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Preface

Why this book?

This book is originally intended as material for the BUSI 4720 undergraduate course
on Business Analytics. This course is a core, required course for the Bachelor of Com-
merce program at Memorial University of Newfoundland, Canada. As students receive
only a single course in business analytics, and this course is in the fourth and final year
of the program, the material coverage is intentionally broad, and covers aspects that
may be outside some narrower conceptions of analytics. Additionally, students taking
the course generally have little to no exposure to computer applications or statisti-
cal software, necessitating a rather comprehensive approach that not only introduces
computer and programming basics, such as data and data types that students may en-
counter in business analytics, but also covers introduction to R and Python as well as a
brief coverage of relational and graph databases, that are typically not considered part
of business analytics. On the other hand, this course also contains advanced topics,
such as interpretable machine learning, analytics at industrial scale, reinforcement and
MLOps, that are not usually found in a business analytics course. However, these top-
ics are gaining importance and it is essential that students have at least some exposure
to them. In summary, the book was written because no other single book offers the
necessary broad perspective.

The book is written from an applied perspective. I believe that students, even business
students, should not only be able to talk about analytics, but must also be able to do
analytics. This means that, together with the concepts, every chapter also contains R or
Python code showing how the concepts can be applied. Looking at this from another
perspective, I believe students must not rely solely on software tools and statistical
libraries, but it is crucial that they understand, at least in principle and at an intuitive
level, how these tools work. This is necessary to allow an informed use of tools, to
be able to select the appropriate tool for a given situation, and to be aware of the
shortcomings, drawbacks, boundary conditions, and other limitations of tools. In short,
formulas in this book are to explain what happens “behind the scenes” of the code, and
code is in this book to show how formulas can be applied; both are necessary.

XiX
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Why these tools?

The focus on R and Python, over commercially available tools, is due to multiple rea-
sons. First, the use of open-source software makes the material more easily accessi-
ble to students, independent of the availability of campus-wide licenses, or the use of
limited “evaluation” licenses for some commercial tools. A second reason is the cross-
platform nature of these software tools. Computing hardware in practice, and in the
classroom, is a heterogeneous mix of different chip sets (Intel, Apple/ARM) and differ-
ent operating systems (Windows, MacOS, Linux, etc.) so that is essential to work with
software tools that are available and interoperable across these hardware and operating
system platforms. A third reason is that R and Python are widely used in production
environments. They tend to be more flexible than commercial offerings, and are also at
the forefront of new developments in the area of business analytics. New methods and
techniques are typically implemented directly by their inventor in open-source libraries
and packages for R or Python, before they mature and are included in commercial of-
ferings. The focus on command line tools is to avoid the complexities of graphical user
interfaces that tend to change more rapidly than application programming interfaces
(APIs), it is focus on the essentials and not be distracted by graphical environments.
Scripting with command line tools generally also leads to better replicability of anal-
yses and easier integration into production environments. For example, while it is all
well and good to explore customer purchasing predictions on a small data set using
the desktop edition of SPSS (a commercial, graphical, statistics software application),
implementing real-time dynamic pricing in the global web-based ordering system will
require the model to be implemented and integrated with very different tools.

Instructors: How to use this book?

For instructors, the book is written for a 24 class semester of 75 minutes each (the
chapter on visualization should be covered in two classes), with two classes dedicated
to mid-term exams. If time is short, some of the later, more advanced chapters could be
omitted, for example, the two chapters on reinforcement learning, and/or the chapter on
MLOps. A slide set for 22 classes is available, as is a question bank of multiple-choice
questions for each chapter, e.g. for quizzes. Each chapter also contains a set of short
hands-on exercises that can be used during class to keep students engaged or can form
the basis for a computer lab setting. Also available is a set of example exam questions.
Given the extensive set of online materials on programming in general, and data science
and data analytics in particular, ranging from the traditional https://stackoverflow.com/
site, to Google and YouTube, to the most recent ChatGPT or other LLMs, it is easy for
students to complete any technical homework assignment or course project using such
tools. Instructors should therefore focus on data and results interpretation and use new
or unpublished data sets, if they wish to set such assessment or evaluation exercises at
all. Consequently, the example exam questions are long-answer questions that focus
on conceptual understanding of the material, and less on technical programming skills.
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Students: How to study?

For students, accompanying this book is a virtual machine with all required software
installed and data sets provided. I recommend that students at least run the provided
example code to get some “hands-on” with the tools. The best way to learn and under-
stand is to experiment and modify the examples. See what happens when parameters
or functions are changed. Ask yourself: Does the result match my expectation? Why
or why not? Another way to work with the examples is to make sure you recognize the
code elements in the formulas and vice versa. If the formula contains an X, where is
this specified in the code or where does it appear in the output? Ensure that you can
recognize and make the connection between the conceptual or mathematical level and
the implementation in software.

Each chapter contains hands-on exercises. These are relatively simple exercises that
build directly on the code presented in a section and require only minor changes or
adaptations. These exercises invite experimentation with the code and trying different
options. They are highly recommended to further your understanding.

Every chapter also contains a number of review questions. These are there to help
check your own understanding. At least read and think about the questions, even if you
do not write out any answers.

Many chapters contain pointers to textbooks that formed the basis for the material in
this book, and all contain links to online references. These are valuable in that they
provide additional, deeper information. And because those resources are written by
different authors, they may be easier to understand; at the very least they can provide a
different and complementary perspective on the material in this book. Many textbooks
that have been used to inform this book are popular or classic textbooks in their own
right. Many could form the basis of a somewhat more narrowly conceived course
on business analytics. In short, they make for excellent complementary reading and
are highly recommended. The vast majority of them are also freely available on the
1nternet.

Additionally, a wealth of information is available in various formats on the internet.
This begins with Wikipedia pages, which provide a good introduction to many topics,
and material from Wikimedia Commons has been used extensively in this book. Since
all the tools used in this book are open-source tools, their web sites provide not only
the code, but more importantly, also provide documentation in the form of tutorials, in-
troductions, and detailed programming descriptions. These are all excellent resources.
Many researchers and teachers in the area of machine learning have made their ma-
terials freely available, for example in their blogs or in YouTube videos and entire
YouTube channels. Many of these researchers are active at the forefront of machine
learning and are excellent teachers. These resources are valuable resources and pro-
vide more depth than offered in this book. At the same time, the current popularity of
the topic has also led to some questionable material on the internet, and caution should
be exercised when searching for material. Begin your internet search with a trusted
source, for example Wikipedia, a well-known researcher, or material from a university
instructor active in the field.
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What about ChatGPT?

Absolutely consider using your favourite large language model (LLM) for studying this
material. For example, ChatGPT is quite good at explaining things. Ask it to explain a
code fragment that you copy and paste into it. Ask it to translate R code to Python code
or vice versa. Ask it to simplify code for you. Ask it to check code for mistakes. Other
ways to engage your favourite LLM are to ask it to quiz you on the material; copy and
paste the material into it and then ask it to generate questions and wait for your answer,
then to evaluate and correct your answers. Yet another use of an LLM is to a ask it to
evaluate and correct your answers to the review questions, provide both the question
and your answer to the LLM.

These are valuable ways in which you can further your understanding, but keep in mind
that LLMs are simply statistical models that predict the most likely next word in the
output. As such, they cannot truly reason, they have no intelligence (at least in terms
of how we conceive human intelligence) and they make mistakes without being aware
of them. So, be careful when you engage them. However, the beauty of using an LLM
with computer code is that you can run the code and verify that it does what you expect
it to do.
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Chapter 1

Introduction

Learning Goals

After reading this chapter, you should be able to:

1.1

Differentiate between methods, techniques, and tools.
Describe different types of analytics and their respective goals.
Describe the difference between supervised and unsupervised machine learning.

Describe the different aims of statistics and analytics despite the fact that they
often use the same mathematical models.

List some popular software tools for business analytics, and be able to describe
why they are widely used and what they are used for.

Use a Linux system using the Terminal window and command line for basic file
and folder management.

Introduction

This section describes some of the terminology around the rapidly expanding field
of data analytics, business analytics, data science, statistics, machine learning and Al
(artificial intelligence).

Data analytics (or simply ’analytics’) refers to the broad collection of methods, tech-
niques, and tools to allow humans to make sense of information for purposes of under-
standing and decision making. Business analytics is the application of data analytics
to operational, tactical, or strategic management in businesses and other organizations.
Examples are the use of visualization of human resource performance data, trend anal-
ysis of outbound logistics costs, prediction of customer demand, fraud analysis of fi-
nancial transactions, and others.
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Data analytics as a broad field is closely related to a range of other fields, such as data
management (how best to collect, store, access, and use data in a variety of format),
visualization (how best to present data in an easy-to-understand format to generate in-
sights or persuade stakeholders), machine learning (how to train computers to classify
data and to make predictions), or text analysis (how to extract meaningful information
from natural-language text information). Some argue that these fields are within an-
alytics, but others view them as separate but strongly interrelated. For example, text
analysis and machine learning overlap when training computers to predict customer
behaviour based on social media post data. Text analysis can provide certain features
that characterize or summarize a text, and may be used as input for machine learning.
Machine learning models can exploit text-specific features, such as the sentence struc-
ture, in making predictions. Training machine learning systems also requires a very
large amount of data, so advanced data management techniques are required in order
to store and provide this data in an efficient way.

Artificial Intelligence (Al) is a field with a long and varied history, going back to the
1960s. Originally, Al was used for symbolic computations, where researchers at-
tempted to explicitly describe and model human reasoning processes in a computer. In
the late 1990s and early 2000s, Al has morphed to focus on statistical models and has
most recently become dominated by artificial neural networks (ANN) and deep neural
networks (DNN)), a field called deep learning. Artificial neural networks, while inspired
by the human brain, are essentially statistical models for classification and regression,
akin to the simple linear or logistic regression. But whereas the simplest linear re-
gression model may describe a small dataset of hundreds to thousands of observations
using just two parameters (the slope and intercept), ANN and DNN are non-linear and
highly complex with millions or even billions of parameters and are often trained on
billions of observations. However, the main ideas are the same in that the model is
trained on or fitted to a data set.

More recently, since about 2020, generative Al, that is, Al models and systems that
are used to generate text, images, audio or video in response to user input has become
synonymous with Al The rise in popularity of systems such as ChatGPT, Dall-E, and
many others, has led to many people equating Al with generative Al

While machine learning may sometimes be viewed synonymously with ANN or DNN,
the field of machine learning is broader than just neural network models and concerns
the development of methods to make predictions for new observations. Traditional
statistical techniques for regression and classification, such as decision trees or sup-
port vector machines, are considered part of machine learning, and therefore also part
of data analytics. However, these statistical models sometimes take a back seat role
compared to ANNs because of the power and flexibility of the latter.

Machine learning and Al are also sometimes viewed synonymously. However, as noted
above, there are subfields of Al that are not concerned with machine learning and pre-
diction. First, research into symbolic reasoning is still ongoing. Second, methods such
as reinforcement learning, which focuses not on making predictions, but on prescribing
optimal courses of action, are considered part of machine learning and Al
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Big Data was an important topic in the early 2000s and 2010s but is now often con-
sidered a sub-field of data analytics or data science. The motivation for Big Data was
the recognition that the volume of data produced and available for analysis has been
growing exponentially since the 1990s. This has spurred the development of advanced
data management methods, techniques, and tools, such as distributed file systems and
databases. The velocity of data, that is, its rate of production, has also increased greatly
since the 1990s. Processing the data often has to occur in real-time, leading to develop-
ment of techniques and tools that can analyze data ”on-the-fly” (’stream processing”).

Finally, the term data science is often used in a less applied and more scientific or
research and developmental way than the term data analytics, to characterize the devel-
opment, rather than application, of methods, techniques, and tools.

1.2 Methods, Techniques, and Tools

In the context of data science and data analytics, methods, techniques, and tools play
distinct roles in the process of extracting insights from data. Methods encompass over-
arching approaches and strategies, providing a systematic framework for tasks such as
data exploration, modeling, and analysis. These high-level methodologies guide data
scientists in formulating a structured plan for addressing specific challenges or achiev-
ing analytical goals.

Techniques in data science are the specific procedures and practices employed within
the broader methodological framework. These practical and detailed approaches are
applied to handle particular aspects of the data analysis process. For instance, in ex-
ploratory data analysis, techniques like histograms or scatter plots are used to visually
inspect data distributions or relationships between variables and in classification, a
naive Bayes classifier is considered a specific technique.

Tools in data science refer to the instruments and software applications that facilitate
the practical application of methods and techniques. These can range from program-
ming languages like Python and R, statistical packages such as Pandas and SciPy, to
visualization tools like Shiny or Matplotlib. The selection of appropriate tools is crucial
for efficiently executing data science tasks and optimizing the workflow.

1.3 Types of Analytics

There are different “types” of analytics that have different aims.

Descriptive Analytics describes “what is”. It typically provides summaries of the
data, makes comparisons between different types of entities or measurements, may
identify historical trends, or provide rankings of observations or measurements. An
example is the identification and comparison of current and historical costs to manu-
facture different widgets in different plants. Another example are the identification of
the top-grossing sales people in the organization for specific product types, or calcu-
lating the the mean cycle time of the order-to-cash business process for different time
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periods. Descriptive analytics is therefore important in a business context and organi-
zations expend a great deal of money, time, and effort on technologies such as report
generating tools to support this type of analytics.

Predictive Analytics describes “what may be” in the future. It typically builds a
model based on past data to predict future cases/events/outcomes. As a simple example,
consider a linear regression model that predicts the overall spending of a customer
from their income. One can build a linear model with parameters for the intercept and
slope and then train the model on customers whose spending and income are known.
Training means to determine the two parameters of the model so that they model best
fits the data. Given a trained model, one can then predict the overall spending of a new
customer given their income. Of course, the models can be much more complex than a
simple linear regression, and often have tens, hundreds, thousands, or even millions of
parameters, but the principle of model-based predictive analytics remains the same.

Prescriptive Analytics describes “what should be done”. Similar to predictive an-
alytics, a model is usually built from past data. However, the model must now also
consider which actions can be taken (and were taken for the past training data). In
reinforcement learning, a popular prescriptive analytics technique, one assumes that an
agent can observe the state of an environment, can take actions based on the observed
state, and receives a (positive or negative) reward from the environment after taking
an action. Actions may change the state of the environment. The agent must learn
to identify those actions in each state that give it the maximum rewards. The optimal
actions are called a policy and can then be used to prescribe which action to take in
which state.

Visual Analytics describes the use of graphs (plots, diagrams) to visualize informa-
tion for exploring data and gaining insight. Visual analytics makes use of the human
ability to visually identify trends, make comparisons, etc. In effect, this type of analyt-
ics supports humans in their tasks. It employs no mathematical or statistical models.
However, humans may identify features of the data such as trends, comparisons, etc.
with visual analytics that may then be tested with statistical models or form the basis
on which to build predictive or prescriptive analytics models.

1.4 Machine Learning

In the context of analytics, machine learning (sometimes simply called ~learning’) can
be divided into supervised and unsupervised learning. Supervised learning is typi-
cally based on a parameterized statistical or mathematical model. For example, a sim-
ple linear regression is based on two parameters, the slope and intercept. Models are
trained (that is, parameters are estimated) by adjusting the model parameters so that the
model’s output (e.g. the predicts value ”y in a linear regression) for each given input

99,99

(e.g. the ”x” value in a linear regression) matches the actually observed outcome (the

95 99

y” value in a linear regression). Supervised learning assumes that a correct/observed
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outcome is available for all inputs. Linear regression is a very simple supervised learn-
ing approach with a simple statistical model; on the other extreme there are generative
pre-trained transformer (GPT) models that predict words for generating text, and which
contain billions of parameters and non-linear relationships among them.

Unsupervised learning on the other hand does not require outcome values and only
requires “input” (’x”’) values. Typical unsupervised learning tasks are clustering and
dimensionality reduction. For example, one may form clusters of widgets at the end of
a production line based on how similar the widgets are on different characteristics that
were measured by sensors. These clusters could then, for example, be interpreted as
quality grades. Similarly, customers may be clustered based on their past transactions
or purchases. Different marketing strategies may then be applied to each cluster. The
aim of dimensionality reduction is to be able to describe a data set with many variables
by using only a few variables. Imagine that having hundreds of different characteristics
of widgets. One might then wish to simplify and identify fewer, perhaps as few as two
or three, combinations of the original characteristics that provide the same information
about the widgets.

1.5 Analytics is not Statistics

Analytics and statistics use the same kinds of mathematical models. However, “tra-
ditional” statistics focuses on sample and population characteristics, such asmeans,
slopes, intercepts, and others, of a sample or a population that are represented as pa-
rameters of a mathematical model. Statistics aims to identify and explain the data
generating mechanism, i.e. the “real world” or population. In particular, inferential
statistics is used to generalize from a sample to a population. Importantly, statistics is
typically not concerned with individual cases or individual observations.

In contrast, data analytics, especially predictive analytics, focuses on predicting the
outcome of an individual case or observation. Analytics is pragmatic, in that models
are considered useful tools and do not need to faithfully describe the “’real world” or
the data generating mechanism, as long as they make good predictions or are otherwise
useful for their purpose. Consequently, there is no inference from sample to population,
because the model does not claim to describe a population. The quality of a model is
determined not by its fit with the observed data, but by its precision or accuracy when
predicting specific observations.

1.6 Tools used in this Course

The software used in this course is open-source and free software. Open-source soft-
ware (OSS) embodies a collaborative approach to software development, allowing
users to access, modify, and distribute the source code freely!. This approach pro-
motes transparency, enabling users to inspect the code, modify, adapt, fix and extend
it, and contribute to its improvement.

Inttps://en.wikipedia.org/wiki/Open-source_software
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Free software, as defined by the Free Software Foundation (FSF), goes beyond acces-
sibility, emphasizing users’ fundamental freedoms to run, study, modify, and share the
software?. Contrary to the common misconception, "free” in this context pertains to
freedom, not necessarily zero cost. The ethical philosophy behind free software under-
scores the importance of user control over technology.

The term FOSS, or Free and Open-Source Software?, serves as an inclusive label en-
compassing both the principles of free software and the collaborative nature of open-
source software. FOSS encourages a shared approach to software development, em-
phasizing not only the technical benefits of open code but also the ethical imperative of
user freedom and community-driven innovation.

Free and Open-Source Software (FOSS) licenses are legal agreements that govern the
use, modification, and distribution of open-source software. These licenses play a cru-
cial role in preserving the core principles of freedom, transparency, and collaboration
within the open-source community. Common characteristics of FOSS licenses are:

Freedom to Use FOSS licenses grant users the freedom to use the software for any
purpose without any restrictions.

Freedom to Study Users have the right to access and study the source code of the
software. This transparency allows for a deeper understanding of how the software
functions.

Freedom to Modify FOSS licenses typically allow users to modify the source code
according to their needs. This encourages innovation, customization, and adaptation of
the software.

Freedom to Share Users can distribute both the original and modified versions of the
software, fostering a collaborative environment. This freedom to share is fundamental
to the open-source philosophy.

Copyleft Licenses Some FOSS licenses, such as the GNU General Public License
(GPL), include copyleft provisions. Copyleft ensures that any derivative works or mod-
ifications are also subject to the same open-source terms. This prevents the software
from being incorporated into proprietary projects without maintaining open-source
characteristics.

Permissive Licenses On the other hand, permissive licenses, like the MIT License
and the Apache License, allow for more flexibility. They permit the use of the software
in proprietary projects without imposing the requirement to open-source the derived
code.

’https://en.wikipedia.org/wiki/Free_software
3https://en.wikipedia.org/wiki/Free_and_open-source_software
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R 4.1.2 WWw.r—project.org

dplyr 1.1.3 www.tidyverse.org

tidyr 1.3.0 www.tidyverse.org

ggplot2 344 www.tidyverse.org

Python 3.8 www.python.org

numpy 1.24.4 numpy .org

pandas 2.0.3 pandas.pydata.org

plotly 5.18.0 plotly.com

tensorflow | 2.13.1 www.tensorflow.org

Postgres 16.0-1 wwWw.postgresgl.org

pgAdmind | 7.8 www.pgadmin.org

PyCharm 2023.2.3 | www. jetbrains.com/pycharm/
Jupyterlab | 4.0.7-1 //github.com/jupyterlab/jupyterlab-desktop
Neo4] 5.14.0 www.neod j.com

Table 1.1: Software used in this course

While a lot of free and open-source software used to be developed by individuals, in-
creasingly FOSS is developed by companies whose business model rests either on pro-
viding paid support for such tools, or on providing paid hosted versions of the software,
or on providing non-free extensions for their FOSS software. In other cases, companies
provide software developer time to important projects that benefit themselves.

The R System

R is is a programming language and free software environment
designed for statistical computing and graphics.

R The history of R begins in the early 1990s at the University of

Auckland, New Zealand. Ross IThaka and Robert Gentleman, two

statisticians, set out to create a programming language that would

make data analysis and visualization more accessible. They re-

leased the first version of R in 1995, and it quickly gained traction within the academic
community.

Over the years, R evolved and expanded its capabilities, thanks to the collaborative
efforts of statisticians, data scientists, and programmers worldwide. The Comprehen-
sive R Archive Network (CRAN) was established to serve as a hub for R packages,
fostering a community-driven approach to software development.

The open-source nature of R played a pivotal role in its success. As more people em-
braced it, R became not just a statistical tool but a versatile platform for data analysis,
machine learning, and graphical exploration. Its popularity soared in both academic
and industry settings, with businesses recognizing its potential for extracting meaning-
ful insights from data.

R continues to thrive as a dynamic and evolving tool in the world of data science. Its
rich ecosystem of packages and active community ensure that it remains at the forefront


www.r-project.org
www.tidyverse.org
www.tidyverse.org
www.tidyverse.org
www.python.org
numpy.org
pandas.pydata.org
plotly.com
www.tensorflow.org
www.postgresql.org
www.pgadmin.org
www.jetbrains.com/pycharm/
//github.com/jupyterlab/jupyterlab-desktop
www.neo4j.com
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of statistical computing and analysis.

One of the key hubs of the R community is the Comprehensive R Archive Network
(CRAN), where thousands of R packages are hosted. These packages cover a vast
array of topics, from basic statistical functions to cutting-edge machine learning al-
gorithms. The "open-source” ethos is strong here, with contributors from around the
globe actively developing and maintaining packages.

Stack Overflow* and other online forums serve as virtual interchanges of ideas where
R users exchange knowledge and troubleshoot problems.

The tidyverse’ is a comprehensive collection of R packages that share a common phi-

losophy and syntax, designed to streamline and enhance the data analysis workflow.
Developed by Hadley Wickham and his collaborators, the tidyverse promotes a prin-
cipled approach to data manipulation, visualization, and exploration. Key components
are:

ggplot2 A sophisticated and flexible plotting system, ggplot2 enables the creation
of intricate and publication-ready visualizations. Its grammar of graphics approach
provides a consistent framework for constructing a wide range of plots.

dplyr This package serves as a cornerstone for data manipulation, offering a set of
succinct and expressive verbs for tasks such as filtering, grouping, summarizing, and
joining datasets. Its syntax facilitates a more intuitive and readable coding style.

tidyr Complementing dplyr, tidyr focuses on reshaping and tidying data. It provides
functions like ‘gather()‘ and ‘spread()‘ to efficiently restructure datasets, ensuring they
adhere to the principles of tidy data.

readr A fast and user-friendly package for reading and parsing data from various
file formats. readr’s emphasis on speed and consistency makes it a reliable choice for
importing datasets seamlessly.

The tidyverse’s cohesive design and interoperability between packages make it a pop-
ular choice for data scientists and analysts seeking an efficient and coherent ecosystem
for their R-based projects.

Python

Python®, conceived by Guido van Rossum in the late 1980s and released in 1991, has
evolved into a versatile and influential programming language. Known for its readabil-
ity and clean syntax, Python prioritizes simplicity and ease of use, making it accessi-
ble to both beginners and seasoned developers. The Python Software Foundation now

“https://stackoverflow.com/collectives/r-language
Shttps://www.tidyverse.org/
waw.python.org
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oversees its development, ensuring that it remains free, open, and continually improved
by a global network of contributors.

One of Python’s key strengths is its versatility. It serves
as a general-purpose language, excelling in web develop-
P p LJ t h on ment, data analysis, artificial intelligence, scientific com-
puting, and more. Its extensive standard library and a
rich ecosystem of third-party packages contribute to its
adaptability across diverse domains.

Python’s readability, enforced by the use of indentation for block delimiters, facilitates
code comprehension and maintenance. This, coupled with a strong emphasis on code
readability and maintainability, has contributed to its popularity among developers.

Python’s adoption in data science has surged, with libraries such as NumPy, pandas,
and scikit-learn forming the backbone of numerous data analytics and machine learning
projects.

The language’s cross-platform compatibility, supported by its interpreted nature, al-
lows developers to write code once and run it on various operating systems without
modification. This, combined with a vast and active community, ensures that Python
remains at the forefront of technological advancements.

