they are
transferred. In general, assuming that there is a
valid consensus on the ordering state (i. e. the last
block hash), a node can always verify its block-
chain and, if required, rebuild it by requesting
blocks from other nodes.

They key difference between proof-of-work
approaches and ours is that blocks are not created
on a single node but on every node separately
and concurrently. That is, the challenge is not
to identify and reject bad (malicious) blocks as
they are transferred, but only to ensure consensus
ordering. The assumption of a majority of non-
faulty nodes then ensures a majority of nodes with
the correct workflow state.

9 Limitations

Throughput and Scalability
While our approach has lower latency and higher
throughput, unlike proof-of-work chains it does
not scale to a very large number of nodes; it
is limited to an order of tens to (low) hundreds
of nodes. Given these characteristics, architec-
tures such as ours are suitable for permissioned
blockchain applications using a small group of
participants, as in our motivating use case (on the
order of tens to hundreds). The low latency and
high throughput also make them suitable for fast-
moving processes, where activities are of short
duration or must follow each other quickly. For
example, our transaction throughput time is well
below one second, whereas many proof-of-work
blockchains operate at latencies on the order of
minutes. However, our approach is not suitable
for large or public blockchains.

Resilience
An often discussed type of attack on a proof-of-
work based blockchain requires a malicious actor
to control the majority (> 50%) of the hashing
power of all nodes. In contrast, attacking a BFT-
based system requires control of more than 1/3 of
all nodes. Under the assumption of equal hashing
power in all nodes, the proof-of-work based block-
chain appears more resilient to attacks. However,
in many use cases, this assumption is unlikely
to hold. Small networks and networks where a
few actors control significant resources are par-
ticularly prone to an imbalance in hashing power.
Our motivating use case (Sec. 2) is an example
of such a situation where it is easy for a single
actor (the mining company) to successfully attack
a proof-of-work blockchain. In contrast, attacking
a BFT-based system cannot be done by concen-
trating computational power but requires control
of more than 1/3 of all nodes. This is difficult to
achieve in the absence of trust among actors and
in private or permissioned blockchains where new
nodes cannot be introduced arbitrarily (see also
Table 1 for a comparison). As a result, resilience

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

18 Joerg Evermann, Henry Kim

to attacks and faults cannot be easily compared be-
tween proof-of-work and BFT-based blockchains;
it is context and application dependent.

Workflow, Trust, and Fault Tolerance
Requirements
In our approach, the number of nodes must strike a
balance between the requirements of the workflow,
the level of fault tolerance, and the performance
of the system. The number of ordering nodes is
determined by the desired level of fault tolerance,
whereas the number of workflow nodes is deter-
mined based on the use case and the number of
participating actors. A use case requiring more
ordering than workflow nodes (e. g. because some
actors share a workflow engine but do not wish to
relinquish control over the trusted blockchain infra-
structure) can be accommodated by nodes that are
not assigned any workflow activities. On the other
hand, when a use case requires more workflow
nodes than ordering nodes (e. g. because groups of
actors trust each other), the excess ordering nodes
decrease performance due to the BFT protocol
communication overhead. This drawback can only
be addressed by relaxing the trust requirements,
i. e. groups of actors must partially trust each other,
so that the 1 : 1 correspondence between ordering
service, block service, and workflow engine can
be relaxed.

Workflow Features and Language
Our implementation is not meant to be a fully-
featured WfMS: It provides basic functionality to
demonstrate in principle the feasibility of using
BFT-based blockchains for workflow execution,
and to study the interface and interplay of a work-
flow engine with blockchain infrastructure compo-
nents. The WfMS features themselves are not the
focus of this research. Hence, there are many lim-
itations in our prototype workflow engine. While
most bpmn modelling elements can be translated
to the Petri Net workflow specifications used by
our workflow engine, our workflow engine cannot
receive messages from the external environment
or handle timed events, both important bpmn
modelling features. In particular, timed events
may be a challenge for a distributed blockchain

infrastructure that does not offer synchronized
clocks; time synchronization on the blockchain
is an active research field in itself (e. g. Fan et
al. 2018). As noted above, model management
is not currently performed by our prototype im-
plementation. While versioning and distribution
of workflow models itself is readily added, up-
dating running cases is a complex issue in itself
(e. g. Dias et al. 2003; Joeris and Herzog 1998;
Kradolfer and Geppert 1999).

Public and Private Workflows
bpmn choreographies describe interactions of
independent actors and define the public coordina-
tion points between otherwise private workflows.
In contrast, in our motivating use case the actors
jointly define a public process for consultation on
resource extraction. The idea that the blockchain-
based workflow system needs to capture only the
public interactions of a larger public/private set of
processes has not been discussed in the blockchain
workflow literature or identified as a research chal-
lenge (Mendling et al. 2018). Consequently, work
on systems like Caterpillar or Lorikeet, as well as
this work, focuses on the execution of workflows
on the blockchain, and assumes public workflow.
The integration of blockchain-based public work-
flows with off-blockchain private workflows re-
mains as a challenge for future research, both at
the technology and at the conceptual modelling
level.

10 Conclusions

Previous work on blockchain-based WfMS has
focused on smart contracts and proof-of-work
based blockchains. In particular, all prior work
uses the Ethereum blockchain. However, proof-of-
work-based systems have significant drawbacks in
terms of processing power requirements, latency,
and the lack of final consensus. In this work,
we have shown that a BFT-derived ordering and
consensus method is a suitable WfMS infrastruc-
ture. Even without the use of smart contracts, the
use of a blockchain remains essential, as it pro-
vides independent validation of workflow actions,

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 19

distribution, replication, and tamper-proofing to
workflow management systems.

While there are limitations to the BFT-based
approach (Sec. 9), our approach has significant
advantages over proof-of-work based approaches:

• Our system is cheaper to operate than pub-
lic proof-of-work blockchains that incentivize
block mining through cryptocurrencies as there
is no expensive mining that needs to be paid for,
either as real electricity cost or as cryptocur-
rency exchange. While proof-of-work based
blockchains may be deployed privately, they are
then open to increased risk of attack (Sec. 9).

• Our system provides immediate and final con-
sensus. This means that from both the workflow
modeller’s perspective and the user’s perspec-
tive, the system looks and behaves like a tradi-
tional workflow engine. Neither the workflow
designer nor the user need to deal with issues
of transaction status or eventual transaction
invalidation.

• Our system provides a greater throughput that
proof-of-work based approaches.

• Not relying on smart contracts enables porting
of existing feature-complete workflow engines,
such as the open-source YAWL13 (Hofstede
et al. 2009) or Bonita14 systems, to blockchain
infrastructure. This allows a richer workflow
language and leverages existing implementa-
tions. We have identified this aspect as our next
research challenge.

To conclude, this paper has presented a pro-
totype implementation for an architecture that
has not yet seen any attention in the blockchain-
based workflow literature. We have implemented
a BFT-based system as recommended by Viriy-
asitavat and Hoonsopon (2018) and shown that
this infrastructure is suitable for WfMS. We have
shown how workflow engines can be fit onto a
blockchain infrastructure without implementing
them as smart contracts, paving the path to future
work of adapting existing workflow engines to use

13 http://www.yawlfoundation.org
14 https://www.bonitasoft.com

blockchains as infrastructure for communication,
persistence, replication, and trust building.

References
van der Aalst W. M. P. (1998) The Application of
Petri Nets to Workflow Management. In: Journal
of Circuits, Systems, and Computers 8(1), pp. 21–
66 https://doi.org/10.1142/S0218126698000043

Aublin P.-L., Mokhtar S. B., Quéma V. (2013)
RBFT: Redundant Byzantine Fault Tolerance.
In: IEEE 33rd International Conference on Dis-
tributed Computing Systems, ICDCS 2013, 8-
11 July, 2013, Philadelphia, Pennsylvania, USA.
IEEE Computer Society, pp. 297–306 https://doi.
org/10.1109/ICDCS.2013.53

Bessani A. N., Santos M., Felix J., Neves N. F.,
Correia M. (2013) On the Efficiency of Durable
State Machine Replication. In: Birrell A., Sirer
E. G. (eds.) 2013 USENIX Annual Technical
Conference, San Jose, CA, USA, June 26-28, 2013.
USENIX Association, pp. 169–180 https://www.
usenix.org/conference/atc13/technical-sessions/
presentation/bessani

Bessani A. N., Sousa J., Alchieri E. A. P. (2014)
State Machine Replication for the Masses with
BFT-SMART. In: 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and
Networks, DSN 2014, Atlanta, GA, USA, June
23-26, 2014. IEEE Computer Society, pp. 355–
362 https://doi.org/10.1109/DSN.2014.43

Canadian Chamber of Commerce (2016) Seizing
six opportunities for more clarity in the duty to
consult and accommodate process.