In the Python ecosystem, packages play a crucial role in extending the language’s func-
tionality and addressing specific programming needs. Python packages are collections
of modules, scripts, and other resources that facilitate the development of reusable and
modular code. Pip (Package Installer for Python) is the default package installer for
Python, allowing users to easily install, upgrade, and manage Python packages. It
simplifies the process of fetching and installing packages from the Python Package In-
dex (PyPI) and other repositories. PyPlI is the official repository for Python packages,
hosting a vast collection of open-source Python software.

NumPy NumPy, short for Numerical Python, is a fundamental library in the Python
ecosystem for numerical computing. Developed to facilitate array operations, math-
ematical functions, and linear algebra capabilities, NumPy provides a foundation for
scientific and data-intensive applications.

Launched in 2005 by Travis Olliphant, NumPy has become a cornerstone in the Python
data science stack. Its core feature is the ndarray, a multidimensional array object that
enables efficient manipulation of large datasets. NumPy’s array-oriented computing
paradigm enhances performance and readability, making it a preferred choice for nu-
merical tasks.

Pandas Pandas, a Python library introduced in 2008 by Wes McKinney, is an im-
portant tool in data manipulation and analysis. Designed to provide high-performance,
easy-to-use data structures, Pandas simplifies the handling of structured data and time
series.
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At its core are two primary data structures: the Series, a one-dimensional labeled array,
and the DataFrame, a two-dimensional table with labeled axes. These structures, built
on top of NumPy arrays, empower users to perform a range of operations from basic
data cleaning to complex analytics, with a concise and expressive syntax.

Pandas can handle missing data gracefully and offers easy to use tools for reshaping,
grouping, and aggregating data. Its integration with other Python libraries, coupled
with efficient indexing and alignment features, makes it a good choice for data scien-
tists, analysts, and researchers working with heterogeneous and large datasets.

Tensorflow and Keras TensorFlow is an open-source
machine learning framework initially developed by the
Google Brain team. It provides a comprehensive set of
tools and libraries for building and deploying machine
learning models. TensorFlow facilitates the creation of
artificial neural networks and other machine learning
models through a flexible and scalable platform. TenSOI'F|OW

Keras is an open-source high-level neural networks API

written in Python. Originally developed as an indepen-

dent library, it has become an integral part of TensorFlow, serving as its official high-
level programming interface. Keras simplifies the process of building, training, and
deploying neural networks, making it accessible to developers of different skill lev-
els. While Keras is designed to be user-friendly and concise, TensorFlow provides a
more extensive and low-level framework for those requiring greater flexibility in model
design and customization.

PyCharm PyCharm by JetBrains is an integrated development

environment (IDE) for Python developers. PyCharm Community

is its free and open-source version. The IDE includes a code ed- PC}

itor with syntax highlighting, code completion, and error check- —

ing, supporting developers in writing clean and efficient code. Py-

Charm’s code navigation and refactoring tools facilitate easy ex-

ploration and improvement of code bases. The built-in debugger and seamless inte-
gration with testing frameworks like pytest enhance debugging and testing capabilities.
PyCharm also supports version control systems, including Git and Mercurial, promot-
ing collaborative development. PyCharm has a user-friendly interface, continuous up-
dates, and active support.

Jupyter, JupyterLab, JupyterLab Desktop Jupyter Note-
books are interactive computing environments that allow users o o
to create and share documents containing live code, equations, Jupyter
visualizations, and narrative text. Originally developed for
Python, Jupyter Notebooks support multiple programming lan-
guages through various kernels. The notebooks are structured as
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a series of cells, where each cell can contain code, markdown text, or rich media ele-
ments. Users can execute code cells interactively, see immediate outputs, and create a
seamless blend of code and documentation.

JupyterLab is an extensible web-based interactive computing environment developed
by the Jupyter Project. It serves as the next-generation interface for Jupyter Notebooks,
offering a more versatile and powerful environment. JupyterLab provides a flexible
and modular interface where users can arrange documents, notebooks, terminals, and
custom components in a tabbed layout. It supports multiple Jupyter Notebooks si-
multaneously and allows for drag-and-drop functionality to rearrange and organize the
workspace. JupyterLab’s extensibility comes from its plugin system, enabling users to
add new features and customize the environment to suit their workflows.

JupyterLab Desktop refers to the stand alone application version of JupyterLab that
runs on a user’s desktop rather than in a web browser. It offers the same rich features
as the web-based version but provides a stand alone application that can be launched
independently. JupyterLab Desktop enhances user accessibility and convenience, pro-
viding a familiar desktop application experience for working with Jupyter Notebooks
and other interactive computing tasks.

PostgreSQL

PostgreSQL is an open-source relational database management
system (RDBMS) whose history goes back to the mid-1980s when
a team led by Michael Stonebraker at the University of California,
Berkeley laid the foundation for what would later become Post-
greSQL.

PostgreSQL has been characterized by standards compliance, ex-
tensibility, and robustness. Over the years, it has evolved into a feature-rich and reliable
database system that caters to a wide range of applications. One of PostgreSQL’s key
strengths lies in its extensibility and support for custom data types, operators, and func-
tions. This flexibility empowers developers to model and store data in ways that suit
the specific needs of their applications. Furthermore, PostgreSQL boasts support for
advanced indexing techniques, complex queries, and transactional consistency, making
it well-suited for high-performance and mission-critical environments.

The commitment to data integrity is a hallmark of PostgreSQL. It provides support
for ACID (Atomicity, Consistency, Isolation, Durability) properties, ensuring the reli-
ability of transactions. Additionally, features like point-in-time recovery and built-in
replication mechanisms contribute to the system’s resilience and availability.

Neodj

Neo4j is a graph database management system,
designed to handle and store data in a graph

. .
%’ﬂeo AJ structure rather than in traditional tables. In

Neo4j, data is represented as nodes, edges, and
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properties. Nodes typically represent entities

such as people, businesses, accounts, or any
other item you might find in a dataset. Relationships provide the connections between
these nodes, akin to how foreign keys work in relational databases, but with a more
natural and direct approach to represent how items are related. This structure makes it
particularly efficient for querying complex and deeply interconnected data.

One of the key strengths of Neo4j is its powerful query language, Cypher, which allows
for expressive and efficient querying and manipulation of the graph data. Cypher is
designed to be intuitive and readable, focusing on the clarity of expressing what data to
retrieve or how to manipulate the data, rather than how to navigate the structure. This
makes it easier to model complex relationships and query them efficiently. Neo4j is
a popular choice for applications that require complex data relationships and network
analysis, such as social networks, recommendation systems, and fraud detection.

1.7 Ubuntu Linux

Ubuntu Linux, developed and distributed by Canonical

Ltd., has emerged as a popular distribution within the

Linux ecosystem since its first release in 2004. Through
U b U n tU its commitment to ease-of-use and pragmatic approach to

hardware compatibility, Ubuntu has played a significant

role in popularizing Linux as a viable alternative to pro-
prietary operating systems. The operating system’s development is steered by a global
community of contributors who collaborate on various aspects, from bug fixes to the
introduction of new features.

One distinguishing feature of Ubuntu is its emphasis on regular and predictable release
cycles. This approach ensures that users have access to the latest software updates,
security patches, and improvements. Ubuntu’s Long Term Support (LTS) releases,
occurring every two years, provide a support window of 5 years, offering stability and
reliability for enterprises and users seeking a more predictable environment.

The desktop edition of Ubuntu employs the GNOME desktop environment, providing
an intuitive and user-friendly interface. Ubuntu’s package management system, APT,
simplifies the installation and removal of software packages. It uses the “apt” com-
mand line tool or the "Synaptic” graphical interface to APT. The extensive and well-
maintained software repositories contribute to Ubuntu’s versatility, allowing users to
access a rich ecosystem of applications without the need for extensive manual configu-
rations. Because Ubuntu is based on Debian, it can use Debian packages and packages
in the Debian package format.
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As a multi-user operating system, Ubuntu provides support for file permissions for each
user, user home directories, and user privileges. User home directories are typically
located in /home/<userName>/ and the sudo (“superuser do”’) command may
be used to execute commands as super user (equivalent to the “root” user in Linux
terminology).

1.8 Virtual Machines

Virtualization with virtual machines allows users to create an run

virtual computers on their own computers, enabling the installa- >

tion and operation of multiple operating systems simultaneously. §

The “real” system that is running the virtualization software ap-

plication is called the host system or host operating system, while

the virtual computer running inside the virtualization software is

called the guest system, or guest operating system. In effect, the virtualization soft-
ware pretends to be an actual computer to the guest system, and the guest system is a
complete operating system, such as Windows or Linux.

VirtualBox is a free and open-source virtualization software application developed by
Oracle. VirtualBox is available for host systems with an Intel or AMD processor,
running Windows, MacOS, or Linux operating systems. VirtualBox supports a wide
range of guest operating systems, including various versions of Windows, Linux dis-
tributions, MacOS, BSD, and others. VirtualBox provides "Guest Additions," which
are additional software packages that can be installed on the guest operating system.
These additions enhance the performance and integration between the host and guest
systems, providing features like seamless mouse integration, shared folders, and im-
proved graphics support.
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VMWare Fusion is a proprietary virtualization software owned by Broadcom. VM Ware
Fusion is available for Apple Mac computers running either Intel processors (before
circa 2021) or the later Apple M1, M2 or M3 processors (after circa 2021). Similar to
VirtualBox, it allows users to create and run virtual machines on their computer and
provides a way to share folders from the host system to the guest system, and to copy
and paste from host to guest and vice versa.

Virtual machine files for use with VirtualBox and VMWare Fusion are
provided? that contains an Ubuntu system with all required software installed
If you wish to use this, you must install VirtualBox or VMWare Fusion on
your computer, then download the corresponding virtual machine file and
import it into the virtualization software application.

The username is busi4720 and the password is busi4720. Whenever a pass-
word is required, you should enter busi4720.

“https://evermann.ca/busi4720.html

If you do NOT wish to use the VirtualBox Appliance, you should download and
install all software to your computer from the sources indicated in Table 1.1 in
(at least) the versions indicated in the table.

1.9 The Ubuntu Command Line (also for Mac Users)

This tutorial provides a very brief introduction to the Ubuntu command line (”termi-
nal”). The command line, also called a ’shell” is by default the "bash” shell (Bourne-
again shell; a pun on the earlier Bourne shell). In Ubuntu, you can open the Terminal
application using the key combination , or by selecting the Terminal appli-
cation icon from the side bar or the application list. You can also open a Terminal from
the file browser.

Note: The default shell in the MacOS terminal is the ”zsh” and behaves slightly dif-
ferently from the bash shell. You can work with a ”bash” shell by typing the bash
command in a MacOS terminal.

Bash will show you a command prompt that indicates your username (“’busi4720”),
the name of the computer (“busi4720vm”) and your current working directory ("~
followed by the dollar sign ”$”.

Print the working directory by typing the pwd command and then pressing the

or key:


https://evermann.ca/busi4720.html
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busid720@busid720vm:~$ pwd
/home/busid720

Make a folder/directory with the mkdir command (in your current working directory):

busid720@busid720vm:~$ mkdir someFolder

Change the working directory to the folder you have just created with the cd command.
Note how the Bash command prompt indicates your new working directory.

busid720@busid720vm:~$ cd someFolder
busi4720@busid720vm:~/someFolder$ cd ..
busid720@busid720vm:~$ cd ~

The following special characters can be used when specifying folders/directories and
paths:

~ | User home directory

Current directory

.. | Upwards in the directory tree
/ Root of directory tree

Here are some tips that make working with the shell a lot easier:

* Autocompletion of file names is available with the ”” key. When multiple
file names exist that match what you have entered so far, you can enter further

characters of a file name to disambiguate and press the key again for further
autocompletion.

* You can recall earlier commands with the ”” key. By default, the

shell stores the last 1000 commands.

* You can search earlier commands with the ”’| Ctrl-R |” key. You are then prompted
to search by typing in characters to find commands. The shell finds the most
recent command that contains the characters you entered. At any time you can

press | Ctrl-R | again to find earlier matches to your command search.

* Because the usual keys |Ctr1-X , | Ctrl-C Ctrl—V| for cutting, copying, and
pasting text have different functions in the shell, you can cut, copy, and paste

with the | Ctrl-Shift-X |, | Ctrl-Shift-C |, and | Ctrl-Shift-V | keys.

>

List folder/directory contents using the 1 s command. The option —1 for the command
indicates that you would like to see long results.
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busid720@busi4720vm:~$ 1ls -1 ~/Applications

total 8

drwxrwxr-x 7 busi4720 busi4720 4096 Nov 8 12:05 arcadedb-23.10.1
drwxr-xr-x 8 busi4720 busi4720 4096 Nov 7 11:45 pycharm-community-2

The results show the total size in kB, and a list of entries:
* Type of entry (’d” = directory)

* Permissions for owner of the file ("rwx”), users in the same user group as the
owner (”r-x”) and other users (’r-x”’): r indicates read access, w indicates write
access, x indicates permission to run the application or enter/view a directory
(with cd or 1s), and a - indicates the lack of the corresponding permission.

* Names of owner and groups ("busi4720”)
* Size (in bytes)
 Last modification date and time

* File or directory name

Print a string of text using the echo command:

$ echo "To be or not to be"
To be or not to be

Redirect the output of the echo command to a file using the redirect symbol ”>". You
can redirect the output of any command this way. Use » to redirect and append, instead
of overwriting a file.

$ echo "To be or not to be" > someFile.txt
$ 1ls -1 someFile.txt
—rw-rw-r-— 1 busid720 busid720 19 Nov 8 14:50 someFile.txt

Print contents of a file ("concatenate”) using the cat command. You can concatenate
multiple files by specifying them all (this is why the command is called ’concatenate™):

$ cat someFile.txt
To be or not to be

If you would like to see the contents of a file page by page or line by line, use the 1ess
command (a pun on less is more” and the earlier "more” command that did the same).
You will be shown the contents and can navigate up and down with the usual arrow
keys.



1.9. THE UBUNTU COMMAND LINE (ALSO FOR MAC USERS) 17

’$ less someFile.txt ‘

Copy a file using the cp command:

’$ cp someFile.txt someCopy.txt ‘

Move a file to a new location (folder/directory) using the mv command:

’S mv someCopy.txt ~/someFolder ‘

Renaming is moving. When you want to rename a file, move it to a new file name:

’$ mv someFile.txt newName.txt ‘

Remove (delete) a file using the rm command:

’$ rm someFolder/someFile.txt ‘

Remove a directory recursively (i.e. remove all its contents first):

’s rm -r ~/someFolder ‘

Use this very carefully! You could inadvertently delete all your files. The shell will
delete files and folders immediately and irrevocably. There is no "undoing” this.

View the command line history with the hi st ory commands. Remember that you can

redirect this output to a file if you wish or use a pipe to pipe it into the less command
(see below).

$ history
1 echo "To be or not to be"
echo "To be or not to be" > someFile.txt
1ls -1 someFile.txt
less someFile.txt
cat someFile.txt

g w N

Management of file permissions is done using the chmod command. You can gran
and revoke read, write, and execute permissions for yourself, your group members,
and other users. Remove write permission for yourself by using the —w option and
specifying the filename:
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’$ chmod -w newName.txt

Add write permissions using the +w option:

’$ chmod +w newName.txt

Add execute permissions using the +x option:

’$ chmod +x newName.txt

If you are stuck on how to use a command or wish to see all its options and capabilities,
you can get the manual for a command using the man command:

$ man 1ls

If you can’t quite remember which command to use, you can search for commands

using keywords with the ap

ropos command:

busid720@busid720vm:~$
keyring (1) -
pdb3 (1) -
pdb3.10 (1) =
pip (1) =
pip3 (1) -
py3compile (1) =
py3versions (1) -
pydoc3 (1) -
pydoc3.10 (1) =
pygettext3 (1) =
pygettext3.10 (1) =
python (1) =
python3.10-config (1)

python3 (1) =

apropos python

Python-Keyring command-line utility

the Python debugger

the Python debugger

A tool for installing and managing Python p...
A tool for installing and managing Python p...
byte compile Python 3 source files

print python3 version information

the Python documentation tool

the Python documentation tool

Python equivalent of xgettext (1)

Python equivalent of xgettext (1)

an interpreted, interactive, object-oriente...
- output build options for python C/C++ exte...
an interpreted, interactive, object-oriente...

You can see a list of all processes currently running using the ps command. The results
show the process identifier (PID), the console from which you started the process, the
computing time it has consumed, and the command that was used to start the process.
Add the a and x option to see all the processes running on your computer, not just the

processes you have started.

$ ps ax
PID TTY T
3024 pts/0 00:00

3151 pts/0 00:00

IME CMD
:00 bash
:00 ps
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The grep command is useful to find something in a file or input stream. Use it as in
the following example in a pipe:

$ cat newName.txt | grep be
$ 1s -1 | grep .txt
$ history | grep .txt

Note: The vertical bar is called a "pipe”, it pipes the output of one command as input
into the next one

The following are further beginner-level tutorials on using the command line on Ubuntu
(or really any Linux distribution):

» Ubuntu command line for beginners
¢ Linux command line primer

 Getting started with Linux

1.10 Review Questions

General

. What is the definition of “data analytics”? What is "business analytics"?

. What is the relationship between data management and analytics?

. Give examples of areas related to analytics and their relationships.

. Why is text analysis mentioned in connection with machine learning?

. What are artificial neural networks (ANN) and deep neural networks (DNN), and
how are they the same and how are they different from linear regression models?

. In what way does Al include areas beyond machine learning?

. Characterize Big Data and its focus.

. Provide an example that illustrates areas of Al outside of data analytics.
9. Define techniques in the context of data science.

10. Provide an example of a technique used in exploratory data analysis.

11. Mention a few examples of tools used in data science.

12. Explain the relationship between methods and techniques in data science.

13. Provide examples of tasks or challenges that high-level methodologies (methods)

might address in data science.
14. Summarize the roles of methods, techniques, and tools in the context of data
science.
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Types of Analytics

15. What is the primary purpose of descriptive analytics? Give an example of how it
might be used in a business context?

16. Explain how predictive analytics differs from descriptive analytics. Illustrate
with an example how a simple linear regression model can be used in predictive
analytics.


https://ubuntu.com/tutorials/command-line-for-beginners
https://www.digitalocean.com/community/tutorials/a-linux-command-line-primer
https://www.digitalocean.com/community/tutorial-series/getting-started-with-linux
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17. Describe prescriptive analytics and how it differs from predictive analytics.

18. What is visual analytics and how does it support human tasks in data analysis?
Discuss how it can contribute to other types of analytics.

19. Compare and contrast predictive and prescriptive analytics in terms of their ap-
proach and end goals. How do they both utilize past data?

20. If a company wants to understand its sales performance over the last five years,
which type of analytics would be most appropriate and why?

21. Imagine a scenario where a company needs to decide on future marketing strate-
gies. Which type of analytics would be most beneficial for them and how might
it be implemented?

Learning

22. What is supervised learning in machine learning, and how does it differ from
unsupervised learning?

23. Describe how a simple linear regression model works in supervised learning.
What are the key parameters in this model?

24. Compare the simplicity of a linear regression model with the complexity of a
model like GPT in supervised learning. What are the key differences?

25. Provide examples of tasks that are typically performed using unsupervised learn-
ing.

26. How is clustering used in unsupervised learning, and can you give an example
of its application in a business context?

27. Explain the concept of dimensionality reduction in unsupervised learning and its
potential benefits.

1.11 Hands-On Exercises

The following are a set of connected exercises to help you practice your command line
skills. Do them in the order listed.

1. Navigation and Listing

(a) Open the terminal and use the pwd command to print the current working
directory.

(b) Use 1s to list the contents of the current directory.

(c) Create a new directory named "Exercisel" using mkdir.

(d) Navigate into the "Exercisel" directory using cd.

2. File Manipulation

(e) Create a new file named "filel.txt" inside the "Exercisel" directory using
touch.

(f) Use cat to display the contents of "filel.txt".

(g) Append the text "Hello, Bash!" to "filel.txt" using echo and ».

(h) Display the updated contents of "filel.txt" using cat.

3. Removing and Renaming
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(i) Remove "filel.txt" using the rm command.

(j) Create a copy of the "Exercisel" directory named "Exercisel_backup" us-
ingcp -r.

(k) Remove the original "Exercisel" directory using rm -r.

. Directory Manipulation

(1) Recreate the "Exercisel" directory.
(m) Create three subdirectories inside "Exercisel" named "Subdir1", "Subdir2",
and "Subdir3" using mkdir.
(n) List the contents of "Exercisel" to verify the creation of subdirectories.

. Searching and Filtering

(o) Create a file named "keywords.txt" inside "Exercisel" and add some ran-
dom text.

(p) Use grep to search for a specific word (e.g., "Bash") in "keywords.txt".

(q) Create a new file named "filtered.txt" and use grep to filter lines contain-
ing the word you searched for in "keywords.txt".

. Process Management

(r) Use ps to display information about the current processes running on your
system.

(s) Useps aux | grep bashtofilter and display information about Bash
processes.

Cleanup

(t) Remove the entire "Exercisel" directory and its contents using rm -r.
(u) Confirm that the "Exercisel" directory no longer exists by listing the con-
tents of the current directory.
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Chapter 2

Data, Data Types, Data Quality

Learning Goals

After reading this chapter, you should be able to:

2.1

List and describe the primitive data types of numbers, characters and strings,
dates and times, and the standards and options for their representation or serial-
ization.

Characterize and differentiate among structured data types in R and Python, such
as lists, vectors, sets, etc.

List and describe structured data, such as tables, documents, and graphs, includ-
ing standardized serialization and exchange formats.

List and describe unstructured data formats and identify use cases in business
analytics. For text data, be able to apply regular expressions and string edit
distances for basic text analysis.

Identify relevant questions to ask with respect to the quality of a data set. De-
scribe the importance of data provenance in ensuring data quality.

Describe the process and different activities for data cleaning, that is, for improv-
ing data quality.

Identify useful external data sources.

Introduction

Business analytics is the use of data for understanding, description, prediction, pre-
scription and decision making. Hence, it is important to understand the different types
of data and the variety of formats in which they can exist.

23
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char Individual Characters
string A string of characters
byte 1 byte, —128...127 or one ASCII characters

int (16 bit) | ”Short”, Integer numbers, —32, 768 . .. 32, 767
int (32 bit) | "Long”, Integer numbers, —2, 147,483,648 . ..2,147,483, 647

int (64 bit) | Integer numbers, —9,223,372,036, 854,775,808 . ..
9,223,372,036,854, 775

float Decimal numbers, 6 to 7 significant digits, ’single precision”

double Decimal numbers, 15 to 16 significant digits, ”double precision”

boolean Logical, true/false, 1 or 0

Table 2.1: Primitive Data Types

This section first introduces primitive data types, such as numbers and text. There are
many complexities to be aware of that can make analytics challenging. Next, complex
data types are introduced, such as tables, documents, and graphs, which are useful in
describing complex information, such as customer purchase history in tables, product
descriptions in documents, or supply chain logistics in a graph. Then, unstructured
data in the form of text, images, and audio/video information is explained. Data in
these formats may be market information from financial reports (text), quality control
photos taken on a manufacturing line (images), or video captured inside the chemical
reactors of an oil refinery.

In the second section, you will learn about data quality, data cleaning, and data prove-
nance. It is important to understand potential problems with the data you use, how to
identify them, and how to address them. Data provenance, that is, understanding where
the data was collected or created, and how it was processed, is important because errors
or biases may be introduced at various stages of the processing and handling pipeline.

The final section introduces different data sources. While most data for business an-
alytics is internally produced by an organization, there is a vast amount of external
information available to use and to combine with internal data for richer business ana-
Iytics.

2.2 Data Types
2.2.1 Primitive Types

Primitive data types are basic types of data built into programming languages and other
software systems such as statistics and analytics tools. They represent the simplest
forms of data and serve as the building blocks for constructing more complex data
structures.

Table 2.1 shows a list of common data types. However, not all software systems use
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the same names, and not all systems make the same distinctions. For example, the
R system uses the terms numeric (which is actually a double type) and integer
(which is a 32 bit integer).

Additionally, it is important in statistics and analytics to indicate the lack of a value,
that is, a “missing value”. Different systems use different special names for this. The
R statistical system uses the term "NA”, while the Python programming languages uses
”None” and the SQL database language uses the term "Nul1l”. Moreover, the meaning
of these in practice can be ambiguous and says nothing about the reason for the miss-
ingness. For example, is the value not appropriate to the thing measured (e.g. in a table
of geometric objects, the diameter value is simply not appropriate for two-dimensional
object)? Was it missed during data collection? Was it withheld during data collection?
Was it removed during initial analysis as an outlier?

Numbers

As Table 2.1 indicates, decimal numbers can be represented using different numbers of
bytes with different precisions. Integer numbers are relatively straightforward. Here, a
number is simply represented as its equivalent binary number (base 2, with digits O to
1), often with the first bit indicating the sign (positive/negative).