Castro M., Liskov B. (2002) Practical byzantine
fault tolerance and proactive recovery. In: ACM
Trans. Comput. Syst. 20(4), pp. 398–461 https:
//doi.org/10.1145/571637.571640

Ciccio C. D., Cecconi A., Dumas M., García-
Bañuelos L., López-Pintado O., Lu Q., Mendling
J., Ponomarev A., Tran A. B., Weber I. (2019)
Blockchain Support for Collaborative Business
Processes. In: Informatik Spektrum 42(3), pp. 182–
190 https://doi.org/10.1007/s00287-019-01178-x

http://www.yawlfoundation.org
https://www.bonitasoft.com
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1109/ICDCS.2013.53
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bessani
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bessani
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bessani
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1007/s00287-019-01178-x

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

20 Joerg Evermann, Henry Kim

Dias P., Vieira P., Rito-Silva A. (2003) Dynamic
evolution in workflow management systems. In:
Proceedings of the 14th International Workshop
on Database and Expert Systems Applications.
IEEE, pp. 254–260

Dijkman R. M., Dumas M., Ouyang C. (2008)
Semantics and analysis of business process models
in BPMN. In: Information & Software Technology
50(12), pp. 1281–1294 https://doi.org/10.1016/j.
infsof.2008.02.006

Falazi G., Hahn M., Breitenbücher U., Ley-
mann F. (2019a) Modeling and execution of
blockchain-aware business processes. In: SICS
Software-Intensive Cyber-Physical Systems 34(2-
3), pp. 105–116

Falazi G., Hahn M., Breitenbücher U., Leymann F.,
Yussupov V. (2019b) Process-Based Composition
of Permissioned and Permissionless Blockchain
Smart Contracts. In: 2019 IEEE 23rd Interna-
tional Enterprise Distributed Object Computing
Conference (EDOC). IEEE, pp. 77–87

Fan K., Wang S., Ren Y., Yang K., Yan Z., Li
H., Yang Y. (2018) Blockchain-based secure time
protection scheme in IoT. In: IEEE Internet of
Things Journal 6(3), pp. 4671–4679

Fill H.-G., Härer F. (2018) Knowledge block-
chains: Applying blockchain technologies to enter-
prise modeling. In: Proceedings of the 51st Hawaii
International Conference on System Sciences

Fridgen G., Radszuwill S., Urbach N., Utz L.
(2018) Cross-Organizational Workflow Manage-
ment Using Blockchain Technology - Towards
Applicability, Auditability, and Automation. In:
51st Hawaii International Conference on System
Sciences HICSS. AIS Electronic Library http:
//aisel.aisnet.org/hicss-51/in/blockchain/6

Fridgen G., Sablowsky B., Urbach N. (2017) Im-
plementation of a Blockchain Workflow Man-
agement Prototype. In: ERCIM News 2017(110)
https : / / ercim - news . ercim . eu / en110 / special /
implementation - of - a - blockchain - workflow -
management-prototype

García-Bañuelos L., Ponomarev A., Dumas M.,
Weber I. (2017) Optimized Execution of Busi-
ness Processes on Blockchain. In: Carmona J.,
Engels G., Kumar A. (eds.) Business Process Man-
agement - 15th International Conference, BPM,
Proceedings. Lecture Notes in Computer Science
Vol. 10445. Springer, pp. 130–146 https://doi.org/
10.1007/978-3-319-65000-5%5C_8

Government of Canada (2015) Consultation and
Accommodation Advice for Proponents.

Gray B. (2015) Building Relationships and Ad-
vancing Reconciliation through Meaningful Con-
sultation.

Härer F. (2018) Decentralized Business Process
Modeling and Instance Tracking Secured by a
Blockchain. In: Bednar P. M., Frank U., Kautz K.
(eds.) 26th European Conference on Information
Systems ECIS. AIS Electronic Library, p. 55 https:
//aisel.aisnet.org/ecis2018%5C_rp/55

ter Hofstede A. H., van der Aalst W. M., Adams
M., Russell N. (2009) Modern Business Process
Automation: YAWL and its support environment.
Springer Science & Business Media

Hollingsworth D. (1995) The workflow reference
model.. Workflow Management Coalition

Hukkinen T., Mattila J., Seppälä T., et al. (2017)
Distributed Workflow Management with Smart
Contracts.. The Research Institute of the Finnish
Economy

Joeris G., Herzog O. (1998) Managing evolving
workflow specifications. In: Proceedings of the 3rd
IFCIS International Conference on Cooperative
Information Systems (Cat. No. 98EX122). IEEE,
pp. 310–319

Köpke J., Franceschetti M., Eder J. (2019) Bal-
ancing Privity and Enforceability of BPM-Based
Smart Contracts on Blockchains. In: BPM (Block-
chain and CEE Forum). Lecture Notes in Business
Information Processing Vol. 361. Springer, pp. 87–
102

https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1016/j.infsof.2008.02.006
http://aisel.aisnet.org/hicss-51/in/blockchain/6
http://aisel.aisnet.org/hicss-51/in/blockchain/6
https://ercim-news.ercim.eu/en110/special/implementation-of-a-blockchain-workflow-management-prototype
https://ercim-news.ercim.eu/en110/special/implementation-of-a-blockchain-workflow-management-prototype
https://ercim-news.ercim.eu/en110/special/implementation-of-a-blockchain-workflow-management-prototype
https://doi.org/10.1007/978-3-319-65000-5%5C_8
https://doi.org/10.1007/978-3-319-65000-5%5C_8
https://aisel.aisnet.org/ecis2018%5C_rp/55
https://aisel.aisnet.org/ecis2018%5C_rp/55

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Workflow Management on BFT Blockchains 21

Kradolfer M., Geppert A. (1999) Dynamic work-
flow schema evolution based on workflow type
versioning and workflow migration. In: Proceed-
ings Fourth IFCIS International Conference on
Cooperative Information Systems. CoopIS 99 (Cat.
No. PR00384). IEEE, pp. 104–114

Lamport L., Shostak R., Pease M. (1982) The
Byzantine Generals Problem. In: ACM Transac-
tions on Programming Languages and Systems
4(3), pp. 382–401

López-Pintado O., García-Bañuelos L., Dumas
M., Weber I. (2017) Caterpillar: A Blockchain-
Based Business Process Management System. In:
Clarisó R., Leopold H., Mendling J., van der Aalst
W. M. P., Kumar A., Pentland B. T., Weske M.
(eds.) Proceedings of the BPM Demo Track co-
located with 15th International Conference on
Business Process Modeling. CEUR Workshop
Proceedings Vol. 1920 http://ceur-ws.org/Vol-
1920/BPM%5C_2017%5C_paper%5C_199.pdf

Madsen M. F., Gaub M., Høgnason T., Kirkbro
M. E., Slaats T., Debois S. (2018) Collaboration
among adversaries: distributed workflow execu-
tion on a blockchain. In: 2018 Symposium on
Foundations and Applications of Blockchain

Mendling J., Weber I., van der Aalst W. M. P., vom
Brocke J., Cabanillas C., et al. (2018) Blockchains
for Business Process Management - Challenges
and Opportunities. In: ACM Trans. Management
Inf. Syst. 9(1), 4:1–4:16 https://doi.org/10.1145/
3183367

Nishnawbe Aski Nation (2007) A Handbook on
Consultation in Natural Resource Development..

OECD (2017) OECD Due Diligence
Guidance for Meaningful Stakeholder
Engagement in the Extractive Sector.
https://dx.doi.org/10.1787/9789264252462-
en. OECD Publishing, Paris

Ongaro D., Ousterhout J. K. (2014) In Search
of an Understandable Consensus Algorithm. In:
Gibson G., Zeldovich N. (eds.) 2014 USENIX
Annual Technical Conference, USENIX ATC
’14, Philadelphia, PA, USA, June 19-20, 2014..