To represent decimal numbers, computers use the floating point representation defined
by the IEEE 754 standard'. Figure 2.1 shows how decimal numbers are represented in
binary form. A float, or single precision number occupies 4 bytes (32 bits): 1 bit for
the sign, 8 bits for an exponent, and 23 bits for the fraction (also called “’significand”
or “mantissa”). With this, a f1oat has a precision of approximately 6 to 7 decimal
digits and a range at full precision between £1.18 x 10738 ... £3.4 x 1038.

sign exponent (8 bits) fraction (23 bits)
| [ I |

[o[o]1]1]1]1]1]o[o]o[1]o[o0]o]o]0]0]0]0]o]o[o0]o[o0]o]0]0]0]o0|o[o]o] = 0.15625
31 30 2322 (bit index) 0

https://commons.wikimedia.org/wiki/File:Float_example.svg

(a) 32 bit float
exponent fraction
sign (11 bit) (52 bit)
| I I
I nnmmmmmnmmm
o [5) [5)
63 52 0

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

(b) 64 bit double

Figure 2.1: Floating Point Numbers (IEEE 754 Standard)

Ihttps://en.wikipedia.org/wiki/IEEE_754
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A double, i.e. a double precision number, occupies 8 bytes (64 bits): 1 bit for the
sign, 11 bits for an exponent and 52 bits for the fraction. It has a precision of 15 to 16
decimal digits and a range at full precision between 2.23 x 107308 || +£1.80 x 10308,

Example: Consider the number 0.15625 in the top of Figure 2.1. Its IEEE 754 float
representation can be understood as follows:

1. First, convert 0.15625 to binary, which is 0.001015 (1/8 + 1/32).
2. Rewrite in normalized scientific notation: 1.015 x 273,

3. Sign Bit: 0.15625 is positive, so the sign bit is 0.
4

. Exponent: The actual exponent is —3, and the biased exponent is —3 + 127 =
124, which is 011111004 in binary.

5. Fraction (significand, mantissa): The fraction is the normalized value without
the leading 1, so it is 0100000000000000000000002 (23 bits).

Combining these components as shown in Fig. 2.1 leads to the number 01011111
00010000 00000000 000000007, written in 4 bytes of 8 bits each.

While the IEEE 754 standard defines how computers store decimal numbers internally,
when exchanging information, numbers are printed as plain text. Such “printing as
plain text” is called “’serialization”, because the data are written as a series of characters
or bytes. Writing out decimal numbers is fraught with complexities due to different
idiosyncratic styles of writing or formatting numbers, depending on the application or
the locale (that is, the dominant rules in the location of the user).

Format | Comment
-1023476.56
-1023476,56 | some locales use comma as decimal separator

-1,023,476.56 | some locales use comma for grouping
-1.023.475,56 | some locales use comma as sep and points to group
(1,023,476.56) | some applications use brackets for negation
-1 023 476.56 | some locales use space for grouping
-1.02347656e+06 | “scientific notation”
-1023.47656e+03 | also ’scientific notation”

Table 2.2: Serializing Numbers to Text

The most frequent variations occur with respect to the decimal point (some locales, for
example in Europe, use a comma instead), the grouping of digits (some locales group
thousands, millions, etc. with spaces, points, commas, and other characters), writing
negative numbers (in accounting, negatives are often put in parentheses instead of using
a minus sign), and “scientific notation”, which specifies numbers as coefficients and
exponent for powers of 10 (for example 1.234e+3 = 1.234x10% = 1234; 1.234e—2 =
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1.234 x 1072 = 0.01234). Table 2.2 shows examples of some idiosyncratic ways of
writing the same number.

It is important to verify the number format in any data set, and to transform it
into one that is readable and usable by the chosen business analytics tool.

Characters & Strings

There exist a multitude of writing systems beyond the Latin alphabet, using many
different symbols. Symbols can represent consonants, consonant-vowel sequences,
phonemes, words or morphemes, or syllables, leading to a vast range of symbols across
the written languages of the world.

The Unicode system? was developed to address the limitations of earlier encoding sys-
tems and to enable consistent, universal representation of text from all the world’s writ-
ing systems. Before Unicode, there were different encoding systems, such as ASCII
(American Standard Code for Information Interchange), which could only represent a
limited set of characters (primarily used in the English language). This led to difficul-
ties in representing text in languages with larger character sets or different scripts.

The Unicode Consortium was founded in 1988 and incorporated
. in 1991 with the goal of developing a universal character encoding
lN standard. Unicode was standardized in 1998 as ISO/IEC standard
10646 and its popular UTF-8 encoding was standardized as RFC
22793, Over the years, Unicode has been expanded and refined
to include a wider array of characters, symbols, and scripts. This
includes not only modern languages but also historic scripts, mathematical symbols,
emojis, and more. By providing a unique identifier for every character, regardless of
the computer system, software application, or programming language, Unicode solves
the problem of inconsistent encoding and ensures that text appears consistently across
different systems and devices. It has become the standard for modern software and in-
ternet protocols and is fundamental for web content, databases, applications, and more.
The latest version of Unicode as of this writing (v15.1) contains 149,813 characters for
different 161 scripts, including 3782 emojis*.

UNICODE

UTF-8 (Unicode Transformation Format — 8-bit) is the most common method for repre-
senting Unicode characters. It uses between one and four bytes to represent a character
and is backwards compatible with ASCII because the initial 127 Unicode characters
are identical to the corresponding ASCII characters.

Example: Consider the word “Inuktitut”. This word is written in the Inuktitut writ-
ing system as 42°N2° which contains six symbols (the Inuktitut writing system is

2https://home.unicode.org/
3https://datatracker.ietf.org/doc/html/rfc2279
‘https://www.unicode.org/versions/stats/
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not alphabetic, it is syllabic)®. The corresponding Unicode character numbers (“code-
points”) are: U+1403, U+14C4, U+1483, U+144E, U+1450, U+1466. These are given
as hexadecimal numbers, using a base of 16 with digits from O to F. In text documents
this may be written as \ul1403 \ul4c4 \u1483 \ul44e \u1450 \u1466 when the document
is read/parsed by an appropriate software tool that can understand this way of writing
Unicode characters.

The corresponding decimal (base 10, with digits from 0 to 9) Unicode character num-
bers are 5123, 5316, 5251, 5198, 5200, 5222. These are used when the text is written
for web content in HTML as HTML entities, such as “&amp;#5123; &amp;#5316;
&amp;#5251; &amp;#5198; &amp;#5200; &amp;#5222;”.

Using UTF-8, each of these six characters can be encoded in 3 bytes. These are usually
written in hexadecimal form, indicated by the ”0x” prefix. Hexademical form is a base
16 system and uses “numbers” between 0 and F, that is, it uses 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F as numbers. For example, OxE1 is 14 (the ”E”) times 16 (the
first digit) + 1 times 1 (the second digit), yielding 225. Ox.

The sequence of Unicode characters for the word “Inuktitut” becomes OxE1 0x90 0x83
(first symbol) OXE1 0x93 0x84 (second symbol) OxE1 0x92 0x83 (third symbol) OxE1
0x91 0x8E (fourth symbol) OxE1 0x91 0x90 (fifth symbol) OxE1 0x91 0xA6 (sixth
symbol).

As a business analyst, you may come across data that contains Unicode characters
either spelled out in the "\uXXXX” form, or UTF-8 encoded in byte sequences, or
in the HTML format. While you do not need to understand the technical details of
Unicode and its different encodings, you should be aware that data in this format is
common and you need to know how to deal with it when you encounter it. This includes
using a Unicode-aware data storage and management system, using a Unicode-aware
business analytics tool, and using a Unicode-aware visualization or report-writing tool.

Hands-On Exercise

* Choose your favourite emoji
¢ Determine its Unicode number (”codepage”)
* Determine its UTF-8 encoding

Dates and Times

The world has largely standardized on the Gregorian calendar for secular and com-
mercial use, while other calendar systems exist now only for religious or traditional
purposes. However, as with written numbers, written dates show a bewildering variety
of forms, depending on the locale and other traditions.

Complexities are introduced by 12 hour (AM/PM) versus 24 hour time formats (”14:30”

SUsing https://www.inuktitutcomputing.ca/Transcoder/index.php and https:
//www.compart.com/en/unicode/
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Calendar dates | YYYY-MM-DD

Ordinal dates YYYY-DDD

Week dates YYYY-Www-d

Thh:mm:ss.sss (or Thhmmss.ss)
Thh:mm:ss (or Thhmmss)

Times Thh:mm.mmm or Thhmm.mmm
Thh:mm or Thhmm
Thh.hhh
. <time>Z or <time>zthh:mm or
Time Zones
(<time>+hhmm or <time>-=+hh)
Combined <date>T<time>
Periods PnYnMnDTnHnMnS or P<date>T<time>

The italicized forms are in ISO 8601 but not in RFC 3339

Table 2.3: ISO 8601 / RFC 3339 Rules for Dates and Times

is 72:30PM”), different time zones across the world, leap seconds and leap years, week
numbering (does it start with the first full week?), different written formats for the se-
quence of days, months, and years (is ”06-07-09” June 7, 2009 or July 6, 2009, or
July 9, 20067?), different separators between years, dates, and months ("06/07/09” and
”06-07-09”), and the difficult arithmetic when using years, months, and days.

The ISO 8601° (first published in 1988) and RFC 33397 (published in 2002) standards
define how dates and times should be written. Table 2.3 shows a summary of the
ISO 8601/RFC3339 rules (the italicized forms are in ISO 8601 but not in RFC 3339).
However, these standards are by no means universally followed and reading/parsing
date and time data remains a difficult and complex task in many business analytics
settings.

Even within the ISO 8601 standard, there are numerous ways to express the same date
or time, such that June 13, 2024 can be written as an ordinal date (’2024-165") or a
week date (°2024-W24-4"") and the time of T13:45:30 can be written as ”T13:45.500”
or as "T1345.500”.

For a business analyst, it is important to verify the format of dates and times in
any data set, especially when the data comes from different or external sources.

Shttps://en.wikipedia.org/wiki/ISO_8601
Thttps://datatracker.ietf.org/doc/html/rfc3339
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Python
list (1, 2, "a", "b", 2] mutable, ordered
tuple (1, 2, "a", "b", 2) immutable
set {1, 2, "a", "b"} mutable, unordered, unique
dict {"make": "Ford", "year": 2023} mutable

R

list list (1, 2, "a", "b", 2) mutable, ordered
vector c(l, 2, 3) mutable, same primitive type
factor as.factor (c ("Hot", "Med", "Cold")) ordered
matrix | matrix(c(1, 2, 3, 4), nrow=2)
array array(c(l, 2, 3), c(4, 5, 6))

Table 2.4: Structured data types ("collection types”) in Python and R

A year is a leap year if it can be divided by four and (cannot be divided by 100
but can be divided by 400). Formally:
(year $ 4 == 0) and (year % 100 !'= 0 or year $ 400 == 0)

Hands-On Exercise
The territory of Nunavut was created on April 1st, 1999.

 Express the date in RFC 3339

 Calculate the number of days since the creation of Nunavut

* Assume that a ceremony took place at 3PM that day in Iqaluit and ex-
press this date-time in RFC 3339

* Assume the ceremony lasted for 125 minutes and express this duration
in RFC 3339

Collections

Collections can store multiple instances of primitive data, often heterogeneous. Differ-
ent collection types have different characteristics in terms of whether they are

* ordered or unordered,

* homogeneous (same primitive types) or heterogeneous (different primitive types),
* unique or allow duplicates,

* mutable (can be changed) or immutable (cannot be changed).

Different software tools offer different kinds of structured types and unfortunately the
terminology is not necessarily consistent across software tools. Table 2.4 provides a
summary of structured types in Python and R, with examples and key characteristics
of the type.



2.2. DATA TYPES 31

2.2.2 Structured Data

Data that you encounter in business analytics is built on the primitive and collection
data types described in the previous section. We distinguish between structured data,
such as tables, key-value pairs, documents, or graphs, and unstructured data, such as
text, images, and audio/video data. The latter are called unstructured because these
data essentially come as simply a sequence of characters or bytes. Information must
first be identified in them and extracted from them, before it can be used for analytics.

Tables

Table data refers to a method of organizing data in a structured, tabular format, where
the data is arranged in rows and columns. Each row in a table represents a single
record or entry. For instance, in a table of customer data, each row could represent a
different customer. Columns, sometimes called fields, represent different attributes or
characteristics or features of a record. In the customer data example, columns might
represent attributes of a customer such as their name, address, and purchase history.
The intersection of a row and a column is called a cell. Each cell contains a single piece
of data for a particular attribute of a record. For example, the cell at the intersection
of the "Name” column and the third row might contain the name of the third customer.
Cells may be of simple type or be themselves of structured types, such as sets or lists
or even other tables. Tables often have a header row at the top, which contains the
names of the columns. These headers provide context for what each column in the
table represents. Table 2.5 shows an example table with a header row that names the
columns, three rows of data in three columns that use simple data types (strings and
integers). Some tables may also have an index column as the first column with row
numbers.

CSV Files While table data is familiar from spreadsheet systems such as Microsoft
Excel or LibreOffice Calc, these tools often store table data in a format that is unique to
their system and difficult to read with other tools. This is because spreadsheet tables can
contain formulas, formatting instructions such color and font, and other information
besides the actual data.

The standard format for storing and exchanging tabular data (i.e. the serialization
format) is the comma-separated value file ("CSV” file) that is standardized in RFC

Name Area | Population
Canada 9,984,670 38,781,292
Nigeria 923,768 | 223,804,632
Germany 357,600 | 83,294,633

Table 2.5: Example Table



32 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

41808. Tabular data is stored in a plain text format, without formatting instructions
or formatting information, that makes it easy to read and write with different software
tools, such as statistics and analytics software, spreadsheet applications, or database
management systems.

CSV files are plain text files, typically encoded in ASCII or UTF-8. Every line con-
tains one row of the table, and fields within a row are separated by commas (although
sometimes other, non-standard delimiters such as semicolon are used). Fields are typ-
ically of a primitive data type although the interpretation of the field content is left to
the software tool reading the CSV file. The CSV file may contain an optional header as
the first line, with the same format as the data lines of the file. Every line is ended by
a line break using the sequence of CR and LF characters’. Every line must contain the
same number of fields and fields are allowed to be empty, but must still be separated
by a comma. The content of each field may be enclosed by double quotes (although
sometimes other, non-standard quotes like single quotes are used). The following is a
CSV serialization of Table 2.5:

"Name", "Area", "Population" CR LF

"Canada", "9984670", "38781292" CR LF
"Nigeria", "923768", "223804632" CR LF
"Germany", "357600", "83294633" CR LF

While the CSV format is standardized, not all data sets necessarily conform fully to the
standard. You may encounter different field delimiters, such as semicolons, tabs, carets
(™) or others. Line breaks may not use the Microsoft Windows convention of CR LF
but instead use only the LF character as is typical on MacOS and Linux/Unix systems.
Not all fields may be quoted and you may encounter a mix of double quotes and single
quotes even in the same CSV file. Additionally, the field contents themselves, such
as numbers and dates, may themselves not be standards compliant and exhibit a range
of different notations, as discussed above. For a business analyst, it is important to
recognize these variations and be able to address them prior to further data analysis.

8https://datatracker.ietf.org/doc/html/rfc4180

9These stand for “carriage return” and “line feed”, respectively, and are a hold-over from the era of
mechanical typewriters where the paper carriage needed to be returned to the start of a line and then advanced
by one line. CR and LF are represented by ASCII/UTF-8 codes 13 and 10, respectively. Hence, the CSV
line break conforms to the Microsoft Windows convention of line breaks. MacOS and Linux use only the LF
character for line breaks.
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Hands-On Exercise

 Search the internet for a CSV file of the population and areas of all coun-
tries of the world
» Examine the CSV file and answer the following questions:
— What is the delimiter?
Which fields are quoted, and how?
What is the line ending character(s)?
What is the number format?
What is the date format (if there are dates)?
 Import the CSV file into your favourite spreadsheet tool
— Does it recognize all information correctly? If not, what is not
imported well?
» Export the CSV file from your tool under a different name.
— Do you get an identical file to the one you imported? If not, what
has changed?

Relational Databases Tabular data is also the basis for relational database manage-
ment systems (RDBMS). Tables in these systems are called relations'”. Records, i.e.
rows of a relation, are uniquely identified by primary keys. These may be “natural”
primary keys, such as a combination of fields (also called "attributes” in RDBMS) or
artificial/synthetic primary keys. For example, in some applications one may assume
that the combination of first name, last name, date of birth, and postal code uniquely
identifies a person and is used as a primary key. However, it is generally safer to assign
artificial primary keys, such as consecutive numbers, to records.

One key characteristic of data in an RDBMS is that fields in one table can refer to
primary key fields in another table. For example, the product numbers for an order in
the order table must refer to product numbers of products in the products table. The
referring fields are called “foreign keys”. Foreign-key relationships ensure referential
integrity, a form of validity of the data. They also allow an RDBMS to easily retrieve
related records from different relations. Figure 2.2 shows an example of keys in a
relational database.

Data normalization in an RDBMS refers to reducing data redundancy. For example,
if a customer can have multiple addresses, rather than using multiple address fields
in the customer relation or having multiple customer records for a customer (one for
each address), normalization will create a table to store addresses where each address
refers back to a particular customer using a foreign-key relationship. Normalizing the
relations and thereby reducing redundancy makes data storage more efficient and also
reduces the potential for inconsistent data, leading to higher data integrity. RDBMS
typically use the structured query language (SQL) for retrieving information.

Prominent RDBMS examples are Oracle RDBMS!!, a proprietary system for on-premises

10 After the mathematical concept of a relation as a subset of a cross-product.
Unttps://www.oracle.com/ca-en/database/
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llkey”
login/ first last

‘mark| | Samuel | Clemens
lion Lion Kimbro
kitty | Amber | Straub
login phone
|mark] 555.555.5555]
"related table"

https://commons.wikimedia.org/wiki/File:Relational_key_SVG.svg

Figure 2.2: Keys in a relational database

installation; the PostgreSQL!? open-source RDBMS system for on-premises installa-
tion; and Amazon RDS'3, Google Bnguery”, and Azure SQL" which are cloud-
based systems on AWS, Google Cloud, and Microsoft Azure, respectively.

Hands-On Exercise

» Assume that products are identified by a product code and have attributes
such as description, weight, and price.

* Assume that suppliers are identified by a supplier number and have at-
tributes such as name and address.

» Assume that each product is available from exactly one supplier (but a
supplier can supply multiple products).

Write example relations and identify foreign-key relationships for referential
integrity, similar to Figure 2.2

Key-Value Data Stores

Key-value data stores are a type of non-relational (NoSQL'®) database that organize
data as a collection of key-value pairs. In this model, each data item is stored as a key,
along with an associated value. Keys may have multiple components, in an ordered
list of “minor keys”. The associated value is not interpreted by the data store, and
can contain anything that is meaningful to the application, from primitive data types
to collections to complex documents to images or video data. Figure 2.3 shows an
example of the key-value model of data storage.

Important characteristics of key-value stores the extremely simple data model: every

2https://www.postgresql.org/

Bhttps://aws.amazon.com/rds/

Yhttps://cloud.google.com/bigquery

Bhttps://azure.microsoft.com/en-ca/products/azure-sql/database

16NoSQL is term to describe non-relational database models. It does not mean "no SQL”, but means “Not
only SQL.”
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Value
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Figure 2.3: Key Value Data Store

item is stored as a key and its corresponding value. The keys are unique identifiers.
Due to their simple structure, key-value databases allow faster data insertion, updating,
and retrieval when compared to more complex relational databases. Unlike relational
databases, key-value stores do not have predefined relations with foreign-key relation-
ships. This means that the values associated with keys can be changed dynamically,
and different keys can have values of different types. This makes key-value stores
more flexible than other databases. On the other hand, they lose the data integrity ad-
vantages that come from a predefined schema and the referential integrity based on
relationships between multiple tables. Key-value stores are more efficient at storing in-
formation than RDBMS because empty table cells do not need to be stored. Key-value
stores are also easier to scale and distribute among multiple computers, due to their
simple data model. On the other hand, key-value stores are limited in terms of their
data querying and analysis capabilities. They are not inherently designed for complex
queries, such as joining data across different keys.

Example key-value data stores include Redis!’, an open-source, in-memory key-value
store. Amazon DynamoDB'? is a proprietary scalable NoSQL database service avail-
able on the AWS cloud. Google BigTable!® and Azure CosmosDB? are key-value
stores offered on the Google cloud and the Microsoft Azure cloud. Facebook’s RocksDB,
Google’s LevelDB?! and the Apache Cassandra’’> and HBase?? projects offer open-
source systems for on-premises installation.

Documents (JSON)

When speaking about documents in the context of structured data, we do not mean
unstructured text (as a series of characters) but a structured collection of elements.
The JavaScript Object Notation (JSON) is a lightweight data-interchange format that
is easy for humans to read and write, and also easy for machines to parse and generate.

https://redis.io/
Bhttps://aws.amazon.com/dynamodb/
Yhttps://cloud.google.com/bigtable
Onttps://cosmos.azure.com/
2lpttps://github.com/google/leveldb
Zhttps://cassandra.apache.org/
Bhttps://hbase.apache.org/
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It is software tool independent. Originally developed for exchanging data between
web servers and web browser client applications, it has emerged as a popular way of
describing and exchanging many different kinds of data for a variety of purposes in

many different applications. JSON was standardized in RFC 8259%* in 2017.

JSON documents are plain text documents encoded in UTF-8 and consist of key-value
pairs where the key or name is a string and the separator is a colon. Values may be
strings (enclosed by single or double quotes), numbers, boolean values ("t rue” or
”false”), or the special value "null”. Values are either objects or arrays. JSON
objects are unordered collections of zero or more key-value pairs and are delimited
by ”{” and ”}”. Figure 2.4 shows an example of a JSON object with key-value pairs
and nested objects. JSON arrays are ordered sequences of zero or more values and
are delimited by ’[” and ”]”. Arrays contain values but no keys and, because they are
ordered, elements can be accessed by position. Figure 2.5 shows an example of a JSON

array, i.e. a list of values, in this example a list of objects.

{
"Image": {
"Width": 1060,
"Height": 400,

}l

"Title": "Skyline of Igaluit, Nunavut",
"Url " .
"https://upload.wikimedia.org/wikipedia/commons/b/b4/Igaluit_skyline. j

"Legal": {

"Copyrighted": true,

"License": "GNU Free Documentation License",

"Inception": "2010-03-24",

"Author": "Aaron Lloyd"

Figure 2.4: JSON Example — Complex Object

Hands-On Exercise

Describe yourself in a JSON object:
* Identify information about yourself, such as names, addresses, dates, re-
lationships (work, school, uni), etc.
* Structure the information in JSON Objects and Arrays
* Use nested structures, e.g. objects in arrays, or arrays in objects, or ob-
jects in objects, etc.

Xnttps://datatracker.ietf.org/doc/html/rfc8259
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[

{
"Latitude": 56.536389,
"Longitude": -61.718889,
"City": "Nain",
"Province": "NL",
"Postal": "AOP",
"Country": "Canada"

by

{
"Latitude": 53.512778,
"Longitude": -60.135556,
"City": "Sheshatshiu",
"Province": "NL",
"Postal": "AQP",
"Country": "Canada"

}

]
Figure 2.5: JSON Example — List of Objects
Documents (XML)

XML?, for “eXtensible Markup Language”, is a flexible and versatile serialization
format that plays an important role in the storage and transmission of data. It is a text-
based format that allows for the creation of custom tags (tags are used to describe and
delimit data elements), providing a means to define and structure data in a way that
is both machine-readable and human-readable. Unlike HTML (the Hypertext Markup
Language that describes web pages), which has a predefined set of tags for web page
layout, XML does not prescribe any specific tags, allowing users to create tags tailored
to their specific application.

XMVL’s development began in the late 1990s by an XML Working Group under the
auspices of the World Wide Web Consortium (W3C). XML 1.0 was officially recom-
mended by the W3C in February 1998. It quickly gained widespread adoption due to
its simplicity, extensibility, and ability to work seamlessly across different systems and
platforms. XML has become a cornerstone technology in numerous domains, from
web services and APIs to configuration files and data interchange formats.

An XML document is composed of elements. XML elements are described by match-
ing opening and closing fags, between which simple text content or other XML ele-
ments may be placed. Elements in turn may have attributesAttribute (in XML). At-
tributes are specified in the opening tag of an element and may contain simple, quoted
text data only. This hierarchical organization can represent complex data relationships
and nested structures.

XML files are human-readable and self-descriptive in nature; the names of elements

Dpnttps://www.w3.org/TR/2008/REC-xm1-20081126/
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and attributes used in the document indicate that type or meaning of the data they
describe, enhancing the understanding and interpretation of the data’s structure and
meaning. Additionally, XML is platform-independent and language-neutral, making
it a universally accepted standard for data interchange across different systems and
applications.

XML element and attribute names may be defined within a namespace. This allows
mixing elements with the same name but different namespaces in the same document
and removes ambiguity that could arise from identically named elements that describe
different data or content. For example when mixing customer and product information
in an order document, both the customer and the product may have a “name” ele-
ment and different namespaces for the two “name” elements helps to tell them apart.
Namespaces are declared using the special xm1ns attribute and are typically defined
by a URI (Uniform Resource Identifier), typically a URL (Uniform Resource Locator).
These URI/URL are for identification purposes and do not need to describe an actually
existing resource.