USENIX Association, pp. 305–319 https://www.
usenix.org/conference/atc14/technical-sessions/
presentation/ongaro

Pourheidari V., Rouhani S., Deters R. (2018) A
Case Study of Execution of Untrusted Business
Process on Permissioned Blockchain. In: IEEE
International Conference on Internet of Things
(iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physi-
cal and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), iThings/GreenCom/CP-
SCom/SmartData 2018, Halifax, NS, Canada, July
30 - August 3, 2018. IEEE, pp. 1588–1594 https:
//doi.org/10.1109/Cybermatics%5C_2018.2018.
00266

Rimba P., Tran A. B., Weber I., Staples M., Pono-
marev A., Xu X. (2017) Comparing Blockchain
and Cloud Services for Business Process Execu-
tion. In: 2017 IEEE International Conference on
Software Architecture, ICSA. IEEE Computer So-
ciety, pp. 257–260 https://doi.org/10.1109/ICSA.
2017.44

Rimba P., Tran A. B., Weber I., Staples M., Pono-
marev A., Xu X. (2018) Quantifying the Cost
of Distrust: Comparing Blockchain and Cloud
Services for Business Process Execution. In: In-
formation Systems Frontiers, pp. 1–19

Sengupta U., Kim H. M. (2020) Business Process
Transformation in Natural Resources Develop-
ment using Blockchain: Indigenous Entrepreneur-
ship, Trustless Technology, and Rebuilding Trust.
In: Treibelmeier H., Silaber C., T. C. (eds.) Block-
chain and Distributed Ledger Technology Use
Cases: Applications and Lessons Learned. in press.
Springer

Sousa J., Bessani A. N. (2012) From Byzantine
Consensus to BFT State Machine Replication: A
Latency-Optimal Transformation. In: Constanti-
nescu C., Correia M. P. (eds.) 2012 Ninth Euro-
pean Dependable Computing Conference, Sibiu,
Romania, May 8-11, 2012. IEEE Computer So-
ciety, pp. 37–48 https://doi.org/10.1109/EDCC.
2012.32

http://ceur-ws.org/Vol-1920/BPM%5C_2017%5C_paper%5C_199.pdf
http://ceur-ws.org/Vol-1920/BPM%5C_2017%5C_paper%5C_199.pdf
https://doi.org/10.1145/3183367
https://doi.org/10.1145/3183367
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1109/Cybermatics%5C_2018.2018.00266
https://doi.org/10.1109/Cybermatics%5C_2018.2018.00266
https://doi.org/10.1109/Cybermatics%5C_2018.2018.00266
https://doi.org/10.1109/ICSA.2017.44
https://doi.org/10.1109/ICSA.2017.44
https://doi.org/10.1109/EDCC.2012.32
https://doi.org/10.1109/EDCC.2012.32

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

22 Joerg Evermann, Henry Kim

Sousa J., Bessani A., Vukolic M. (2018) A Byzan-
tine Fault-Tolerant Ordering Service for the Hy-
perledger Fabric Blockchain Platform. In: 48th
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2018,
Luxembourg City, Luxembourg, June 25-28, 2018.
IEEE Computer Society, pp. 51–58 https://doi.org/
10.1109/DSN.2018.00018

Sturm C., Scalanczi J., Schönig S., Jablonski S.
(2019) A Blockchain-based and resource-aware
process execution engine. In: Future Generation
Computer Systems 100, pp. 19–34 http://www.
sciencedirect.com/science/article/pii/S0167739
X18327158

Viriyasitavat W., Hoonsopon D. (2018) Block-
chain characteristics and consensus in modern
business processes. In: Journal of Industrial Infor-
mation Integration Preprint

Vukolić M. (2015) The quest for scalable block-
chain fabric: Proof-of-work vs. BFT replication.
In: International workshop on open problems in
network security. Springer, pp. 112–125

Weber I., Xu X., Riveret R., Governatori G., Pono-
marev A., Mendling J. (2016a) Using blockchain
to enable untrusted business process monitoring
and execution.. Technical Report UNSW-CSE-TR-
201609, University of New South Wales

Weber I., Xu X., Riveret R., Governatori G., Pono-
marev A., Mendling J. (2016b) Untrusted Business
Process Monitoring and Execution Using Block-
chain. In: Rosa M. L., Loos P., Pastor O. (eds.)
Business Process Management - 14th International
Conference, BPM, Proceedings. Lecture Notes in
Computer Science Vol. 9850. Springer, pp. 329–
347 https://doi.org/10.1007/978-3-319-45348-
4%5C_19

https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1109/DSN.2018.00018
http://www.sciencedirect.com/science/article/pii/S0167739X18327158
http://www.sciencedirect.com/science/article/pii/S0167739X18327158
http://www.sciencedirect.com/science/article/pii/S0167739X18327158
https://doi.org/10.1007/978-3-319-45348-4%5C_19
https://doi.org/10.1007/978-3-319-45348-4%5C_19