The following example describes the Innu people of northern Canada in the form of an
XML document. The element names, like People, History, Culture areself-
descriptive and human-readable. Note that each opening tag (such as <Traditions>)
is matched by a corresponding closing tag (such as </Traditions>. Empty ele-
ments that do not contain any content are defined using a single tag (for example, the
<geo:Location.../> element). Some elements contain attributes, such as the
Name attribute of the GeneralInformation element. Attributes must be quoted
character strings.

Namespaces are declared at the root element of the document: The xmlns:geo and
xmlns:hist are namespace declarations. They are used to distinguish between ge-
ographical (geo) and historical (hist) data. Notice how element and attribute names
may be prefixed by a namespace (such as the <hist:History> element or the
geo:Country attribute. The xmlns declaration defines the default namespace that
applies to all elements and attributes without an explicit namespace.

Notice that elements with the same name may be repeated. For example, there are
multiple Period elements in the Hi st ory element, each with theirown hist :era
attribute to specify the era. This allows one to represent lists or sets of elements.
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<People

xmlns="https://www.example.com/peoples"
xmlns:geo="http://www.example.com/geo"
xmlns:hist="http://www.example.com/history">
<GeneralInformation
Name="Innu" Language="Innu-aimun">
<geo:Location geo:Country="Canada"
geo:Regions="Labrador, Quebec" />
</GeneralInformation>
<hist:History>
<hist:Period hist:era="Pre-Colonial">
<Description>
Nomadic lifestyle, primarily
hunting and fishing.
</Description>
</hist:Period>
<hist:Period hist:era="Post-Colonial">
<Description>
Impact of colonization,
including displacement and
cultural changes.
</Description>
</hist:Period>
</hist:History>
<Culture>
<Traditions>
<Tradition>
Hunting and fishing as cultural
and subsistence activities.
</Tradition>
<Tradition>
Use of the tepee for temporary
shelter.
</Tradition>
</Traditions>
<Art>
<Form>Drum making</Form>
<Form>Clothing with intricate beadwork
</Form>
</Art>
</Culture>
<Challenges>
Issues like land rights,
</Challenges>
</People>

cultural preservation

Given the similarities between JSON and XML it is not surprising that one can read-

ily be transformed into the other. An equivalent JSON document of the above XML
document could be as follows:
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"Innu":

{
"@xmlns:geo": "http://www.example.com/geo",
"@xmlns:hist": "http://www.example.com/history",
"GeneralInformation": {
"@Name": "Innu",
"@QLanguage": "Innu-aimun",
"Location": {
"@geo:Country": "Canada",
"@geo:Regions": "Labrador, Quebec"

}l
"History": {
"Period": [
{
"@hist:era": "Pre-Colonial",
"Description": "Nomadic lifestyle,
primarily hunting and fishing.

"@hist:era": "Post-Colonial",

"Description": "Impact of colonization,
including displacement and
cultural changes."

}!
"Culture": {

"Traditions": {
"Tradition": [
"Hunting and fishing as cultural and
subsistence activities.",
"Use of the tepee for temporary shelteq
]
}I
"Art": {
"Form": [
"Drum making",
"Clothing with intricate beadwork"
]
}
}l
"CurrentStatus": {
"Challenges": "Issues like land rights,

cultural preservation, etc."

In this example, XML namespaces are represented as properties with names prefixed
by ”@”. This does not imply any special meaning or treatment in JSON, but makes
it easier for the computer to read and parse ("understand”) the document. XML el-
ements with attributes are represented as JSON objects, while repeated elements are
represented as JSON arrays.

In comparing XML to JSON, it is evident that both formats are human as well as

=
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machine readable. It is also clear that XML is more verbose or lengthy. This is an
advantage in that it makes it very self-descriptive, but a disadvantage in that XML
documents are larger than corresponding JSON documents. In contrast, JSON is more
compact or lightweight, and not quite as self-descriptive as an XML document. XML
supports more complex structures than JSON through is attributes, namespaces, and a
larger selection of possible data types for simple content.

While XML can be strictly defined using XML Schema there is not yet a well-adopted
means for specifying JSON documents. This means that JSON documents cannot be
validated against a set of rules or constraints, possibly leading to data quality issues,
but, on the other hand, may be used more flexibly.

Hands-On Exercise

Describe yourself in an XML document:
¢ Identify information about yourself, such as names, addresses, dates, re-
lationships (work, school, uni), etc.
¢ Structure the information in Elements and Attributes
» Use nested elements where appropriate

Document Databases Document databases, a type of NoSQL databases, are de-
signed to store, retrieve, and manage document-oriented information, typically in the
form of JSON or BSON (Binary JSON) documents. Unlike traditional relational data-
bases that store data in rows and columns, document databases handle data in a more
flexible, semi-structured way. They are designed for handling large volumes of diverse
data that does not fit into a tabular format. Document databases may be thought of
as nested key-value data stores where all keys are strings. Their fundamental unit of
storage is the document. Unlike relational databases, document databases usually do
not have a predefined schema. Each document in a collection can have its own unique
structure, with different fields, data types, and sizes. This makes them more flexible
than RDBMS. Document databases often offer query languages that are designed to
handle complex queries on document data, including searching within documents and
aggregating data across multiple documents.

Typical use cases for document databases are content management, where different
types of content need to be stored and retrieved efficiently, catalogs and product data,
where each product may have different attributes and structures, and real-time analytics
of Internet-of-Things (IoT) sensor data, where large volumes of unstructured and semi-
structured data are generated.

Prominent examples of document databases are MongoDB?® and ArangoDB 27 which
are partially proprietary system for on-premises installation or cloud-based use; Apache

2https://www.mongodb.com/
Thttps://arangodb.com/


https://www.mongodb.com/
https://arangodb.com/

42 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

CouchDB?® which is a fully open-source system; and AWS DocumentDB? which is a
cloud-based system on the Amazon AWS cloud.

Graphs

Graphs consist of nodes (also called vertices) and edges (also called arcs or relation-
ships) that connect two nodes. Edges may be directed or undirected. Both nodes and
edges may be labelled or typed. For example, different node types may be used to rep-
resent customers and products; different edge types may represent a customer ordering
a product, a customer returning a product, a customer obtaining a quote about a prod-
uct, etc. Graph data is found in social networks (between people, events, topics, etc.),
in logistics networks (between suppliers, customers, warehouses, distribution centers,
etc.), in financial networks (between organizations, accounts, etc.), in biological net-
works, and in many other contexts.

Id:3
Type: Group
Name: Chess

https://commons.wikimedia.org/wiki/File:GraphDatabase_PropertyGraph.png

Figure 2.6: Property Graph Example

Graph data is either in the form of property graphs or RDF graphs ("Resource Descrip-
tion Framework™). Property graphs are a graph data model where each node and edge
can have a set of properties (key-value pairs) that describe the attributes of the entity
represented by the node. Edges can also have properties, which can describe attributes
of the relationship. For example, a node representing a person might have proper-
ties like name: ”John Doe” and age: 30. An edge representing a friendship
relationship might have a property like since: 2010. Property values may be sim-
ple data types or complex ones like JSON documents. Figure 2.6 shows an example
property graph.

In contrast to property graphs, RDF*° graphs do not allow properties on nodes and
edges. Instead, they describe information in subject—predicate—object triples. What
might be an “age” property in a property graph can be described in RDF as the triple

Bnttps://couchdb.apache.org/
Pnttps://aws.amazon.com/documentdb/
Onttps://www.w3.org/RDF/
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JohnDoe - has age - 30. In an RDF graph, subjects and objects have unique
identifiers (URIs, uniform resource identifiers®! that are typically defined in the form
of URL as defined in RFC 2616%2), or are literal values such as strings or numbers.
Figure 2.7 shows and example RDF graph.

http:iwww w3, org/2000/10/swap/pimicontacté#Person

http:ibwww.w 3.0rgd1 99H02i2 2-rdf-syntax-ns#ty pe

hittp:iwww w3, org/People/EM/contactéime

g hwww.w 3.0rg/2000010/swap/pimicontact#fullName
Eric Miller

http: fhwww w3. org/2000/10/swap/pimicontactémailbox

mailto:em@w3.org

http:/hwww w3, org/2000/10/swap/ pim/contacté#personalTitle
Dr.

https://commons.wikimedia.org/wiki/File:Rdf_graph_for_Eric_Miller.png

Figure 2.7: RDF Graph Example

While graphs could be modelled or described in table (relational) form, or as key-
value pairs, graph databases provide powerful, intuitive, and efficient graph-specific
queries®*. Figure 2.8 shows an overview of different query types:

e Path queries: Reachability of nodes, shortest-path between nodes
* Subgraph queries: Exact or approximate match of a smaller graph in a larger one
* Aggregate queries: Aggregating nodes or properties along paths

» Similarity search: Similarity of nodes or edges using path-based approaches,
graph embedding-based approaches

* Keyword search: Tree-based semantics, subgraph-based semantics
* Natural language query answering: Identifying edges or nodes

Prominent examples of graph database management systems are JanusGraph**, a fully

3https://www.w3.org/TR/webarch/#identification

Zhttps://www.ietf.org/rfc/rfc2616.txt

33Source: Wang, Y., Li, Y., Fan, J., Ye, C., & Chai, M. (2021). A survey of typical attributed graph queries.
World Wide Web, 24, 297-346

3nttps://janusgraph.org/
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Structured Query I : Unstructured Query
INPUT Subgraph Pattern Query  OUTPUT : : Natural L Question Answering
Person 0 | | INPUT “Who is married with a man that likes the song in the Hobbit?”
Y | |
I | @
| e | |
0% ¥
OUTPUT -4
) I ! y spouse & like theme_music
- | |
Path Query Attributed Graph Type = Person Keyword Search
INPUT OUTPUT | [ 1u0e = person Name S Lucy 7 Tpe=tusic INPUT “Alice, Lucy”
® Name = Sam supervision like “ Name =1 See Fire @
OUTPUT
spouse i
1 friend . \é\b we 1 Q ) Jriend 0
e supervision < g _ theme_music
\friend* [:> 0 Type = Person u SUpETVision_supervisiol
ike* N Name = John 2: — — €
like friend v
' " . .
like = riend = i N
: ike Type :erson ) fr like TVPS =Movie . spouse () friend friend
Name = Alice 'Name = The Hobbit 3 & ~—
Type = Person 0 T
Name = Bob U
T T
Aggregate Query F‘ <gender, edge_type> | | Similarity Search
friend: 1 friend: 2 friend: 1 : : INPUT g
° supervision: 2 : : @
| | 2
| | OUTPUT 1,09 2,08 3,0.65 \J
| |

Source: Wang, Y., Li, Y., Fan, J., Ye, C., & Chai, M. (2021). A survey of typical attributed graph queries. World Wide Web,

24, 297-346.

Figure 2.8: Graph Queries

open-source system for on-premises installation; ArangodDB*°, Neo4J*°, and Ori-
entDB* which are partially open-source for on-premises installation; AWS Neptune?®
on the Amazon AWS cloud, and CosmosDB>° on Microsoft Azure cloud.

While there does not exist a standardized serialization format for property graph data
interchange, PG-JSON and GraphSON are two recent proposals to describe property
graphs in a JSON object, shown in Figure 2.9 and Figure 2.10.

35https:
36https:
37https:
38https:
39https:

//arangodb.com/

//neo4dsj.com/

//orientdb.org/
//aws.amazon.com/neptune/
//azure.microsoft.com/en-ca/

products/cosmos-db
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{
"nodes": [
{
"id":101,
"labels": ["Person"],
"properties":{"name": ["Alice"], "age":[15], "country":["USA"]}
}I
{
"id":102,
"labels": ["Person", "Student"],
"properties":{"name": ["Bob"], "country":["Japan", "Germany"]}
}
]l
"edges": [
{
"from":101,
"to":102,
"undirected":true,
"labels": ["sameSchool", "sameClass"],
"properties": {"since":[2012]}
by
{
"from":102,
"to":101,
"labels":["1likes"],
"properties":{"since":[2015]}
}
]
}

Figure 2.9: PG-JSON Example
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{
n graphll . {
"mode" : "NORMAL",
"vertices": [
{
"name": "lop",
lllang": "java",
"_id": "3",
"_type": "vertex"

"edges": [
{
"weight": 1,
" id": "10",
"_type": "edge",
" outV" . " 4 n 0
lliinvll . " 5 " 7
"_label": "created"

"name": "vadas",
"age": 27,

" idll . n 2 " 0
"_type": "vertex"

"weight": 0.5,
ll_idll : ll7ll,
",type ". ”edge" ,
ll_outvll . " l n P
"_invll . " 2 mw o

"_label": "knows"
"name": "marko",

"age": 29,
"7id" : lll",

"_type": "vertex" "weight": 0.400,

" id" B " 9 " 0

"_type": "edge",

" outV" . mw l n 0

lliinvll . " 3 " 7

" _label": "created"

"name": "peter",
"age": 35,

" idll . n 6 n 0
"_type": "vertex"

by

Figure 2.10: GraphSON Example
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In contrast, multiple standardized RDF graph serializations are defined*’. The “Tur-
tles” format (Terse RDF Triples) is the most compact representation and most easy to
read for humans. The following example describes the RDF graph in Figure 2.7. It
defines three prefixes of URIs to identify resources. These resources form the subjects,
predicates, and objects of the RDF triples.

@prefix eric: <http://www.w3.org/People/EM/contact#>
@prefix contact: <http://www.w3.0rg/2000/10/swap/pim/contact#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

eric:me contact:fullName "Eric Miller"

eric:me contact:mailbox <mailto:e.millerl23 (at)example>
eric:me contact:personalTitle "Dr."

eric:me rdf:type contact:Person

The equivalent N-Triples representation is still reasonably compact, but easier for com-
puters to read and parse. Here, the URI prefixes are embedded in the subjects, predi-
cates, and objects:

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.0rg/2000/10/swap/pim/contact#fullName>
"Eric Miller"

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.0rg/2000/10/swap/pim/contact#mailbox>
<mailto:e.millerl23 (at)example>

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.0rg/2000/10/swap/pim/contact#personalTitle>
"Dr . "

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#type>
<http://www.w3.0rg/2000/10/swap/pim/contact#Person>

Finally, the RDF/XML serialization uses the XML language to describe RDF triples.
It is quite verbose:

40Examples taken from https://en.wikipedia.org/wiki/Resource_Description_
Framework
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<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:contact="http://www.w3.0rg/2000/10/swap/pim/contact#"
xmlns:eric="http://www.w3.0rg/People/EM/contact#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#">
<rdf:Description rdf:about="http://www.w3.o0rg/People/EM/contact#me">
<contact: fullName>Eric Miller</contact:fullName>
</rdf :Description>
<rdf:Description rdf:about="http://www.w3.org/People/EM/contact#me">|
<contact :mailbox rdf:resource="mailto:e.millerl23 (at)example"/>
</rdf :Description>
<rdf:Description rdf:about="http://www.w3.o0rg/People/EM/contact#me">
<contact :personalTitle>Dr.</contact :personalTitle>
</rdf :Description>
<rdf:Description rdf:about="http://www.w3.o0rg/People/EM/contact#me">|
<rdf:type rdf:resource="http://www.w3.0rg/2000/10/swap/pim/contact/#Person"/>
</rdf :Description>
</rdf :RDF>

Hands-On Exercise

Document yourself in a Turtle:
¢ Identify information about yourself, such as names, addresses, dates, re-
lationships (work, school, uni), etc.
e Structure the information in Turtle triples
* Make up appropriate prefixes and appropriate verbs/predicates

2.2.3 Unstructured Data
Text

Text refers to written language in some writing system and is provided as a string of
characters or a file containing bytes that encode the text in Unicode UTF-8 or some
other format. Text data in business analytics does not normally contain formatting
instructions, such as font sizes or font styles, or mixed tables or images, as might be
common in word processing systems. Instead, it refers to plain text only.

Text analysis is the process of extracting meaningful information from unstructured text
data. Typical text analysis tasks are named entity recognition, co-reference analysis,
event extraction, sentiment analysis, and document clustering. Named entity recog-
nition identifies names of persons, organizations, or places, and expressions of time,
quantity, or monetary amounts in a text. It is useful for content classification and data
extraction.

Co-reference analysis involves identifying when two or more expressions in a text refer
to the same entity. This task is crucial for understanding the context and for maintaining
the continuity of subjects throughout the text. For example, in the sentence “Alice
drove her car. She parked it near the mall,” co-reference analysis links ”She” to ”Alice”
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and ”it” to "Alice’s car.”’. Co-reference analysis helps in understanding the text flow
and the relationships between various entities.

Event and relationship extraction is about identifying instances of specific types of
events in text and the entities associated with them. An event can be anything that
happens or is described as happening. For example, in "The company acquired a startup
for $1 million in 2021,” event extraction would identify the acquisition event, involving
the company, the startup, the amount of $1 million, and the time 2021. This task is
useful for information monitoring or historical data analysis.

Sentiment analysis involves identifying and categorizing opinions expressed in a piece
of text, especially to determine whether the writer’s attitude towards a particular topic,
product, etc., is positive, negative, or neutral. It is widely used in social media moni-
toring, brand monitoring, customer service, and market research.

Document clustering is a method to categorize documents into groups (or clusters)
based on their similarity. It is useful for news aggregation, organizing web search
results, discovering prevalent topics or themes and grouping of similar documents to
make it easier to find relevant information.

The history of text mining approaches has evolved through several stages. In the 1950s
and 1960s, text mining began with symbolic approaches, involving rule-based sys-
tems. These systems, which relied on handcrafted linguistic rules, attempted to encode
human language knowledge into a format readable by computers. Their reliance on ex-
tensive domain knowledge and manual rule creation made them inflexible and unable
to adapt to language variations and new data.

The late 1980s and 1990s saw a shift towards statistical methods in text mining, driven
by the growing availability of digital text data and computational power. This pe-
riod was characterized by the use of machine learning models like Naive Bayes, Deci-
sion Trees, and Support Vector Machines. The era of corpus linguistics also emerged,
enabled by the availability of large text corpora, allowing for the statistical analysis
of real-world text data. Techniques like Latent Semantic Analysis (LSA) and Latent
Dirichlet Allocation (LDA) were developed for topic modeling and document classifi-
cation.

The 2010s marked a revolution in text mining with the advent of deep learning and
neural networks, which provided the ability to learn complex patterns in large datasets.
Recurrent Neural Networks (RNNs) and variants like LSTMs became popular for han-
dling sequential text data. The development of attention mechanisms and transformer
models in the 2020s, such as Google’s BERT or OpenAI’s ChatGPT, represented yet
another significant advancement.
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Hands-On Exercises

1. Identify a specific business problem that can be addressed by analyzing
text data

2. What text data would you need to address the problem?

‘What would you wish to do with the text data?

4. Where might you get this text data?

(O8]

Regular Expressions (RegEx)

Regular expressions (often abbreviated as regex or regexp) are a tool for pattern match-
ing within text. They enable the specification of complex search patterns in a concise
and flexible manner. Regular expressions are widely used for searching, editing, or
manipulating text and data. For example, the following regular expression matches any

number, including one in scientific notation*':

[+=12 (\d+ (\.\d*) 2|\ .\d+) ([eE] [+-]1?\d+) ?.

Metacharacter | Description

~

Matches start of text

Matches any character; matches the dot character when used within brack-
ets

[] Matches any of the characters in the brackets; - can be used to specify
ranges of characters

] Matches any character not in the brackets

$ Matches the end of text
) Marked subexpression
\n Matches the n-th marked subexpression
* Matches the preceding element zero or more times
{m,n} Matches the preceding element at least m and not more than n times

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.6: Basic Regular Expressions

Regular expressions are specified using meta characters, i.e. characters that describe
other characters. Table 2.6 shows the metacharacters for basic regular expressions as
defined by the POSIX standard. All other characters are treated as literal characters.
With these definitions, you can understand the examples shown in Table 2.7.

Extended regular expressions add optionality and choice operators to set of basic regex
meta characters, as shown in Table 2.8. Table 2.9 shows examples for using these
operators.

“Source: https://en.wikipedia.org/wiki/Regular_expression


https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
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RegEx ‘ Matches

.at “hat”, “’cat”, "bat”, ’4at”, etc.

[hclat | “hat”, "cat”

['b] all strings matched by .at except “bat”

["be] all strings matched by .at except "bat” and “cat”

“[bclat | “bat” and “cat” at start of text

[bc]at$ | “bat” and “cat” at end of text

LIET)

\[\] any single charater surrounded by [ and ], e.g. ”’[a]”, ”[7]”, etc.

EIFETIRT)

S.* character ”’s” followed by zero or more characters, e.g. ’s”, ’saw”, ”s3w96.7”, etc.

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.7: Basic Regular Expression Examples

Meta character | Description

? Matches preceding element zero or one time

+ Matches preceding element one or more times

| Matches either the expression before or after the choice operator

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.8: Extended Regular Expressions

Over the years, different types or ’dialects” of regular expressions have been developed
for or within different programming languages. One popular dialect is that used in
the Perl programming language or the Vim text editor. One important way in which
they differ is in the character classes they provide as shortcuts for specifying a set of
characters to match. Table 2.10 shows an excerpt of the most frequently used character
classes.

Regular expressions are a fundamental tool in text processing and manipulation, of-
fering a robust and efficient method for pattern matching and string analysis. Their
versatility makes them an essential skill in many programming and data-related tasks.
Regular expressions are available in all programming languages and statistics and ana-

RegEx | Matches

[hc]?at | “at”, “hat”, "cat”

[hc]*at “at”, "hat”, ”cat”, ”chat”, chchchat”, etc.

[hc]+at | “hat”, “cat”, “chat”, “chchchat”, etc.

catldog | “cat” or "dog”

Adapted from https://en.wikipedia.org/wiki/Regular_expression

Table 2.9: Extended Regular Expression Examples


https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
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Perl/Vim | ASCIL POSIX
Digits \d [0-9] [:digit:]
Non-digits \D [70-9]
Lowercase letters \l [a-z] [:lower:]
Uppercase letters \u [A-Z] [:upper:]
Alphanumeric chars | \w [A-Za-z0-9_]
Non-word chars \W [MA-Za-z0-0_]
Whitespace \s [ \t\r\n\v\f] [:space:]
Non-whitespace \S [A \t\r\n\v\f]

Table 2.10: Character classes in Regular Expressions

Iytics software tools and allow a basic level of text processing and manipulation.

Hands-On Exercise

1. Specify a RegEx to match Canadian postal codes:
https://www.canadapost—-postescanada.ca/cpc/en/
support/articles/addressing—-guidelines/postal-codes.
page

2. Specify a RegEx to match a full RFC 3339 date with timezone, such as

72023-11-14T20:42:53-04:30”
3. Challenge: Specify a RegEx that matches any ISO 8601 date-time format

Levenshtein Distance

The Levenshtein distance is a metric of similarity of two text fragments. It is a type
of string—edit distance, in that it measures the lowest number of insertion, deletion
and substitution operations of individual characters to transform one text fragment into
the other. The operations may be equally weighted or be differentially weighted, for
example to penalize deletion operations more than insertion operations. The recursive
definition is shown in Figure 2.11.

As an example, consider the two strings “’kitten” and “sitting”. The (unweighted) Lev-
enshtein distance between the two is 3. In the first edit, the ”’k” is substituted with an

93599 99 99

”s”, then the “’e” is substituted with an i and finally a ”g” is inserted at the end.

Hands-On Exercise Determine the Levenshtein distances between the fol-
lowing:

1. Last five digits of your student number and 12345

2. The words ”Nunavut” and Nunatsiavut”

3. The words ”Inuktitut” and “Innuttitut”

4. The words "Mikak” and "Micock”



https://www.canadapost-postescanada.ca/cpc/en/support/articles/addressing-guidelines/postal-codes.page
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|al if [b] =0,

b it Jo| = 0,

lev ( tail(a), tail(b)) if head(a) = head(b),
lev(a,b) = lev ( tail(a), b)

1+ min | lev (a, tail(b)) otherwise

lev ( tail(a), tail(b))

https://en.wikipedia.org/wiki/Levenshtein_distance

Figure 2.11: Levenshtein Distance

Images

Image data is the representation of visual information in a digital format.There are two
primary types of image formats: vector and raster.

Vector images represent images as sets of graphical prim-
itives such as lines, polygons, and curves (vectors) us-
ing their mathematical description. Common vector
image formats are SVG*? (Scalable Vector Graphics),
PDF (Portable Document Format) and EPS (Encapsu-
lated Postscript). Vector images can be scaled to any size
without losing quality, as the mathematical formulas for
https://commons. the graphical primitives adapt and scale to the new size.

wikimedia.org/wiki/File: . X . s
Persian_sand_CAT.jpg Raster images are composed of a grid of pixels ("picture

element”), where each pixel has a color value. These

are also known as bitmap images. The quality of raster
images is dependent on their resolution. Scaling up a raster image can lead to a loss in
quality, known as pixelation. Common formats are JPEG, and PNG, which use a lossy
compression, that is, in reducing the file size, image detail may be lost. In contrast, the
TIFF format uses lossless compression, retaining the full information of an image.

Image data in analytics is typically in a raster format using the RGB colorspace, which
describes colours in terms of their red, green, and blue components“. Hence, each
pixel is described by 3 bytes (color components range from 0 to 255) and a full image
can be thought of conceptually as a 3 x X x Y array of values between 0 and 255. For
image analytics, images in a compressed format such as JPEG, PNG or TIFF must be
decompressed to the full set of X x Y pixels, and the three RGB values are usually
scaled to a range between 0 and 1.

Typical image analysis tasks include object detection and counting, object classifica-
tion, image segmentation, and image retrieval. Object classification or image classifi-
cation categorizes an entire image, or specific objects within an image, into predefined
classes. This is commonly used for social media analysis or applications like photo
tagging. Object detection involves identifying and locating objects within an image.

“https://www.w3.org/TR/SVG2/
43 Another widely used colour space is CMYK, where a pixel’s color is described in terms of its cyan,
magenta, yellow, and black components.


https://en.wikipedia.org/wiki/Levenshtein_distance
https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg
https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg
https://commons.wikimedia.org/wiki/File:Persian_sand_CAT.jpg
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This task goes beyond merely recognizing what objects are present; it also determines
where they are in the image. Typically, object detection algorithms output a bounding
box for each detected object, specifying its coordinates within the image. Object detec-
tion is widely used in applications such as surveillance, face detection, and autonomous
vehicles. Image segmentation divides an image into multiple segments with the aim of
simplifying or changing the representation of an image into a form that is more mean-
ingful and easier to analyze. Image segmentation is used in medical imaging, machine
vision, and object tracking. Image retrieval involves searching and retrieving images
from a large database based on the content of the images themselves. It typically in-
volves extracting features like color, texture, and shape from the images and using these
features to find similar images in a database.

Business applications of image analysis include robotics, character and handwriting
recognition in documents for process automation, security (identity verification, fraud
detection, etc.) and manufacturing (defect detection, etc.).

' 3

Hands-On Exercise

1. Identify a specific business problem that can be addressed by analyzing
image data
2. What image data would you need to address the problem?

3. What would you wish to do with the image data?
4. Where might you get this image data?
Video

Video data consists of a sequence of images (“frames”) displayed at a certain rate
(frame rate) to create the illusion of motion. Accompanying audio tracks are synchro-
nized with these frames. Video data can be complex due to the need to balance quality,
resolution, compression, and file size. Conceptually, video is a series of image frames
in raster image format, i.e. a7 x 3 x X X Y array of RGB values between 0...255
(where T refers to the set of frames over time).

However, in practice, video data is heavily compressed in video files as specified
by different video formats. Each format has its compression techniques and algo-
rithms, impacting the video’s quality, size, and playback compatibility. A video codec
(compressor-decompressor) is a software or hardware tool that compresses (encodes)
and decompresses (decodes) digital video in a particular format to reduce file size and
bandwidth requirements for storage or transmission. Popular video formats (codecs)
are H.264, H.265, AVC, and AV1. A video container format is a file format that can
contain various types of data, including video, audio, subtitles, and metadata. The con-
tainer format determines how the data streams are organized and synchronized to each
other. Popular container formats include MPEG-4, MKV, AVI, VOB and WebM.

Typical video analytics tasks include object detection, object recognition, object mo-
tion detection, object or background dynamic masking/blurring, event detection and
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classification (errors, exceptions), and activity detection and classification. Object de-
tection in video involves identifying and locating objects within a frame or series of
frames. This task typically recognizes and tracks multiple objects over time, often
in real-time. Object recognition goes a step beyond detection to classify the detected
objects into predefined categories, such as identifying specific types of vehicles, an-
imals, or other objects within a video. Motion detection involves identifying moving
objects in the video. It is crucial in surveillance systems to detect unusual or suspicious
movements or to track the movement of specific objects or people over time. Dynamic
masking or blurring is used to obscure or protect portions of the video image, such
as faces or license plates, to maintain privacy or comply with regulations. Event de-
tection involves identifying specific events within a video, such as errors, exceptions,
accidents, or other significant incidents. Classification categorizes these events into
predefined types to facilitate appropriate responses or further analysis. Activity detec-
tion involves recognizing and categorizing the actions or behaviors of objects or people
in the video, such as walking, running, or using machinery. This can be used in various
settings, from analyzing customer behavior in retail to monitoring patient activities in
healthcare.

e N

Hands-On Exercise

1. Identify a specific business problem that can be addressed by analyzing
video data

2. What video data would you need to address the problem?

What would you wish to do with the video data?

4. Where might you get this video data?

2

2.3 Metadata

Metadata is often described as “data about data.” It provides information about, or
documentation of, other data managed within an application or data store. Metadata is
crucial for understanding, managing, and using the actual data effectively.

Metadata can describe authorship and ownership of the data, e.g. who created or owns
it. It can also describe licensing and legal information, such as what one is allowed
to do with a data set, what purposes it may be used for, whether it may be copied or
redistributed, etc. Metadata can also provide information about when, where, and how
data was collected or processed. It can specify the meaning of fields in tabular data,
or of properties in graph databases. Metadata can be used to describe validation rules
for data. Finally, metadata may be technical information, for example, describing the
encoding or serialization format of the data.

Some data formats allow meta-data to be embedded within them, such as popular image
or video formats. For other data formats, such as CSV files, metadata may be provided
as a separate document or simply as a text file.



56 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Hands-On Exercise

1. With your cell phone camera, take a selfie
2. Identify the meta-data that your phone camera embedded in this photo

2.4 Data Quality and Data Provenance

Data quality refers to the condition or fitness of data to serve its intended purpose
in a given context. Poor data quality will lead to poor predictions, prescriptions, and
decisions. Data quality has a long history both in research and practice**. There are
many dimensions to data quality, depending on the kind of data and the purpose for
which the data is intended. Different authors and sources will list different dimensions;
Table 2.11 gives an overview of the most important aspects of data quality.

Achieving, maintaining and ensuring data quality is a continuous process that involves
regular monitoring, cleaning, standardization, and validation of data. Because of its
importance, and the significant effort involved in it, data quality management is often a
centrally located responsibility of the Chief Information Officer (CIO) or other senior
management of an organization. Typically, organizations aim to have procedures and
policies into place that govern data quality and how to achieve and maintain it.

Dimension Example Considerations

Accuracy Error rate for numerical data

Auvailability Cost or ease of retrieval or collection or licensing
Completeness | Incomplete data may lead to bias

Conformity Conforms to internal and/or external standards
Consistency Free from internal contradictions

Integrity Complies with validation rules, data types, and schema
Precision Measurement precision of values

Relevance Usefulness for purpose

Reliability Consistency of repeated data points

Timeliness Latency, currency, ~age”

Traceability Auditable provenance, verifiable source

Based in part on: Richard Y. Wang & Diane M. Strong (1996) Beyond Accuracy: What Data Quality Means

to Data Consumers, Journal of Management Information Systems, 12:4, 5-33, DOI:

10.1080/07421222.1996.11518099

Table 2.11: Data Quality Dimensions

#For a seminal academic reference, see Richard Y. Wang & Diane M. Strong (1996) Beyond Accuracy:
What Data Quality Means to Data Consumers, Journal of Management Information Systems, 12:4, 5-33,
DOI: 10.1080/07421222.1996.11518099
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Data provenance refers to the documentation or tracing of the origins, lineage, and
lifecycle of data. It encompasses recording information of the inputs, entities, systems,
and processes that influence the data of interest, providing a record of the data and
its origins. Data provenance is crucial for understanding the context, derivation, and
rationale behind the data, making it an essential aspect of data management and an
important prerequisite for data quality.

Source tracking identifies where the data comes from, including the original source
of the data and any intermediate sources. Tracking data transformation or processing
keeps a record of how the data has been altered, transformed, or processed from its
original state. This includes changes in format, structure, or content. Tracking of own-
ership and responsibility documents who has handled or managed the data throughout
its lifecycle. Versioning information keeps track of different versions or states of the
data over time.

Provenance information helps in assessing the reliability and trustworthiness of data.
Knowing the source and history of data can establish confidence in its accuracy and
validity. Data provenance also provides transparency into the data’s history, ensuring
accountability for the data’s quality and integrity. Understanding the provenance of
data can aid in identifying when and where errors were introduced into the dataset.
This facilitates more effective error correction and data cleansing.

Figure 2.12 shows a recommendation by the World Wide Web Consortium (W3C) of
the basic elements of a framework to maintain data provenance records. Agents are as-
sociated with activities that use or create data entities. In turn, data entities are derived
from other data entities, and are attributed to agents, e.g. as creators. Figure 2.13 shows
an example diagram of a provenance record using this framework. The figure shows
agents playing the roles of contributor and editor with respect to an editing activity of
a data object that was generated by the editing activity.

Data provenance is about asking and answering questions related to the data and all
that happened to it. Important questions include:

* How was the data collected? What errors could have occurred?

* Who collected the data? Is it a trustworthy source?

* When were the data collected? Are they still valid?

* Are all the data collected? Are the data biased?

* Can the data collection be verified/audited/repeated?

* How was the data processed? What mistakes could have been made?
¢ Was anything omitted or added?

* Who processed the data? Is it a trustworthy party?

» Can the processing be verified/audited/repeated?

e What do different data fields mean?
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https://commons.wikimedia.org/wiki/File:Prov_dm-essentials.png

Figure 2.12: Data Provenance Framework Basics
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Figure 2.13: Data Provenance Framework Example

¢ What are the units of measurement?
* What is the level of aggregation?

e Were data sources combined? Are the different sources consistent with each
other and of the same quality?

* Are the data accurate? How high are the error rates and the levels of precision?

¢ Can the data be validated? What are the validation rules for the data? Was the
data validated?

e How can errors be detected and/or corrected?

* Are the data usable in a technical and legal way?


https://commons.wikimedia.org/wiki/File:Prov_dm-essentials.png
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2.5 Data Cleaning and Validation

Data cleaning is a critical step in the data analysis process and contributes to high qual-
ity. It involves the identification of errors and inconsistencies in the data and their cor-
rection. Data correction can mean different things in different situations, from simply
omitting erroneous data, to “clipping” numerical data within certain ranges, standard-
izing or normalizing textual data (for example all lowercase, word stemming, etc.),
imputing missing data (for example, by using the mean or some more sophisticated
method), etc. The ultimate aim is improve the data quality and therefore the quality of
the analysis results themselves. Data cleaning typically involves a number of steps:

1. Auditing

This step identifies anomalies and inconsistencies. It requires a thorough under-
standing not only of the data but also how the data was collected, and what the
data is intended to describe or represent, that is, the domain. Only then can errors
be identified (e.g. based on plausibles mistakes during data collection) and the
internal consistency of the data (e.g. based on what is plausible in the domain)
be evaluated.

2. Validation

Ensure data conforms to rules and constraints. This requires first identifying any
rules for data coding or data consistency constraints that should apply. Next,
data that violates these rules and constraints can be identified. Example of data
validation rules are:

* Encoding or serialization rules, e.g. with Regex

— Example: Are all phone numbers of the format
A([0-91({3}) [ -12[0-9]1{3}[ -12[0-9]1{4}$

* Data type constraints
— Example: Are all sales prices numbers?
* Range constraints
— Examples: Are prices > 0?7 Are sales numbers < 1000?
* Cross-field validation
— Example: If province is NL, then phone area code must be 709 or 8§79
3. Cleaning

Clearning involves the transformation and correction of data, including identi-
fying how to deal with missing values. This may also include bringing data to
standardized formats, e.g. transforming numbers, dates, standardizing abbrevia-
tions and spelling, etc. Numerical data may be clipped or constrained to certain
ranges, and inconsistencies between different data items must be resolved.



60 CHAPTER 2. DATA, DATA TYPES, DATA QUALITY
* Data Transformation: Convert data into required format or structure. For
example,
— One row for each observation, case, or event
— Create case or event identifiers

* Data Imputation: Replacing missing values with estimated or default val-
ues, or removing missing values entirely. Be mindful that:

— Missing values may have different meanings
— Data removal may bias data
— Estimating values may introduce errors
* Data Correction: Correct or remove erroneous data

— Importantly, data correction requires access to correct data, which may
not be available or must be provided by other, secondary sources.

4. Duplicate Removal: Ensure uniqueness of data. Duplicates may be real dupli-
cates or simply the result of different spelling or abbreviations or other data en-
try mistakes. In any case, duplicates can bias analysis results that rely on sums,
counts, variances or other statistics. Consider the following example of names:

e Example: Rebekah Uqi Williams (Commissioner of Nunavut (2020-2021)
e Abbreviations: Rebekah U. Williams; Rebekah Williams, R.U. Williams

* Order: Williams, Rebekah Uqi; Williams, Rebekah U.; Williams, R., ...

e Spelling: Rebekah; Rebecca; Rebeccah; Rebeckah; Rebecka, ...

* Misspellings: Reebkah, Rebkah, Wililams, Willaims, ...

5. Harmonization: Merge datasets from different sources and ensure consistent for-
mats and scales. For example, standardize date and number formats, standards
units of measure, etc.

6. Standardization: Bring data into a standard format. Chapter 2 showed that stan-
dards exist in many areas for many data types. It is important for further analysis
to ensure data complies with standards, to be able to easily, efficiently and effec-
tively use tools for further analysis.

7. Quality Assessment: Ensure cleaning has been effective. Re-assess the resulting
data set on data quality aspects.

Cleaning, transformation, and correction of data is subjective and requires a do-
main or business expert with expert knowledge of the data and its provenance,
the metadata, the validation rules, and the application domain.
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In practice, cleaning, transformation, and correction of data takes approxi-
mately 80% of a data analyst’s time, while actual analysis takes only 20% of
their time. This is sometimes called “data wrangling”.

2.6 Data Sources

Data used for business analytics can be internal to an organization or acquired from
external sources. Often, the data required to address a particular analytics problem
is a combination of internal and external data, i.e. the internal data is enriched with
external data.

Internal data sources may be operational computer systems, such as the HR, payroll,
accounting, logistics, manufacturing, sales systems and many others. These systems
provide operational data about human resources, finances, goods movements, etc. An-
other source of data are data-rich products. Since the 2010s, companies are increas-
ingly selling products that include a variety of sensors, with the ability for the sold
products to provide information back to the manufacturer or some other organization.
Such data-rich products, whether they are cars®’ or teddy bears*®, can provide a vast
amount of rich data relating to the operation of the device and the customer that uses the
device. Most computer systems also keep technical logs. The most prominent example
are web-server logs, but many other computer systems do as well. Such logs provide
information about who accesses what information or performs what operation at what
time. Rich information can also be obtained from message data, whether those mes-
sages are emails that pass through the company’s email servers, customer service chat
interactions, or call center audio recordings. Finally, data may be directly collected
from humans for a specific project or purpose, for example in the form of employee or
customer surveys.

External data may be public or private. The increasing popularity and use of analytics
has fuelled the publication of many data sets by governments, international institutions,
and companies interested in furthering analytics applications and insights. These data
sets are now easier to access than ever. Table 2.12 provides examples of public, ex-
ternal data sources and where to find them. However, when using these data sets it is
important to critically assess their provenance and quality.

If the required data is neither internally nor publicly available, there exist many sources
to purchase data, especially financial market and consumer data. Such data may come
directly from services companies or may be provided by data brokers who aggregate
data from a variety of sources to increase the value of the data. Table 2.13 shows some
examples of private external data sources.

Data licenses provide the legal framework and specify permissions governing the use,

4Shttps ://foundation.mozilla.org/en/privacynotincluded/articles/
its-official-cars—are-the-worst-product-category-we-have-ever-reviewed-for-privacy/

4(’https ://arstechnica.com/information-technology/2017/02/
creepy-iot-teddy-bear-leaks-2-million-parents-and-kids-voice-messages/
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https://arstechnica.com/information-technology/2017/02/creepy-iot-teddy-bear-leaks-2-million-parents-and-kids-voice-messages/
https://arstechnica.com/information-technology/2017/02/creepy-iot-teddy-bear-leaks-2-million-parents-and-kids-voice-messages/

62

CHAPTER 2. DATA, DATA TYPES, DATA QUALITY

Government Agencies

Statistics Canada https://www.statcan.gc.ca/en/start
Open Government Canada https://search.open.canada.ca/opendata/
US Census Bureau https://www.census.gov/
US Bureau of Labor Statistics https://www.bls.gov/
International Institutions
OECD https://data.oecd.org/
Worldbank https://data.worldbank.org/
EU https://data.europa.eu/en
WHO https://www.who.int/data
Data Set Search Engines
Google Dataset Search https://datasetsearch.research.google.com/
GitHub Data Set Search https://github.com/search?gq=datasets&type=repositories
Social Media Companies
X https://help.twitter.com/en/rules—and-policies/x—api
Google https://developers.google.com/gdata
Facebook/Meta https://developers.facebook.com/docs/graph-api/overview/
ML/AI Project Communities
Kaggle https://www.kaggle.com/
HuggingFace https://huggingface.co/datasets
Google Cloud https://console.cloud.google.com/marketplace/browse
Google Research https://research.google/resources/datasets/
AWS Data Sets https://registry.opendata.aws/
Azure Data Sets https://azure.microsoft.com/en-ca/products/open-datasets

Table 2.12: Examples of Public External Data Sources

Services Companies

Financial services institutions

Telecommunications providers

Mobile applications

e.g. Bloomberg https://www.bloomberg.com/
professional/product/data/

e.g. Telus Insights https://www.telus.com/en/
business/medium-large/enterprise-solutions/
big-data—-analytics

e.g. The Weather Network https://www.pelmorex.com/
en/data/

Data Brokers

LiveRamp (formerly Acxiom)
Experian
CoreLogic

Nielsen

DataAxleCanada (formerly InfoCanada)

http://www.liveramp.com/
https://www.experian.com/
http://corelogic.com/
http://nielsen.com/

https://www.dataaxlecanada.ca/

Table 2.13: Examples of Private External Data Sources

redistribution, and modification of data. They dictate how data can be shared and used,
outlining the rights and restrictions placed on the data by its owner or creator. Data
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licensing is especially important in the era of big data and open data initiatives, where
data is often shared and reused across various domains and applications.

The creator of data is typically the owner and obtains copyright to the data. Copyright
impacts how the data can be legally used and shared. Usage rights or licenses specify
what others can and cannot do with the data. Licenses may include permissions for
using the data. Licenses also govern whether the data can be redistributed to third par-
ties and under what conditions. They also dictate whether the data can be modified and
how derivative works (new creations based on the original data) are to be handled. Im-
portantly, data licenses may also specify whether the data can be used for commercial
purposes at all, and any conditions or restrictions on access to the data.

Different kinds of licenses exist for data. Open data licenses allow data to be freely
used, modified, and shared by anyone. Examples include the Creative Commons li-
censes*’ and the Open Data Commons licenses*®. Additionally, many governments
and international institutions provide data with open licenses. In contrast, proprietary
licenses restrict usage to certain conditions set by the owner, which can include the
requirement for payment, restrictions on redistribution, or limitations on the type of
use (e.g., non-commercial only). Some data may be in the public domain and is not
protected by copyright so that it can be freely used by anyone without restrictions.

Data licensing is a critical aspect of data governance and data management, particularly
in contexts where data is shared and reused extensively. Understanding and complying
with data licenses is essential for anyone involved in data analysis, software develop-
ment, and research. Never assume permission to use the data for any particular purpose
is given simply because the data is accessible. Check the meta-data of the data, or the
web-site where the data is available. Some organizations may provide permission to
use data or licenses upon request, while others may require the purchase of a license,
especially if the data is to be used for commercial purposes.

“Thttps://creativecommons.org/
Bhttps://opendatacommons.org/
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Hands-On Exercise

1. Identify data on the consumer price index (excluding living and trans-
portation expenses) for Newfoundland & Labrador for the last 10 years
* How was it collected? By who? When?
* How was it processed? By who? What was done to it?
* Is there meta-data available for it?
* How do you assess the quality of the data on the data quality di-
mensions?
* Under what license is it available to you to use?
2. Identify some IoT devices or sensors in your household
* What information can they measure?
* How and when is the information being collected? By who?
* How could the information be erroneous or biased?
* How would you assess the quality of the data?

2.7 Review Questions

Data Types

. What is the equivalent of R’s numeric data type in Python?

. Explain the difference between R’s integer and Python’s int data type.

. What term does the R statistical system use to indicate a missing value?

. How does Python represent a missing value?

. What is the term used by SQL to denote a missing value?

. If you are working with both Python and R, what considerations should you
keep in mind regarding data types when transferring data between these two
languages?

7. Give an example where a data type in R might not have a direct equivalent in
Python or SQL.

8. Discuss the potential issues that might arise when working with missing values
in data analysis.

9. Provide an example of a scenario where the meaning of a missing value can be
ambiguous. How might this ambiguity impact data analysis?

10. In a dataset, you find that some entries are marked as NA in R, None in Python,

and Null in SQL. How would you interpret these values?

11. What steps could you take to handle missing values before performing any sta-

tistical analysis?

AN AW

Number Formats

12. Describe how integer numbers are represented in binary form. What does the
first bit indicate?

13. How many bytes does a £ 1oat (single precision number) occupy? Break down
its composition in terms of sign, exponent, and fraction.



2.7. REVIEW QUESTIONS 65

14.

15.
16.

17.

Discuss some of the complexities involved in writing out decimal numbers as
plain text.

How do decimal point representations differ in various locales?

Explain how negative numbers and scientific notation are represented differently
in various contexts.

Why is it important to verify the number format in a dataset before using it with
a business analytics tool?

Text Format

18.

19.

20.
21.

22.

Explain the purpose of the Unicode system and how it addresses the limitations
of earlier encoding systems like ASCII.

Discuss the variety of characters, symbols, and scripts included in the latest ver-
sion of Unicode (v15.1).

How does UTF-8 ensure backward compatibility with ASCII?

Why is it important for a business analyst to be aware of Unicode and its different
encodings?

Discuss the implications of using Unicode-aware data storage, management, an-
alytics, and visualization tools in a business setting.

Date Formats

23.
24.
25.
26.

27.

Explain the challenges in handling different time zones in a global context.
How do ISO 8601 and RFC 3339 standards differ from each other?

Describe the variety of formats and separators used in writing dates across dif-
ferent locales.

Explain the challenges involved in performing arithmetic operations with years,
months, and days due to their different lengths and conventions.

Discuss the implications of not universally accepting standards like ISO 8601
and RFC 3339 in data management and analytics.

Collection Types

28.

29.
30.
31.
32.

Define what a collection data type is and explain how it differs from primitive
data types.

Describe the characteristics of a list in Python and compare it with the list in R.
Discuss the structure and usage of dictionaries in Python.

Describe the properties of a vector in R and how it differs from a list.

Discuss the significance of mutable and immutable data types, providing exam-
ples from Python and R.

Tabular Formats

33.

34.

Explain the CSV (Comma-Separated Values) file format. What are its key char-
acteristics?

According to RFC 4180, what are the standard conventions for formatting a CSV
file?
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35.

36.

37.
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Discuss the common variations and deviations you might encounter in CSV files
that do not strictly adhere to the RFC 4180 standard.

How are line breaks typically represented in CSV files, and what are the common
variations?

What challenges might you face when working with CSV files that do not con-
form to standards, and how could you address these challenges?

Document Formats

38.
39.

40.
41.
42.
43.
44.
45.
46.

Define JSON and XML and explain their primary purpose in data interchange.
What are the commonalities and differences between JSON and XML? When
would you prefer one over the other?

Describe the structure of a JSON document in terms of key-value pairs.

What types of values can be stored in a JSON document?

Explain how objects are represented in JSON. What delimits an object?
Describe how arrays are represented in JSON and how they differ from objects.
How can an array be nested within a JSON object, and vice versa?

What is the purpose of a namespace in XML documents? Provide an example.
How do elements and attributes differ in XML? In which situation would you
choose an element? In which situation would you choose an attribute?

Text Data

47.

48.

49.

50.
51.

52.

53.

54.

What is text analysis and why is it important in extracting information from
unstructured text data?

Describe named entity recognition and its application in content classification
and data extraction.

Explain co-reference analysis and provide an example of how it helps in under-
standing text.

Discuss event and relationship extraction in text analysis, providing an example.
Describe sentiment analysis and its significance in areas like social media moni-
toring and market research.

What is document clustering and how is it used to organize and categorize text
data?

Compare and contrast the symbolic, statistical, and deep learning approaches in
text mining.

Discuss the impact of deep learning and neural networks on the field of text
analytics, specifically mentioning models like RNNs, LSTMs, and transformers.

Regular Expressions

55.
56.
57.

58.

Define regular expressions and explain their primary purpose in text processing.
What are meta characters in the context of regular expressions?

Give examples of basic meta characters in regular expressions and explain their
functions.

Describe the additional capabilities provided by extended regular expressions.
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59.
60.
61.

How do regular expressions differ from literal text searching?
Provide an example of a regular expression pattern and explain what it matches.
Discuss the challenges or limitations associated with using regular expressions.

Image Data

62.

63.

64.

65.
66.

67.

68.
69.

70.

What are the two primary types of image formats? Describe the main character-
istics of each.

Explain the concept of vector images. What are some common formats of vector
images?

How do vector images maintain quality when scaled to different sizes? Provide
a brief explanation.

Define raster images and explain how they are structured.

What is the main limitation of scaling raster images, and why does this limitation
occur?

List some common raster image formats and mention whether they use lossy or
lossless compression.

How are pixels represented in a typical raster image in terms of RGB values?
What are some common tasks involved in image analysis? Briefly describe each
task.

Discuss the application of image analysis in business, providing at least three
examples.

Video Data

71.

72.
73.

74.

75.

76.

7.
78.

79.

What does a video frame represent in terms of data structure? Explain the nota-
tionT x 3 x X x Y in this context.

Discuss the role and importance of compression in video data.

What is a video codec? Give examples of popular video codecs and their general
applications.

Explain the purpose of a video container format and list some common container
formats.

Describe the concept of object detection in video analytics and how it differs
from object recognition.

What is motion detection in video and why is it important in surveillance sys-
tems?

Discuss the purpose and applications of dynamic masking or blurring in videos.
Define event detection in video analytics and give examples of events that might
be detected.

Explain activity detection in video and its potential applications in various in-
dustries.

Metadata

80.
81.

Define metadata and explain its significance in data management and utilization.
Describe how metadata can provide information about authorship and ownership
of data.
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82. Explain how metadata can be used to detail the collection and processing of data.
83. Give examples of technical information that metadata might describe.

Data Quality

84. Define data quality and explain why it is important in data management.

85. List and describe the various dimensions of data quality.

86. Discuss the processes involved in maintaining high data quality.

87. How does poor data quality affect predictions, prescriptions, and decisions?
88. Explain the concept of data cleansing and its role in data quality management.

Data Provenance

89. Define data provenance and its significance in the context of data management.

90. What types of information are typically included in data provenance records?

91. Explain how data provenance contributes to the reliability and trustworthiness of
data.

92. Discuss the role of data provenance in error detection and correction in datasets.

93. Provide examples of questions that are important to ask when evaluating data
provenance.

Data Sources

94. What are some examples of data-rich products, and what kind of data can they
provide?

95. Discuss the role of web-server logs and other technical logs as sources of data.

96. What are the typical ways data is directly collected from humans for business
purposes?

Data Licensing

97. Define data licenses and their importance in the context of data management.
98. Distinguish between open data licenses and proprietary licenses.
99. Explain the steps one should take to ensure compliance with data licenses.

2.8 Hands-On Exercises

Number Formats

1. Convert the decimal number 25 to its binary equivalent. Indicate the sign bit.

2. Convert the binary number 1101011 to its decimal equivalent.

3. Write the number 1234567.89 in four different formats, considering decimal
points, digit grouping, and negative number representation.

4. Convert 5.12e3 and —3.04e — 2 to their regular decimal forms in two different
locale styles.
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5.

6.

Given a dataset with numbers in European format (comma as decimal separator),
write a pseudo-code to convert them to the American format (dot as decimal
separator).

Create a small program in a language of your choice to detect and convert scien-
tific notation to standard decimal notation.

Character Formats

7.

Use an online Unicode character table (like https://www.unicode.org/
charts/) to find the Unicode characters for the letters in your name in a non-
Latin script (e.g., Cyrillic, Greek, Arabic). Write the Unicode code points for
these characters in both hexadecimal and decimal formats.

Choose a word in a language that uses non-ASCII characters. Find the Unicode
code points for each character of the word. Convert these code points into UTF-8
encoded byte sequences. You can use online tools or write a simple program to
do this.

Date Formats

9.

10.

11.

12.

13.

Research a non-Gregorian calendar system (e.g., Hebrew, Islamic, or Chinese
calendar). Convert today’s date from the Gregorian calendar to your chosen
calendar system. Discuss the key differences and similarities between the two
calendar systems.

Choose three cities in different time zones. Convert 12:00 PM in your local time
to the time in each of these cities. Discuss how time zone differences impact
global communication and business.

Write a program or script to determine if a given year is a leap year in the Gre-
gorian calendar. Test your program with a set of years, including at least one
century year.

Write the current date and time in the formats specified by both ISO 8601 and
RFC 3339. Discuss why such standardizations are important in data management
and international communications.

Calculate the number of days between your birth date and today using a date
arithmetic tool or programming library. Discuss the challenges you might face
when calculating durations involving months and years due to their varying
lengths.

Structured Data

14.
15.
16.

17.
18.

Create a list with different data types, append a new element, and modify an
element. Perform similar operations with a list in R.

Create a tuple in Python, attempt to modify it, convert it to a list, modify the list,
and then convert it back to a tuple.

Create a dictionary in Python, add, modify, and retrieve values from it.

Create numeric and character vectors in R and apply various functions to them.
Convert a character vector in R into a factor and reorder its levels.


https://www.unicode.org/charts/
https://www.unicode.org/charts/
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19.
20.
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Create a matrix in R, access its elements, and perform matrix multiplication.
Convert one structured data type into another in both Python and R.

Tabular Formats

21.

22.

23.

24.

Manually create a CSV file using a text editor. Include a header row and at least
4 rows of data. Ensure that your CSV adheres to the RFC 4180 standard.

Write a simple program or script in a language of your choice (like Python or R)
to read the CSV file you created and print out each row. Handle potential errors
like missing fields or incorrect formatting.

Modify your CSYV file to include a non-standard delimiter (like a semicolon) and
mixed quotes. Adjust your program or script to correctly parse this modified
CSV file.

Extend your CSV file by adding a column that includes complex data types (like
lists or sets). Modify your parsing program to correctly interpret and display
these complex data types.

Document Formats

25.

26.

27.

28.

Create a JSON object that represents a book, including properties such as title,
author, publication year, and genre. Validate the JSON object using an online
JSON validator.

Extend the book JSON object to include a nested object for the author, with
properties like name, birth year, and nationality. Validate and format the updated
JSON object.

Create a JSON array representing a book series, containing several book objects.
Validate the JSON array to ensure proper formatting.

Take a simple dataset (e.g., a CSV file with student records) and convert it to a
JSON format. Validate the converted JSON data.

Regular Expressions

29

30.

31.
32.

33.

Write a regular expression to match email addresses in a text. Test your expres-
sion on a set of sample strings to check its accuracy.

Create a regular expression using meta characters to match any date in the format
“dd/mm/yyyy”. Validate your RegEx with various date strings.

Write a RegEx to find all the hyperlinks (URLs) in a given HTML document.
Develop a RegEx to identify phone numbers in different formats (e.g., 123-456-
7890, (123) 456-7890). Test the RegEx for various phone number formats to
ensure its versatility.

Choose a programming language and use its RegEx library to split a paragraph
into sentences. Ensure that the RegEx correctly handles periods used in abbrevi-
ations.

Levenshtein Distance

34.

Determine the Levenshtein distance between "intention" and "execution".
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35. What is the Levenshtein distance between a string and an empty string? Verify
your answer using the strings "algorithm" and "".

36. Compute the distance between two identical strings, such as "database" and
"database".

37. Given a list of words, ["apple"”, "apply", "apology", "propel"], find the word with
the smallest Levenshtein distance to "aply".

Data Sources

38. Identify various internal data sources within a hypothetical or real organization
(e.g., sales, HR). Discuss the types of data each source provides and its potential
use in analytics.

39. Research and compare two different data licenses (e.g., a Creative Commons li-
cense and a proprietary license). Summarize the key permissions and restrictions
of each license. Discuss the potential implications of these licenses on data usage
in a business context.

40. Study a real case where data licensing played a critical role in a project or prod-
uct. Identify the licensing issues that were involved and how they were ad-
dressed. Reflect on the lessons learned and how they apply to data management
practices.
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Chapter 3

Managing Tabular Data with
Relational Databases

Learning Goals

After reading this chapter, you should be able to:

» Understand the concept of tables in relational databases, including primary keys
and foreign keys.

e Use SQL to create a set of related tables in a relational database.

¢ Understand the main elements of information retrieval from a relational database
with SQL.

* Use SQL to filter information using the WHERE clause of a SELECT statement.

* Use SQL to retrieve information a set of related tables, using the JOIN clause
and understand the different types of joins.

e Use SQL to group information using the GROUP BY and HAVING clause with
different aggregation functions.

3.1 Introduction

The relational database model, developed by Edgar F. Codd in 1970, is a fundamental
approach in data organization and management. It structures data in tables, or relations,
comprising rows and columns, where each row signifies a record, and each column de-
notes a field within the record. This model is grounded in principles like tables, primary
keys for unique record identification, foreign keys for inter-table relationships, and data
integrity through constraints. The Structured Query Language (SQL) significantly im-
proved the usability of data management with relational databases.

73
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The 1970s marked the theoretical development of the relational model, focusing on
data independence and efficient access. The 1980s witnessed its commercialization
with the advent of relational database management systems (RDBMS) such as Oracle,
IBM DB2, and Microsoft SQL Server, which became staples in enterprise applica-
tions. The 1990s saw the internet’s rise bring scalability and distribution challenges to
the forefront, leading to the popularity of open-source RDBMS like PostgreSQL and
MySQL.

In the 2000s, with the onset of Big Data and the advent of NoSQL databases, the rela-
tional model faced new challenges. However, it continued to evolve, adapting features
to handle non-relational data and integrating with cloud services. Relational databases
have maintained their relevance and are extensively used in various sectors, including
cloud computing, mobile applications, and big data analytics. The relational database
model’s focus on simplicity, flexibility, and accuracy has solidified its standing as a
cornerstone in data management.

The relational database model offers several benefits and advantages, making it a pop-
ular choice for a variety of data management needs. One of its primary strengths is the
simplicity of its design, which organizes data into tables, making it intuitive and easy
to understand. This tabular structure facilitates efficient data retrieval and manipula-
tion, especially with the use of SQL, a powerful and standardized query language that
enhances the accessibility and handling of data.

Another significant advantage is data integrity. The relational model enforces rules
through primary and foreign keys, ensuring that relationships between data are logi-
cally maintained and that the data remains consistent and accurate. This is crucial for
applications where data reliability is paramount.

The model’s flexibility is also a key benefit. It can easily accommodate changes in
the database structure without disrupting the existing data. This adaptability makes it
suitable for a wide range of applications, from small-scale projects to large, complex
enterprise systems.

Moreover, relational databases support ACID (Atomicity, Consistency, Isolation, Dura-
bility) properties of transactions (that is, updates to the data), guaranteeing reliable
transaction processing and robust data management, especially in multi-user environ-
ments. This ensures that even in the event of system failures or concurrent data access,
the integrity of the data is maintained.

The relational model’s widespread adoption has led to a rich ecosystem of tools and
technologies, providing users with extensive support and resources. This includes ad-
vanced features like indexing, which enhances performance, and comprehensive secu-
rity measures for data protection.

3.2 Constraints and Data Types

In relational database management systems (RDBMS), constraints are essential for
ensuring the integrity of the data. Constraints can be categorized into two main types:
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Name Description

bigint signed eight-byte integer

bit varying (varbir) variable-length bit string

boolean logical Boolean (true/false)

character varying (varchar) variable-length character string

date calendar date (year, month, day)

double precision (float8) double precision floating-point number
(8 bytes)

integer (int, int4) signed four-byte integer

interval time span

json textual JSON data

Jjsonb binary JSON data, decomposed

money currency amount

numeric (decimal) exact numeric of selectable precision

real (float4) single precision floating-point number
(4 bytes)

smallint (inz2) signed two-byte integer

text variable-length character string

time time of day (no time zone)

time with time zone (timetz) time of day, including time zone

timestamp date and time (no time zone)

timestamp with time zone, (timestamptz) | date and time, including time zone

(Source: https://www.postgresgl.org/docs/current/datatype.html)

Table 3.1: Primitive Data Types in SQL and PostgreSQL with aliases in parentheses.
Emphasized entries are not contained in the SQL standard, they are PostgreSQL exten-
sions.

column constraints and table constraints. Additionally, each table column is of a certain
primitive data type, allowing only certain types of values to inserted. Constraints and
typing ensure data quality, in that data conforms to expected rules. Table 3.1 shows an
overview over commonly used datatypes.

Columns constraints are rules that are applied to individual columns, while table con-
straints apply to combinations of columns or the entire table. Many constraints can be
specified both for a single column as well as a combination of columns.

e The NOT NULL constraint can only be applied to individual columns and pre-
vents NULL values from being entered into a column, ensuring that every record
has a value for that column.

e The UNIQUE constraint ensures that all values in a column are distinct, prevent-
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ing duplicate entries. The UNIQUE constraint can also be used at the table level
to ensure that a specific combination of values across different columns is unique
for all records in the table.

* The CHECK constraint can be applied at the column level or at the table level.
The CHECK constraint allows specifying a condition that each value in a col-
umn must satisfy. At the table level, it allows for more complex conditions that
involve multiple columns.

e The PRIMARY KEY constraint is a combination of NOT NULL and UNIQUE,
uniquely identifying each record in a table. The PRIMARY KEY constraints
can also be applied at the table level to specify that a combination of columns
uniquely identifies each record.

e The FOREIGN KEY constraint is used to link columns in different tables, es-
tablishing a relationship between them. It ensures that values in a column or
combination of columns must exist in the referenced colum or combination of
columns. The referenced columns may be in the same table, so that the con-
straint expresses a unary relationship, or in another table, so that the constraint
expresses a binary relationship. Together with NOT NULL constraints, this al-
lows the repsentation of optional or mandatory relationships.

3.3 Introduction to SQL and PostgreSQL

Despite its name, SQL serves as a language not only for querying but for data defini-
tion, data manipulation, data access control, transaction control, and querying. SQL
has been standardized by the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO), ensuring a consistent syntax and
set of features across different database systems. However, many database systems
extend standard SQL with proprietary extensions to enhance functionality and perfor-
mance. Despite these variations, the core elements of SQL remain widely consistent,
contributing to its status as the lingua franca of database management.

This section covers only the most basic aspects of SQL, insofar as they are necessary to
understand the relational database schema and to use SQL to query data for descriptive
data analytics. The most important SQL commands are listed in Table 3.2. For more
further information, consult the relevant sections of the PostgreSQL documentation on
data definition', data manipulation?, data queries® and primitive data types*.

The PostgreSQL RDBMS (relational database management sys-
tem) is installed in the course virtual machine or can be down-
loaded from the PostgreSQL website®. A DBMS is typically a
background computer application without a user interface. It is

"https://www.postgresql.org/docs/current/ddl.html
2https://www.postgresql.org/docs/current /dml.html
3https://www.postgresqgl.org/docs/current/queries.html
“https://www.postgresql.org/docs/current /datatype.html
Shttps://www.postgresql.org/download/
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CREATE TABLE | Create a new table with specified columns and constraints
DROP TABLE Deletes a table and all its contents

INSERT Inserts a row of data values into a table
UPDATE Updates/modifies data values in a table
SELECT Retrieves data values from one or more tables

Table 3.2: Basic SQL Commands

typically used by other computer applications, such as accounting

software to store financial information, a logistics management
software to store information about shipments, a customer relationship management
system to store information about customers and marketing campaigns, etc.

End users can interact with a DBMS using administration software, such as the basic
”psql” command line software or a graphical application like "pgAdmin” or "DBeaver”.
The desktop version of pgAdmin and DBeaver are installed in the course virtual ma-
chine, or can be downloaded from their websites®. They provide easy-to-use tools for
creating tables and querying data, but this section focuses on using the SQL language
instead.

A DBMS runs on a single computer (”server”) or, if the amount of data is very large,
distributes the data across a cluster of multiple computers. Different DBMS differ in
their performance, the ease with which data can be distributed, and the scalability to
very large clusters. However, from the users perspective, these technical considerations
are largely invisible. When connecting to a DBMS that runs on your own computer, use
the computer name "localhost”.

A DBMS can manage multiple databases. A database named “busi4720” has already
been created in your course virtual machine, using the CREATE DATABASE command.
pgAdmin and DBeaver also have the ability to show the SQL command that creates
every element in a DBMS, including databases, tables, and constraints. This is useful
to understand exactly what elements are contained in a database or in a table and any
constraints imposed upon them.

Every database can have multiple schema. A schema is a collection of tables with their
columns and constraints, as well as related elements such as functions, procedures, trig-
gers, views and others. In PostgreSQL, every database contains the schema “’public”.
This is the default schema and is used when no other schema is specified.

When the pgAdmin application is initially launched, it will connect to the DBMS that is
running on the local machine ("localhost”) with the username “’busi4720” (its password
is ’busi4720”) and will show an “Object Explorer” in the left part of the application.
This allows navigation and exploration of the contents of this DBMS, as shown in
Figure 3.1.

Shttps://www.pgadmin.org/download/, https://dbeaver.io/download/
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Figure 3.2: DBeaver database tool

Similarly, when the DBeaver application is first started, it will also conncect to the
DBMS that is running on the local machine and will show a ”Database Navigator” in
the left part of the application window (Figure3.2. Navigate the contents of the DBMS
to the ”busi4720” database and the ”public” schema.

The basic ”’psql” command line tool can be started by by typing psqgl into a termi-
nal window. The course virtual machine is configured to provide automatic access
to the ”busi4720” database. The database connection can be confirmed by executing
the \conninfo command in psql. Use psql options to specify other connections us-
ing the template psgl -d dbname -h hostname -u username. Figure 3.3
shows the psql command line tool in a terminal window.

The examples and exercises in the remainder of this chapter refer to the
“busi4720” database.
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m busia720@busia720vm: ~

1% psql
psql (16.0 (Ubuntu 16.0-1.pgdg22.04+1))
Type "help" for help.

busi4720=# \conninfo
You are connected to database "busi4720" as user "busi4720" via socket in "/var/run/postgresql' at port "5432".
busi4720=#

Figure 3.3: psql command line tool

3.4 Data Definition in SQL

Tip: SQL commands are traditionally written in upper case letters and this is
done here as well. However, SQL is not case sensitive, so that capitalization
does not actuallly matter. Traditionally, an SQL command must end with a
semicolon. This is done here as well, although some DBMS may no longer
require this.

\. J

For this example, assume that your database will be used to store information about
products. The CREATE TABLE data definition command in SQL is used to create
tables, their columns, and constraints. This first example creates a simple table with
three columns to store product data.

Enter the SQL commands in the code block below.
* In psql, press RETURN to execute

* In DBeaver, press CTRL-RETURN to execute
* In pgAdmin, press F5 to execute.

CREATE TABLE products (
pcode integer,
name varchar (100) NOT NULL,
price float4,
PRIMARY KEY (pcode)
) i

The table contains a column named pcode” (to store the product code) that is of in-
teger type, that is, it can contain whole numbers only. The table has a column called
“name” of characters with a varying length and a maximum length of 100 characters
to store product names. Additionally, a column NOT NULL constraint has been de-
fined for this column, ensuring that a name always exists for a product. The table has
a column named “price” that is of a single precision floating point type (4 bytes), that
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is, it can hold decimal point numbers to store product prices. The final line of the SQL
command created a primary key constraint on the single column “pcode” to ensure that
the product code must not be NULL and must be unique, ensuring that each row in
the table represents a distinct product. Note that column “price”may be NULL, that is,
may not contain values, because no NOT NULL constraints have been specified. This
may be useful for example when the price has not been decided on or will be calculated
later.

The following SQL code block creates a table for suppliers. The table has a simi-
lar structure to the products table and similar NOT NULL and PRIMARY KEY con-
straints.

CREATE TABLE suppliers (
scode integer,
name varchar (100) NOT NULL,
city wvarchar(100),
PRIMARY KEY (scode)

After creating tables with the data definition part of the SQL language, the data ma-
nipulation commands of SQL can be used to insert or update values in the tables. The
following SQL code block inserts two rows into each of the tables that were just cre-
ated. Enter the following SQL commands in the Query tool:

INSERT INTO products VALUES (1, 'Hex Bolt', 1.99);
INSERT INTO products VALUES (2, 'Round Bolt', 2.99);

INSERT INTO suppliers VALUES (1, 'Bolts Inc', 'HVGB');
INSERT INTO suppliers VALUES (2, 'Hardware Co', 'Cartwright');

The values for each row must be specified in the order in which the columns of the
table are defined. For the ’products” table this is first the product code, followed by the
name, and finally the price. For the “suppliers” table, this is first the supplier code, then
the name and then the city. There are many different variations on the basic INSERT
statement; consult the official documentation using the links in the earlier footnote.

After inserting the values, a basic SELECT statement, which is the core querying com-
mand in SQL, checks that the data is actually in the tables. Run the commands in the
following SQL code block one at a time to see each command’s results:

SELECT » FROM products;
SELECT » FROM suppliers;

This is the simplest form of a SELECT statement, the asterisk (”*”) instructs SQL to
retrieve all columns. Later examples will illustrate ways to retrieve only some columns,
and many other variants on the SELECT statement.
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The two tables allow capturing information about products and information about sup-
pliers, but they do not allow capturing which supplier supplies which product. In order
to do this, the two tables need to be related by a foreign key relationship.

For the following example, assume that suppliers can supply many products, but a
product may be supplied by only one supplier (or no supplier at all). This is called a
one-to-many relationship. The following SQL code block alters the tables, retaining
the existing data, and then updates the information in the new “supplier” column for
the “’products” table:

ALTER TABLE products ADD COLUMN supplier integer;
ALTER TABLE products ADD FOREIGN KEY (supplier) REFERENCES suppliers;

UPDATE products SET supplier 1 WHERE pcode

= 1;
UPDATE products SET supplier = 1 WHERE pcode

2;

The first SQL statement above adds a new column to the existing products table in
which to record the supplier of the product. The second line creates a foreign key
reference from the supplier column in the products table to the primary key of the
suppliers table; the primary is the ’scode” column (see SQL code above). This ensures
that only those suppliers can be recorded in the products table that actually exist in the
suppliers table.

The third and fourth line update the data in the products table and set the value of
the supplier column for different products. The two products have the same supplier
which reflects the assumption that a supplier may supply multiple products. On the
other hand, only one supplier can be recorded for each product, and this too reflects the
above assumption. This expresses the one-to-many relationship. Moreover, the value
of the supplier column in the products table may be NULL. In fact, after altering the
table to add this column, all its values were NULL. A NULL value reflects the fact that
a product has no supplier.

As an alternative to altering the existing products table, drop the products table to delete
it and re-create it. Then insert some values. The following SQL code block uses the
DROP TABLE command of SQL to delete the products table and all its contents.
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DROP TABLE products;

CREATE TABLE products (

pcode integer,
name varchar (100),
price float4,

supplier integer,

PRIMARY KEY (pcode),

FOREIGN KEY (supplier) REFERENCES suppliers
)i

INSERT INTO products VALUES (1, 'Hex Bolt', 1.99, 1);
INSERT INTO products VALUES (2, 'Round Bolt', 2.99, 1);
INSERT INTO products VALUES (3, 'Square Bolt', 3.99, NULL);

The above SQL code achieves the same as altering the table but in the process deletes
all data in the products table. When possible, it is therefore preferable to use multiple
ALTER TABLE statements instead of DROP and CREATE statements.

Note the following important points about the tables so far:

* There are products that have no supplier (the square bolt”)

* There are suppliers that supply many products (supplier 1)

* There are suppliers that do not supply products (supplier 2)
In the products table as altered or re-created to this point, it is possible that a product
has no supplier. However, in some applications it may be necessary to enforce that it
is mandatory for products to have a supplier. This is done by adding a NOT NULL

constraint, either by altering the table again, as in the following SQL code block, or by
re-creating it with the appropriate constraint added.

ALTER TABLE products ALTER COLUMN supplier SET NOT NULL;

Adding constraints can only be done when the constraint is already satisfied. This
means that in this example, none of the values of the supplier columns can be NULL
when adding the constraint. If a new constraint is violated, the DBMS will show an
error and the constraint will not be added.

When re-creating the table, the NOT NULL column constraint can be defined in the
CREATE TABLE statement:
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DROP TABLE IF EXISTS products;

CREATE TABLE products (

pcode integer,
name varchar (100),
price float4,

supplier integer NOT NULL,
PRIMARY KEY (pcode),
FOREIGN KEY (supplier) REFERENCES suppliers

So far, the assumption was that each product can has one supplier. However, in many
settings, products have multiple suppliers, and suppliers supply multiple products, that
is, there is a many-to-many relationship between the two. Expressing many-to-many
relationships requires a third table that explicitly represents the relationship, here the
”supplies” relatinship between products and suppliers. The following SQL code first
removes the existing tables, then re-creates tables to express a many-to-many relation-
ship instead.

DROP TABLE IF EXISTS products;
DROP TABLE IF EXISTS suppliers;

CREATE TABLE products (
pcode integer,
name varchar (100),
PRIMARY KEY (pcode) );

CREATE TABLE suppliers (
scode integer,
name varchar (100),
city wvarchar(100),
PRIMARY KEY (scode) );

CREATE TABLE supplies (
scode integer NOT NULL,
pcode integer NOT NULL,
price float4 NOT NULL,
PRIMARY KEY (scode, pcode),
FOREIGN KEY (scode) REFERENCES suppliers,
FOREIGN KEY (pcode) REFERENCES products );

Note that the tables must be dropped in the right order: “products” first, then ”suppli-
ers” because the products depend on the suppliers due to the foreign key constraint’.
The IF EXISTS part is a safeguard to prevent an error if the table does not exist when
attempting to drop it.

The primary key of the supplies table is a compound key, that is, it consists of a com-
bination of columns. The supplies table is related by two FOREIGN KEY constraints

7Use the CASCADE keyword to drop dependent tables automatically but use with care.
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both to the products and suppliers table so that only products and suppliers that already
exist can be recorded here (and thereby related to each other). The price column is no
longer in the products table, but has been moved to the supplies table, because each
supplier may supply a product at a different price. The following example data shows
this:

INSERT INTO products VALUES (1, 'Hex Bolt');
INSERT INTO products VALUES (2, 'Round Bolt');

INSERT INTO suppliers VALUES (1, 'Bolts Inc', 'HVGB');
INSERT INTO suppliers VALUES (2, 'Hardware Co', 'Cartwright');

INSERT INTO supplies VALUES (1, 1, 1.99);
INSERT INTO supplies VALUES (1, 2, 2.49);
INSERT INTO supplies VALUES (2, 1, 2.99);
INSERT INTO supplies VALUES (2, 2, 1.79);

To clean up after these exercises, drop all tables if they are no longer required:

DROP TABLE supplies;
DROP TABLE products;
DROP TABLE suppliers;

Summary In summary, a one-to-many relationships requires a foreign key from the
“many” table that references the “one” table and its primary key. In the first example
above, a supplier supplies many products but a product has one supplier (or none,
depending on whether a NOT NULL constraint has been specified). In contrast, a
many-to-many relationship requires a table that explicitly represents the relationship.
Foreign keys from this table reference the participating, original, “main” tables and
their primary keys. In the second example above, a supplier supplies many products
and a product can be supplied by many suppliers.

In fact, this type of relationship can be extended in a straightforward way to three or
more tables. For example, a supplier supplies many products from many warehouses,
a product may be supplied by many suppliers from many warehouses, and a warehouse
may contain many products from many suppliers.
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Hands-On Exercise

1. Consider the following information:
* A book has an ISBN number and a title.
* An author has a name and an address.
* An author can write many books, and a book can be written by
multiple authors. A book is written in a certain year.
2. Write the CREATE TABLE statements with the necessary FOREIGN
KEY statements, and execute them on PostgreSQL
 Use appropriate datatypes for the columns
 Create an appropriate PRIMARY KEY for all tables
Use INSERT statements to create some example data.
4. Use SELECT statements to ensure your data exists.

&9

3.5 SQL Queries

The previous section has presented the basics of the relational database model, focusing
on how tables are related by foreign key relationships. Tables and their relationships
are often graphically shown in a relational diagram. Such diagrams are often called
”ER Diagrams®” or "Entity-Relationship Diagrams”. A graphical representation of the
database structure is useful for understanding the data and for writing queries to extract
data from the table or tables of the database.

In many software tools, including in pgAdmin, the database developer can use rela-
tional diagrams to create tables, instead of writing CREATE TABLE statements. In the
reverse, relational diagrams can also be automatically created from an existing database
and its tables.

Hands-On Exercise
In the pgAdmin Object Explorer, right-click on the “busi4720” database, then

select "’ERD for Database” to create a relational diagram.

In the DBeaver Database Navigator, select the ”busi4720” database, then right-
click on its ’public” schema and select ”View Diagram” to create the diagram.

The resulting diagram will look similar to the one in Figure 3.4. (If you did not clean up
the tables you created in the above SQL exercises, these will be present in the diagram
as well).

8Technically, the two are not quite the same.
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Figure 3.4: Relational diagram of the Pagila demo database
.
The Pagila Database

The diagram shows the structure of the Pagila database’®, a demonstration database
originally developed for teaching and development of the MySQL RDBMS under the
name Sakila'®. Pagila is designed as a sample database to illustrate database concepts
and is based on a fictional DVD rental store. It consists of multiple tables for film and
actor information, customer data, store inventory, and rental transactions. Here is an
overview of the key tables in the Pagila database:

* actor: Stores details about actors, including their first and last names.

* film: Contains information about movies, such as title, release year, language,
rental duration, rental rate, length, replacement cost, rating, and special features.

* film_actor: A junction table that establishes a many-to-many relationship be-
tween the films and actors. It links each film to its actors.

Shttps://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila/blob/master/LICENSE. txt

Onttps://dev.mysqgl.com/doc/sakila/en/,
https://dev.mysql.com/doc/sakila/en/sakila-license.html
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e category: Lists different genres or categories of films.

e film_category: Another junction table that connects films to their respective cat-
egories.

* language: Stores languages in which the films are available.

* customer: Contains customer information, including names, email addresses,
addresses, and store ID where they are registered.

* address: Holds address details, including city, postal code, phone number, and
other address components.

* city: Contains information about cities, linked to the addresses.
e country: Stores country information, which is linked to cities.

o store: Includes data about the DVD rental stores, such as the store’s address and
the staff.

* inventory: Contains information about the store’s inventory, including which film
copies are available at which store.

e rental: Records details about rental transactions, including rental and return
dates, inventory, and customer information.

* payment: Tracks payments made by customers for rentals, including amount and
payment date.

* staff: Contains information about the store staff, including their names, email
addresses, and the store they work in.

Each table is designed with primary keys for unique identification and foreign keys
to establish relationships with other tables. This structure allows for complex queries
across multiple tables, facilitating a wide range of analyses, from inventory manage-
ment to customer behavior tracking. The Pagila database is a good example of a real-
world database schema and offers a good data set for practicing SQL queries.

The SELECT Statement

The SELECT statement in SQL is used to query and retrieve data from one or more
tables in a database. The basic structure of a SELECT statement allows specification
of which columns of data you want to retrieve and from which tables. A SELECT
statement has multiple clauses or parts that are used to specific different characteristics
of the information to retrieve:

* SELECT: Which columns to query (use the asterisk ”*” to select all).
e FROM: Which tables to query from.
e JOIN: How to combine data from multiple tables based on related columns.

e WHERE: Conditions on field values used to filter the retrieved records.
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* GROUP BY: Groups within which to aggregate data using an aggregate function
such as sum (), count (), ormax ().

* HAVING: Conditions on group aggregate values. Similar to WHERE but for
aggregates within each group.

* ORDER BY: How to sort the resulting records in either ascending or descending
order.

e LIMIT: Limit on how many results to return.

The following examples show queries for the Pagila database to illustrate different
features of the SELECT statement. Instead of describing every option in detail, to
understand SQL it is useful to execute the queries and learn by modifying the queries
and observing changes in the results.

Example: Find all actors and the films they appeared in, ordered by film category
and year, for those films that are rated PG

SELECT concat (left (actor.first_name, 1), '. ',
actor.last_name) AS Actor,
category.name AS Category,
film.title,
film.release_year
FROM film_actor
INNER JOIN actor USING (actor_id)
INNER JOIN film USING (film_id)
INNER JOIN film category USING (film_id)
INNER JOIN category USING (category_id)
WHERE film.rating = 'PG'
ORDER BY actor.last_name,
actor.first_name,
category.name ASC,
film.release_year DESC,
film.title ASC;

Running this query will retrieve 1143 records from the Pagila database.

The SELECT clause specifies only a few columns to retrieve. Note that column names
are prefixed by the table name, as in "actor.first_name” to make them unambiguous
when multiple tables contain columns with the same name. Some columns are also
given aliases using the keyword AS. This is useful to give the results more meaning-
ful and shorter names. The first item to be selected is the result of a function: The
concat () function concatenates text, and the 1eft () function extracts the left part
of some text. Refer to the PostgreSQL documention linked to in the footnote above for
a complete reference to available functions.

The FROM clause specifies a single table “film_actor” to which other tables are joined
using the INNER JOIN keyword. The JOIN clause specifies the common join col-
umn with the USING keyword. The join columns typically correspond to the columns
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related by a foreign key relationship. In the Pagila database, foreign keys are always
single columns, as are primary keys. However, one can imagine that combinations
of two or more columns serve as primary keys and as foreign keys. Then, multiple
columns are specified in the USING clause.

An INNER JOIN is a type of join that matches records from two tables if they both
have the same value in their join columns, and only if they both have non-null values
in their join columns. In contrast, a LEFT OUTER JOIN would also include records
from the left table that have a NULL value in their join columns, a RIGHT OUTER
JOIN would also includes records from the right table that have a NULL value in their
join columns, and a FULL OUT JOIN is the combination of a LEFT OUTER JOIN
and a RIGHT OUTER JOIN.

Compare the FROM and JOIN clauses to the relational diagram in Figure 3.4 and notice
how it allows you to “navigate” from one table to another table along the foreign key
relationships that link each table.

The WHERE clause in the above example selects those films whose rating is equal to
the text "PG”. Multiple logical conditions can be combined with the AND, OR, NOT
keywords and parentheses.

The ORDER BY clause specifies the ordering of the results. In this case, ordering is
first done by actor last name. When actors have the same last name, ordering is done
by first name. Within the same last and first names, ordering is done by category name,
in ascending order, as indicated by the ASC keyword (The default ordering is always
ascending, but it is sometimes useful to explicitly indicate this). Next, results are sorted
by film release year in descending order, then again by film title in ascending order.

The JOIN ...USING clause assumes that the columns have the same name in both
tables. When this is not the case, this short form is not available and joins must be
specified manually. Recall that the join ensures that the join columns in both tables have
the same value, which can also be specified in a WHERE clause as a set of conditions.
The following query is equivalent to the previous one, but without the JOIN clauses:

SELECT concat (left (actor.first_name, 1), '. ',
actor.last_name) AS Actor,
category.name AS Category,
film.title,
film.release_year
FROM film actor, film, actor, film category, category
WHERE actor.actor_id = film_actor.actor_id AND
film.film id = film actor.film_id AND
film_category.film_id = film.film_id AND
category.category_id = film category.category_id AND
film.rating = 'PG'
ORDER BY actor.last_name,
actor.first_name,
category.name ASC,
film.release_year DESC,
film.title ASC;
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When writing the query without JOIN keywords, the required tables must all be in-
cluded in the FROM clause; it does not matter in which order they are listed there.

Example: Find the most popular actors in the rentals in each city

SELECT city.city,
concat (actor.first_name, '. ', actor.last_name) AS actor_name,
count (rental.rental_id) AS Number_Rentals
FROM rental
INNER JOIN inventory USING (inventory_id)
INNER JOIN store USING (store_id)
INNER JOIN address USING (address_id)
INNER JOIN city USING (city_id)
INNER JOIN film USING (film_id)
INNER JOIN film_actor USING (film_id)
INNER JOIN actor USING (actor_id)
GROUP BY city.city, actor.actor_id
HAVING count (rental.rental_id) >= 300
ORDER BY city ASC,
Number_Rentals DESC,
actor_name ASC;

Running this query will retrieve 22 records from the Pagila database.

This query uses the GROUP BY clause to group data. First, data is grouped by the city
name, then, within each city, data is grouped by actor identification. Grouping allows,
and in fact requires, the use of aggregate functions. This query uses the count ()
function to count the number of rentals in each group, that is, for each combination of
city and actor. This query also includes a HAVING clause to return only those groups
for which the count of rentals is greater than or equal to 300.

Example: Find the customers who spent the most, with their phone numbers and
cities, the cities their store is in, and the number of rentals with the highest total rental
payments for each film category, grouped by city of the rental store.

SELECT category.name AS category_name,
store_city.city AS store_city,
customer.customer_id,
concat (customer.first_name, ' ',

customer.last_name) AS customer_name,

cust_city.city AS customer_city,
cust_address.phone AS customer_phone,
count (rental.rental_id) AS num_rentals,
sum (amount) AS total_amount

FROM city AS cust_city, city AS store_city,
address AS cust_address, address AS store_address,
store, rental

INNER JOIN payment USING (customer_id)

INNER JOIN customer USING (customer_id)

INNER JOIN inventory USING (inventory_id)

INNER JOIN film USING (film_id)




3.5. SQL QUERIES 91

INNER JOIN film category USING (film_id)
INNER JOIN category USING (category_id)
WHERE store.store_id = inventory.store_id
AND store_address.address_id = store.address_id
AND store_city.city_id = store_address.city_id
AND cust_address.address_id = customer.address_id
AND cust_city.city_id = cust_address.city_id
GROUP BY category.name, customer.customer_id,
cust_address.address_id, cust_city.city, store_city.city
HAVING sum(amount) IN (
SELECT sum(amount) AS maxamount
FROM store, address, city AS inner_city, rental
INNER JOIN payment USING (customer_id)
INNER JOIN customer USING (customer_id)
INNER JOIN inventory USING (inventory_id)
INNER JOIN film USING (film_id)
INNER JOIN film category USING (film_id)
INNER JOIN category AS inner_category USING (category_id)
WHERE inner_category.name = category.name AND
inner_city.city = store_city.city AND
store.store_id = inventory.store_id AND
address.address_id = store.address_id AND
inner_city.city_id = address.city_id
GROUP BY inner_category.name, inner_city.city,
customer.customer_id
ORDER BY inner_category.name ASC, inner_city.city,
maxamount DESC
LIMIT 1 )
ORDER BY category.name ASC, store_city ASC;

This query will return 33 records from the Pagila database.

This complex query is actually two queries as it includes a subquery within the HAVING
clause! Starting in the FROM clause, notice that some tables are included twice in this
query, under different aliases or names, using the AS keyword. This is because the
query retrieves the city that the customers live in, as well as the city that the store is
located in. As cities are linked to addresses, the address table is also included twice.

Some joins are done using the JOIN keyword on common columns, while joining
the address and city tables is done in the WHERE clause because the column names
’city_id” and “address_id” are ambiguous as the tables are included multiple times.

The GROUP BY keyword groups the results by category, customer, address, customer
city, and store city. This is necessary to be able to the select the customer city and ad-
dress: Only columns that are groupbed by can be retrieved or selected and aggregated,
for example by using the sum () function used in this query.

As the query seeks to retrieve the maximum amount spent, the HAVING clause is used
to select just this maximum by ensuring that the sum of payment amounts is equal
to the result of the subquery. This subquery is very similar to the “outer” query,
but returns only the sum of payment amounts, ordered by this amount in descend-
ing order and limited to the first result. That is, the subquery returns the maximum
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sum of payment amounts. The subquery is linked to the outer query by two con-
ditions in its WHERE clause: inner_category.name = category.name and
inner_city.city == store_city.city. These two conditions ensure that
the maximum sum of payments computed in the subquery is done for the same group-
ing that the outer query is considering.

Because of the subquery, running this query is expensive in terms of computing time.

Example: Get the total rental revenue and number of rentals for each store by month

SELECT city.city,
extract (year from payment_date) AS year,
extract (month from payment_date) AS month,
sum (amount) as dollars,
count (rental.rental_id) as rentals
FROM payment, rental, inventory, store, address, city
WHERE payment.rental_id = rental.rental_id AND
rental.inventory_id = inventory.inventory_id AND
inventory.store_id = store.store_id AND
store.address_id = address.address_id AND
address.city_id = city.city_id
GROUP BY city.city,
extract (year from payment_date),
extract (month from payment_date)
ORDER BY city.city,
extract (year from payment_date),
extract (month from payment_date);

Running this query will return 14 results.

This query shows the use of a date function in PostgreSQL. The extract () function
can extract part of a date. In the example, it is used to extract the year and the month.
Both are also used in the GROUP BY and in the ORDER BY clause.

Example: Get the top 5 and the bottom 5 grossing customers by year
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( SELECT concat (customer.first_name, ' ',
customer.last_name) AS customer_name,

extract (year from payment_date) AS year,
sum (amount) as dollars,
'Top—-5' as note

FROM payment, customer

WHERE payment.customer_id = customer.customer_id

GROUP BY extract (year from payment_date),

customer.customer_id

ORDER BY dollars desc

LIMIT 5

) UNION (

SELECT concat (customer.first_name, ' ',

customer.last_name) AS customer_name,

extract (year from payment_date) AS year,
sum (amount) as dollars,
'Bottom-5' as note

FROM payment, customer

WHERE payment.customer_id = customer.customer_id

GROUP BY extract (year from payment_date),

customer.customer_id
ORDER BY dollars asc
LIMIT 5 ) ORDER BY dollars DESC;

This query combines the results of two simple queries with the UNION keyword. Both
queries must return the same columns in order to be combined in this way. Because
the results are mathematically sets, they are not intrinsically ordered; this is why the
set that results from the UNION operation is ordered again.

Set operations can be used to combine results from multiple queries. These are speci-
fied by the UNION, INTERSECT, and EXCEPT keywords and do exactly as their name
indicates: They return the union, the intersection, or the complement of two result sets.
The inputs to each operation sets must have the same set of columns.

PostgreSQL can easily import and export data for further analysis. The pgAdmin ap-
plication can export query results to CSV files (there is a button in the query toolbar).
Alternatively, one can use the COPY command as in the following example.

COPY (SELECT » FROM customer)
TO '/tmp/filename.csv'
WITH (FORMAT CSV, HEADER);

Similarly, PostgreSQL can easily import data from CSV files using the copy command:

COPY customer
FROM '/tmp/filename.csv'
WITH (FORMAT CSV, HEADER);
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Addtionally, PostgreSQL can import and export JSON files; see the documentation for
details.

e 3

Hands-On Exercise

1. Find the names and the rental numbers of the top 5 customers who rented
the most films
« Tip: Join tables "rental”, ’customer”, use the ’count()” function
2. Calculate the rental revenue per customer. Who are the top 5? Bottom
57
 Tip: Join tables “rental”, ”customer”, ”payment”, use the ”sum()”
function
3. Calculate the average rental revenue per customer for each store
 Tip: Join tables “rental”, “customer”, “payment”, ’inventory”, use
the ”avg()” function
4. Calculate the rental counts for each country of customer. Are there coun-
tries with no rentals?
* Tip: Join tables “rental”, ”customer”, address”, "city”, ”country”,
use the ”count()” function
5. Find all films with a single actor
 Tip: Join tables ’film”, "film_actor”, use the ’count()” function in
a HAVING clause
6. Create tables to represent a part-of hiearchy. For example, a product may
be a part of another product, and prodcuts may have multiple parts.
* Tip: You need only one table

3.6 Review Questions

. What is a relational database, and who developed the relational model?
. Explain the role of primary keys and foreign keys in relational databases.
. What is SQL and what are its main purposes?
. List and describe at least four data types commonly used in SQL.
. Explain the difference between the varchar and text data types in Post-
greSQL.
. What are the ACID properties in relational databases and what is their purpose?
. Define and give an example of each of the following constraints:
A. NOT NULL
B. UNIQUE
C. PRIMARY KEY
D. FOREIGN KEY
E. CHECK
8. How do relational databases handle relationships between tables? Give exam-
ples.
9. What are some of the challenges relational databases faced with the advent of
Big Data?

| O S R

~N
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10. What is PostgreSQL and what type of system is it?

11. What is the purpose of the “psql” and “pgAdmin” tools in the context of Post-
greSQL?

12. When connecting to a DBMS running on your own computer, what hostname
should you use?

13. Define a “schema” in the context of a PostgreSQL database. What is the default
schema in PostgreSQL?

3.7 Additional SQL Exercises

Database Schema:
* Table: Employees
¢ Columns: EmployeelD, FirstName, LastName, Role, Department

Task: Write a SQL query to select the first and last names of all employees in the
’Sales’ department.

Database Schema:
¢ Table: Products
¢ Columns: ProductID, ProductName, Price, Category, StockQuantity

Task: Write a SQL query to select the ProductName and Price for all products in the
"Electronics’ category.

Database Schema:
e Table: Books
¢ Columns: BookID, Title, Author, PublishYear, Price

Task: Write a SQL query to select all columns from the Books table and sort the results
by PublishYear in descending order.

Database Schema:
¢ Table: Orders
¢ Columns: OrderID, CustomerName, OrderDate, TotalAmount

Task: Write a SQL query to select the OrderID and TotalAmount for orders where the
TotalAmount is greater than 100. Sort the results by TotalAmount in ascending order.

Database Schema:

e Table: Students
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* Columns: StudentID, Name, Major

Task: Write a SQL query to select all distinct majors from the Students table.

Database Schema:
* Table: Customers
¢ Columns: CustomerID, FirstName, LastName, Email
* Table: Orders
¢ Columns: OrderID, CustomerID, OrderDate, TotalAmount

Task: Write a SQL query to select all orders with the corresponding customer’s first
and last name. Join the Customers and Orders tables on CustomerID.

Database Schema:
» Table: Authors
¢ Columns: AuthorID, Name
* Table: Books
¢ Columns: BookID, Title, AuthorID
* Table: Publishers
¢ Columns: PublisherID, Name
* Table: BookPublishers
¢ Columns: BookID, PublisherID

Task: Write a SQL query to select the title of the book, the name of the author, and the
name of the publisher. This will require joining the Books, Authors, and BookPublish-
ers tables, and then joining the resulting table with Publishers.

Database Schema:
* Table: Employees
* Columns: EmployeelD, FirstName, LastName, Department
* Table: Sales
* Columns: SalelD, EmployeelD, SaleAmount, SaleDate

Task: Write a SQL query to select each employee’s first name, last name, and total
sales amount. This requires a join between Employees and Sales tables and the use of
the SUM aggregate function on SaleAmount.

Database Schema:
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L]

Table: Products

L]

Columns: ProductID, ProductName, Price

Table: Orders

e Columns: OrderID, ProductID, Quantity

Task: Write a SQL query to select all products, along with the quantity ordered for
each product. Use a LEFT JOIN to ensure that all products are listed, even if they have
not been ordered.

Database Schema:
» Table: Students
¢ Columns: StudentID, Name, Major
* Table: Enrollments
¢ Columns: CourselD, StudentID, Grade

Task: Write a SQL query to select the names of students and their grades who are
enrolled in a specific course (e.g., *Biology 101°). This requires a join between the
Students and Enrollments tables and a WHERE clause to filter by the CourselD.

Database Schema:

Table: Employees

Columns: EmployeelD, FirstName, LastName, Salary, DepartmentID

Table: Departments
¢ Columns: DepartmentID, DepartmentName

Task: Write a SQL query to select the first name and last name of employees who
earn more than the average salary in their respective departments. This will require a
subquery in the WHERE clause to calculate the average salary per department.

Database Schema:
* Table: Movies
¢ Columns: MovielD, Title, ReleaseYear, Genre
» Table: Ratings
¢ Columns: RatingID, MovielD, Reviewer, Stars

Task: Write a SQL query to select the title of movies that have an average rating higher
than the overall average rating of all movies. This will require a complex subquery to
first calculate the average rating for each movie, and another subquery to calculate the
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overall average rating.



Chapter 4

Managing Graph Data with
Graph Databases

Learning Goals

After reading this chapter, you should be able to:

4.1

Understand property graphs and the concept of nodes and edges.
Understand when graph databases are preferrable over relational databases.
Define basic graphs using Cypher.

Create graph structures appropriate for different types of queries.

Translate a relational database schema into a graph database definition.

Retrieve information from a graph database using Cypher, including filtering and
aggregation of information.

Introduction

Graph databases are one type of NoSQL databases, an acronym for "Not Only SQL”.
NoSQL databases emerged as a response to the limitations of traditional relational
database systems and the evolving needs of modern applications. The concept and the
term "NoSQL” gained prominence in the late 2000s, but its roots can be traced back to
earlier innovations in database technology.

The rise of the internet and web applications in the 1990s and 2000s led to unprece-
dented amounts of data and new types of data that did not fit neatly into the rows
and columns of relational databases. Companies like Google and Amazon faced chal-
lenges in scaling their databases to meet the demands of huge amounts of web traffic

99
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and large, unstructured data sets. This led to the development of new database systems
like Google’s Bigtable and Amazon’s Dynamo, which laid the groundwork for NoSQL
databases.

NoSQL databases were designed to overcome the scalability, performance, and flex-
ibility limitations of traditional relational databases. Unlike relational databases that
use a fixed table structure, NoSQL databases utilize a variety of data models, including
key-value, document, and graph formats. This diversity allows them to handle a wide
array of data types and structures efficiently.

Key benefits of NoSQL databases include their ability to scale horizontally across many
servers, offering significant advantages in handling large-scale, high-volume applica-
tions and big data. They also deliver high performance, particularly with large volumes
of data and concurrent read/write operations, due in part to their typical emphasis on
eventual data consistency over strict ACID compliance (atomicity, consistency, isola-
tion, and durability of database transactions).

The schema-less nature of NoSQL databases provides more agility in application devel-
opment. Developers can iterate quickly without needing to restructure databases every
time the application evolves. This flexibility is especially valuable in agile software
development environments and for applications dealing with diverse, unstructured, or
rapidly evolving data sets.

Moreover, many NoSQL databases natively support modern data formats like JSON,
aligning well with current web and mobile applications. This can simplify the devel-
opment process, as the same data format can be used throughout the application stack.

However, the strenghts of NoSQL databases also bring some drawbacks. The lack of
a fixed schema means that data integrity cannot be ensured using typing of columns,
primary keys on unique identifiers, or referential integrity with foreign keys. NoSQL
databases also do not typically make correctness guarantees for concurrent transactions
that come from the ACID properties of relational databases. Instead, they guarantee
that eventually the data will be consistent, but applications and users may occasionally
see inconsistent data. Generally NoSQL databases are less suitable for high-volume
concurrent update transaction processing; these application types are better supported
by relational databases. Instead, NoSQL databases are better suited for applications
that may require complex queries but relatively infrequent updates, few concurrent
update transactions, and updates of single data elements at a time.

Graph databases are designed to store and query relationships in data. They represent
data as nodes, akin to entities in a relational database, and relationships between these
nodes. This structure is particularly suited for handling complex, interconnected data
and is highly efficient in scenarios where relationships are as important as the data it-
self. Graph databases gained significant traction driven by the increasing complexity of
data and the limitations of relational databases in efficiently handling highly connected
or networked data. The proliferation of social networks, recommendation systems, and
other applications dealing with complex relationships between data entities spurred the
development of graph databases.
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Unlike relational databases that require computationally intensive join operations to
establish connections between data in different tables, graph databases are designed
to store relationships as first-class objects. This means that queries on interconnected
data are faster and more efficient, as they exploit the direct connections between nodes.
Additionally, graph databases are schema-less or have flexible schemas, allowing for
more agility in adapting to changing data requirements.

4.2 Use Cases

Graph databases have become increasingly important in various industries due to their
ability to efficiently model and query complex relationships and interconnected data
that arise in those applications.

In fraud detection, graph databases are used to uncover patterns that are indicative of
fraudulent activities. They can map complex transaction networks and identify un-
usual patterns, such as circular transactions or abnormally close relationships between
entities, that might signal fraud. The ability to quickly traverse and analyze complex
networks of data helps in real-time detection and prevention of fraud.

For IT infrastructure monitoring, graph databases offer a way to model complex net-
works of servers, devices, and applications. They can track the relationships and de-
pendencies between various components of an IT system. This is invaluable for root
cause analysis, where understanding the impact of an issue in one part of the system
on the rest is crucial for quick resolution.

Graph databases power recommender engines by capturing and analyzing relationships
between users, their preferences, and products. They can efficiently traverse these
relationships to generate personalized recommendations based on a user’s past behavior
and the behavior of similar users.

In social media, graph databases are used to model the complex relationships between
users, their friends, and their activities. They help in understanding social dynamics,
optimizing content delivery, and enhancing user engagement by providing insights into
how users are connected and how information flows through these networks.

For supply chain management, graph databases can model the entire supply chain net-
work, including suppliers, production facilities, distribution centers, and retail outlets.
This aids in optimizing routes, managing inventories, and identifying vulnerabilities in
the supply chain, such as single points of failure.

In the financial sector, graph databases are utilized for risk assessment, compliance,
customer service, and understanding client relationships. They help in mapping and an-
alyzing complex networks of transactions and customer relationships, which is critical
for identifying risks, ensuring compliance with regulations, and offering personalized
financial services.

In life sciences, graph databases play a significant role in drug discovery, genomics, and
protein analysis. They are used to model complex biological systems and relationships,
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such as gene interactions, protein pathways, and patient data, assisting in research and
the development of personalized medicine.

In each of these domains, the key advantage of graph databases lies in their ability to
naturally represent complex networks and relationships. This allows for more intuitive
data modeling, faster querying, and the extraction of insights that would be difficult or
impossible to obtain with traditional relational databases.

4.3 Graph Database Languages

In contrast to the standardized SQL language for relational databases, graph databases
use various query languages designed to leverage their unique structure and efficiently
handle complex queries that involve interconnected data. One of the more prominent
ones is the Cypher language, introduced and primarily used in the Neo4j graph database
system since 2011 but opened for use in other systems in 2015 as the openCypher
project. It is a declarative language', known for its expressive and readable syntax
tailored for describing patterns in graphs. Cypher allows for easy querying of nodes,
relationships, and paths and includes powerful features for filtering, pattern matching,
and aggregating data.

Another notable query language is Gremlin, part of the Apache TinkerPop graph com-
puting framework. Development began in 2009 and is ongoing. Gremlin is versatile
and functional, allowing for imperative and declarative querying across different graph
databases. It is known for its flexibility and ability to execute both simple and complex
traversals, making it suitable for a wide range of applications.

SPARQL (a recursive acronym for "SPARQL Protocol and RDF Query Language”)
is a query language used primarily for querying RDF (Resource Description Frame-
work) data, often found in semantic web applications. Its development is overseen and
standardized by the W3C (World Wide Web Consortium), beginning in 2008 with a
major update in 2013. It is particularly suited to querying and manipulating data stored
in RDF format, and is widely used in applications that require linking diverse data
sources, such as knowledge graphs.

Additionally, some graph databases support SQL-like query languages with extensions
to handle graph-specific structures. These languages make it easier for users familiar
with SQL to transition to graph databases. An example is GraphQL, developed by
Facebook in 2015.

The lack of a standard query language in the graph database realm has led to frag-
mentation. This fragmentation can pose challenges for users and developers, such as a
steeper learning curve and difficulty in transitioning between different graph database
systems. In response, the forthcoming standardized GQL (Graph Query Language) is
a new graph query language specifically designed for interacting with graph databases.

'A declarative query language allows the user to specify what data to retrieve. In contrast, an impera-
tive/procedural query language requires the user to specify how to retrieve data.
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The development of GQL is overseen by ISO/IEC JTC 1, the same joint technical com-
mittee responsible for the SQL standard. Its design is expected to draw on the strengths
of existing languages, offering robust features for graph traversal, pattern matching, and
manipulation of graph structures while maintaining readability and ease of use. A first
version of the GQL standard was expected for 2023.

4.4 The Neo4j Graph Database Management System

Cypher is the query language for Neo4j, one of the most popular graph database sys-
tems. It was specifically designed for querying the graph data in Neo4j, making it
easy to work with complex graph structures. Cypher’s syntax is intuitive and expres-
sive, focusing on the clarity of graph patterns and drawing inspiration from SQL and
other declarative query languages. Its pattern matching approach was styled after the
SPARQL language. Key characteristics and features of Cypher include:

* Graph Pattern Matching: Cypher provides the ability to expressively describe
graph patterns. It uses a syntax where nodes and relationships in the graph are
depicted using parentheses (representing nodes) and arrows (representing rela-
tionships). This makes it visually intuitive to understand the queries and the
graph patterns they represent.

* Rich Filtering Capabilities: Cypher includes robust filtering capabilities, en-
abling users to write queries that can filter nodes and relationships based on
various criteria, including properties and patterns.

» Aggregation and Sorting: Like SQL, Cypher allows for aggregating data, per-
forming calculations, and sorting results. It provides functions for counting,
summing, averaging, and other common aggregations.

* Pathfinding and Graph Algorithms: Cypher can handle common graph queries
such as shortest path, reachable nodes, and more.

* Subqueries and Joins: Cypher supports subqueries and various forms of joins,
enabling complex queries that can span multiple parts of the graph.

e Extensibility: Cypher can be extended with user-defined procedures and func-
tions, allowing for custom logic and advanced processing capabilities.

Similar to SQL queryies, Cypher queries have multiple clauses, specifying a “query
pipeline” for selecting, filtering, and sorting data. Unlike SQL, Cypher queries allow
graph reading and graph updating in the same Cypher statement.

Neo4;j offers a number of options for running the Neo4j database management sys-
tem, among them a limited developer version called ”Neo4j desktop” and a free, open-
source community edition that is usually accessed through a web interface ("Neo4j
browser”). Table 4.1 provides links to useful documentation of the Neo4j database and
the Cypher language.
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Getting Started https://neodj.com/docs/getting-started/
Cypher Manual https://neodj.com/docs/cypher-manual

Graph Data Science | https://neo4j.com/docs/graph-data-science

APOC Library https://neod4j.com/docs/apoc/current/
Use Cases https://neodj.com/use-cases/
Resources https://neodj.com/resources/

Table 4.1: Neo4j Documentation

Figure 4.1: Neo4j Browser interface

The community edition is installed in the course virtual machine and enabled to
run when the machine is started. You can access Neo4j Browser (Figure 4.1) at
http://localhost: 7474 with the username “neo4j” and the password
’busi4720”.

4.5 Introduction to Cypher

Nodes Figure 4.2 shows how nodes and relationships are represented in the Cypher
syntax. In Neo4j, nodes may be labelled with zero, one, or more labels. Labels are
not types; a label does not specify anything about the information associated with a
node, it merely serves to categorize or classify nodes. Nodes may have properties,
specified as key—value pairs in JSON syntax. Graph nodes are written with normal
round parentheses, with the set of their properties in curly brackets. Both the variable
name for the node and the node labels are optional.

(variable : Labell:Label2:Label3 ... {kl:vl, k2:v2, k3:v3 ....})



https://neo4j.com/docs/getting-started/
https://neo4j.com/docs/cypher-manual
https://neo4j.com/docs/graph-data-science
https://neo4j.com/docs/apoc/current/
https://neo4j.com/use-cases/
https://neo4j.com/resources/
http://localhost:7474

4.5. INTRODUCTION TO CYPHER 105

N e r@\

Dan Ann

Node Node
\ \

MATCH( : Person{name:“Dan"})-[:LOVES]—=(:Person{name:“Ann"})
| T | T
LABEL PROPERTY LABEL PROPERTY

https://neodj.com/docs/getting-started/_images/sample-cypher.svg

Figure 4.2: Sample Cypher syntax

Relationships Relationships are directed connections between two nodes. Unlike
nodes, relationships only have a single label. But like nodes, they can have properties
specified as key—value pairs in JSON syntax. Relationships are written as “lines” be-
tween nodes, directed or undirected, with an optional variable name and relationship
label in square brackets.

// Undirected, used in pattern

() - [variable : Label]-()
// Directed
() - [variable : Label]->()
// Directed
()<-[variable : Label]-()

// Unlabelled, no variable
O-11-0
) —>0
O)<—0

Only directed relationships can be created in a Neo4j graph, but undirected
relationships can be used in a pattern to query a graph.

Directionality of relationships is important and matters for querying a graph.
A directed relationship —> will match a directed pattern —> or an undirected
pattern — but not <-.

Path A path in Neo4;j is a sequence of alternating nodes and relationships, beginning
and ending with a node.

Patterns and Querying Graph patterns are used with the MATCH query keyword
and describe either a node or a path that is to be searched for in the graph. When
an instance of a pattern is found, any variable names in the pattern are bound to the
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corresponding nodes and relationship in the graph and the bound pattern is returned in
the result set.

For example, consider the following simple pattern matching query. The MATCH clause
specifies the pattern to match. The pattern here is a node, indicated by the use of round
parentheses, and only a variable name n is specified, no labels or property values. This
means that this pattern matches all nodes in the graph database and returns them in the
variable names n.

MATCH (n)

The next pattern matching query adds a label Person to the node specification. This
means the pattern matches only those nodes that are labelled as Person and returns
them in the variable named p.

MATCH (p:Person)

Patterns can include property values to match. The following pattern matches all Per-
son nodes that contain an attribute name with value ’Joe’ and returns them in the
variable p.

MATCH (p:Person {name: 'Joe'})

4.6 Defining Graphs in Cypher

Nodes or relationships in a graph can be created using the MERGE or CREATE state-
ments in Cypher. As the name indicates, CREATE will create a node or relationship.
In contrast, MERGE will check whether the node or relationship exists and only cre-
ate it when it does not yet exist in the graph. Consider the example graph shown in
Figure 4.3. The following Cypher codes creates this graph:
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name: 'John' name: 'Sally’
age: 27 age: 32
(IS_FRIENDS_WITH

since: 01/09/2013
Person > Person

title: 'Graph Databases'
authors: 'Jim Webber, lan Robinson'

https:
//neodj.com/docs/getting-started/_images/modeling_johnsally_properties-arr.svg

Figure 4.3: Example graph

// Create nodes
MERGE (j:Person {name: "John"})
ON CREATE SET j.age = 27
MERGE (s:Person {name: "Sally"})
ON CREATE SET s.age = 32
MERGE (b:Book {title: "Graph Databases"})
ON CREATE SET b.authors = ["Jim Webber", "Ian Robinson"]

// Create relationships
MERGE (j)-[rell:IS_FRIENDS_WITH]->(s)

ON CREATE SET rell.since = "01/09/2013"
MERGE (j)-[rel2:HAS_READ]-> (b)

ON CREATE SET rel2.on = "02/03/2013", rel2.rated = 5
MERGE (s)-[rel3:HAS_READ]-> (b)

ON CREATE SET rel3.on = "02/09/2013", rel3.rated = 4

Note that the six MERGE statements in the above code block are logically related, so
that variable names, for example j, b and s, in one MERGE clause can be used to
refer to a new node or relationship in a later MERGE clause. While using variable
names in a MERGE clause is not mandatory, it is more efficient than having to later
query the graph data for a particular node when creating subsequent relationships. The
ON CREATE SET clause in the above statements sets one or more property values
(separated by commas) of the newly created nodes and relationships. Note that some
properties are lists, such as the authors property, indicated by the square brackets of
the JSON notation.

The following MATCH queries can be used to view all nodes and relationships, irre-
spective of their labels. The first MATCH clause matches all nodes and returns them,
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the second MATCH clause matches all relationships between any two nodes and re-
turns the relationships, the final query matches any two nodes that are connected by a
relationship and returns the set of triples of first node, second node, and relationship.

// Query nodes
MATCH (n) RETURN n

// Query relationships
MATCH ()-[r]-() RETURN r

// Query both together
MATCH (nl)-[r]-(n2) RETURN nl, r, n2

The Neo4j Browser interface allows graph visualization and visual exploration of nodes,
relationships, and their properties, as shown in Figure 4.4.

Figure 4.4: Graph Visualization and Exploration in Neo4j Browser

Hands-On Exercise

Consider the following description:
”You are completing the course BUSI 4720 in this semester with a
final grade of 100. BUSI 4720 is part of the BCom program where
it is offered in the 4th year. BUSI 4720 carries 3 credit hours of
academic credit. It is a course on the topic of Business Analytics.”
Define a graph in Cypher that represents this description:
1. Identify nodes, relationships, and properties of nodes and relationships
2. Use CREATE or MERGE statements to create nodes first, then relation-
ships
3. Use MATCH to verify your graph is correct.

J

\.

To remove nodes and relationships from a graph, use the MATCH query clause together
with a DELETE clause. For example, to clean and remove the Person and Book nodes
and relationships between Person and Book nodes created in the previous exercise, use

the following Cypher statements:
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(b) Model as relationship

Figure 4.5: Equivalent graph models of movie genres

MATCH (:Person|Book)-[r]-(:Person|Book) DELETE r;
MATCH (n:Person|Book) DELETE n;

To remove all relationships and nodes, irrespective of their label, omit node or rela-
tionship labels, as in the following Cypher code block. Use with care as this deletes all
data in the graph database.

MATCH ()-[r]-() DELETE r;
MATCH (n) DELETE n;

4.7 Graph Data Modeling

When defining a graph, one frequent question is whether to model something as a
property of a node or as a relationship to a node. While there is no generally right or
wrong answer to this question, the choice of data model depends on the queries to be
run against the data, that is, the type of questions that will be asked.

Nodes versus Relationships

Consider the two graph models in Figures 4.5a and 4.5b. Both depict the same fact,
that there exists a movie with title "The Matrix” in two genres, ”Action”, and ~’Sci-Fi”.
Figure 4.5a models the genres as a property of list type, that contains multiple entries
in the list. In contrast, Figure 4.5b models the genres as nodes and the fact that the
movie is in a genre as a relationship between the movie node and a genre node.

The graph model in Figure 4.5a is particularly useful to find the genres for a particular
movie, that is, it is useful for queries that focus on the nodes and their properties.
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Howeyver, this model makes it difficult, cumbersome, and inefficient to find movies
that share genres. The system has to consider all pairs of movies, and then for each
pair of movies iterate through each of their property lists. The following two queries
exemplify this. The first query simply filters the Movie nodes for a particular title and
returns the genre attribute of the Movie node.

The second query first identifies all pairs of Movie nodes in the MATCH clause, then
uses the WHERE clause to filter those pairs that share entries in their genre attribute. Re-
call that the genre attributes are lists, sox IN ml.genre WHERE x IN m2.genre
checks every element of the second list for every element of the first list.

// find the genres for a particular movie
MATCH (m:Movie {title:"The Matrix"})
RETURN m.genre;

// find which movies share genres
MATCH (ml:Movie), (m2:Movie)
WHERE any (x IN ml.genre

WHERE x IN m2.genre)
AND ml <> m2
RETURN ml, m2;

The graph model in Figure 4.5b on the other hand requires a more complex query
to find the genres of the movie. However, while more complex, it no less efficient
than the corresponding query for the other model above. On the other hand, the query
to find movies that share genres becomes easier, more intuitive to write, and more
computationally efficient, as the following Cypher queries show.

The first query uses MATCH to first select movies and filter on the movie name, then
for that movie m it traverses the IN_GENRE relationship to identify all related Genre
nodes g in order to return their names. The second query is more intuitive than the
corresponding query for the other model. It finds two Movie nodes m1 and m2 that
both have an IN_GENRE relationship that points to the same Genre node g.

// find the genres for a particular movie
MATCH (m:Movie {title:"The Matrix"}),

(m) - [ :IN_GENRE] > (g:Genre)
RETURN g.name;

// find which movies share genres

MATCH (ml:Movie)-[:IN_GENRE]->(g:Genre),
(m2:Movie)— [ :IN_GENRE] —> (g)

RETURN ml, m2, g

In summary, neither way of modeling the facts is better or worse, but the two options
are more suitable to different types of queries and data to be retrieved.
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(b) Modeling days as relationship labels

Figure 4.6: Graph models of airports and flights

Labels versus Attributes

Consider the two graph models in Figures 4.6a and 4.6b. The two models demonstrate
the flexibility of modeling connected data and using labels to simplify queries and make
them more efficient.

Figure 4.6a shows Airport nodes connected by :FLYING_TO relationships that
indicate that a flight exists from one to the other airport. Information about flights is
modelled as properties of the relationship. However, noting that multiple flights may
be offered each day, it is clear that a flight node is required to represent each of those
flights, with a node property that represents the date of the flight. However, when
querying such a model for flights on a particular date, the system must examine all
flight nodes, and then filter those with the appropriate property value for the data.

A more efficient model is that shown in Figure 4.6b. Here, the date of the flight is
modelled as a label for the relationship between Airport and AirportDay nodes,
which allows the system to easily select only those flights that occur on a certain date
without having to examine all flight nodes.

This example shows again that the queries to be run against the data have a strong
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impact on how best to model your data, here affecting the decision whether to model
data as an attribute or a label.

Relational Model and Graph Model

The relational data model consists of tables, their columns, and foreign key relation-
ships that link tables (Figure 4.7a). It is straightforward to translate such a model to a
graph model using the following translation heuristics:

* Table names become node labels

* Rows of data become nodes

* Columns become node properties

* Foreign keys become relationships between nodes

* Join tables become relationships between nodes; their properties become rela-
tionship properties

* Null values do not become properties, they are omitted entirely

Applying these heuristics to the example in Figure 4.7a leads to the graph model in
Figure 4.7b. The table names "Employee” and "Department” have become node labels
for two different categories of nodes. Each row in the employee table (for example,
employee 815 with name Alice) is represented as a node with label Person, and each
department (for example, department 111 with name 4Future) is a node with label
Department. The column names, the “name” column in the Employees table and
the ”deptName” column in the Departments table, have become properties of the cor-
responding nodes. The "Dept_Members” table joins employees and departments and
has been transformed into the relationship with label BELONGS_TO between Person
and Department nodes. The "Dept_Members” table had no columns other than
those participating in the foreign key relations, but if it had, those columns would be
attributes on the BELONGS_TO relationship.

Applying these heuristics should only be considered as an initial translation. As seen
above, some or all properties may well be represented as nodes in their own right
(Figure 4.5) or be modelled as relationship labels (Figure 4.6), depending on the type
of queries expected to be run against the graph data.

Pagila Database Example As an example, each table of the Pagila relational database
from the previous chapter was exported from PostgreSQL to a CSV file. These CSV
files can be imported into Neo4j with the following set of Cypher expressions. Note
that not all data is imported in this example, and a more compact representation of the
statements is possible.

The Pagila database is already imported into the Neo4j Community Edition in
the course virtual machine.
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(b) An equivalent graph model

Figure 4.7: Transforming relational data to graph data

load csv with headers from 'file:///actor.csv' as row
merge (actor:Actor {actorID: row.actor_id})

on create set actor.firstName = row.first_name

on create set actor.lastName = row.last_name;

load csv with headers from 'file:///address.csv' as row
merge (address:Address {addressID: row.address_id})

on create set address.address = row.address

on create set address.district = row.district

on create set address.postalCode = row.postal_code

on create set address.phone = row.phone;

load csv with headers from 'file:///category.csv' as row
merge (category:Category {categoryID: row.category_id})
on create set category.name = row.name;

load csv with headers from 'file:///city.csv' as row
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merge (city:City {cityID: row.city_id})

on create set city.city = row.city;

load csv with headers from 'file:///country.csv' as row
(country:Country { countryID: row.country_id})
on create set country.country = row.country;

load csv with headers from 'file:///customer.csv' as row
(customer:Customer { customerID: row.customer_id})
on create set customer.firstName = row.first_name

on create set customer.lastName = row.last_name

on create set customer.email = row.email;

load csv with headers from 'file:///film.csv' as row

(film:Film { filmID: row.film_id})

on create set film.title = row.title

on create set film.releaseYear = tolInteger (row.release_year)

on create set film.rentalDuration = toInteger (row.rental_duration)
on create set film.rentalRate = toFloat (row.rental_rate)

on create set film.length = toInteger (row.length)

on create set film.rating = row.rating;

load csv with headers from 'file:///inventory.csv' as row
(inventory:Inventory { inventoryID: row.inventory_id });

load csv with headers from 'file:///language.csv' as row
(language:Language { languageID: row.language_id })
on create set language.name = row.name;

load csv with headers from 'file:///payment.csv' as row
(payment :Payment { paymentID: row.payment_id } )
on create set payment.amount = toFloat (row.amount)

on create set payment.paymentDate = row.payment_date;

load csv with headers from 'file:///rental.csv' as row

merge (rental:Rental { rentallID: row.rental_id } )
on create set rental.rentalDate = row.rental_date
on create set rental.returnDate = row.return_date;

load csv with headers from 'file:///staff.csv' as row
(staff:Staff { staffID: row.staff_id })

on create set staff.firstName = row.first_name

on create set staff.lastName = row.last_name

on create set staff.email = row.email;

load csv with headers from 'file:///store.csv' as row
(store:Store { storelID: row.store_id });

// Foreign keys

load csv with headers from 'file:///address.csv' as row
match (address:Address { addressID: row.address_id} )
match (city:City { cityID: row.city_id} )

(address) - [r:ADDRESS_CITY] > (city) ;

load csv with headers from 'file:///city.csv' as row
match (city:City { cityID: row.city_id} )

CHAPTER 4. MANAGING GRAPH DATA WITH GRAPH DATABASES
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match (country:Country { countryID: row.country_id
merge (city)-[r:COUNTRY_OF_CITY]-> (country);

match (store:Store {storeID: row.store_id} )

match (address:Address { addressID: row.address_id}
merge (customer)-[rl:CUSTOMER_STORE]-> (store)

merge (customer)-[r2:CUSTOMER_ADDRESS]-> (address) ;

match (film:Film { filmID: row.film_id} )
merge (film)-[r:FILM_LANGUAGE]-> (language) ;

load csv with headers from 'file:///inventory.csv'

match (film:Film { filmID: row.film_id} )
match (store:Store { storeID: row.store_id} )
merge (store)-[rl:STORE_INVENTORY]-> (inventory)
merge (film)-[r2:FILM_INVENTORY]-> (inventory);

match (payment:Payment { paymentID: row.payment_id}

match (staff:Staff { staffID: row.staff_id} )
match (rental:Rental { rentallID: row.rental_id} )
merge (payment)-[rl:PAYMENT_CUSTOMER]-> (customer)
merge (payment)-[r2:PAYMENT_STAFF]->(staff)

merge (payment)-[r3:PAYMENT_RENTAL]-> (rental);

load csv with headers from 'file:///rental.csv' as
match (rental:Rental {rentallID: row.rental_id} )

match (staff:Staff {staffID: row.staff_id} )
merge (rental)-[rl:RENTAL_INVENTORY]-> (inventory)
merge (rental)-[r2:RENTAL_CUSTOMER]-> (customer)
merge (rental)-[r3:RENTAL_STAFF]->(staff);

match (staff:Staff {staffID: row.staff_id} )

match (address:Address {addressID: row.address_id}
match (store:Store {storeID: row.store_id} )

merge (staff)-[rl:STAFF_ADDRESS]-> (address)

merge (staff)-[r2:STAFF_STORE]-> (store);

match (store:Store {storeID: row.store_id} )

match (staff:Staff {staffID: row.manager_staff_ id}
match (address:Address {addressID: row.address_id}
merge (store)-[rl:STORE_MANAGER]-> (staff)

merge (store)-[r2:STORE_ADDRESS]-> (address) ;

//

// Join tables for foreign keys

//

load csv with headers from 'file:///film_actor.csv'

)

load csv with headers from 'file:///customer.csv' as row
match (customer:Customer { customerID: row.customer_id} )

)

load csv with headers from 'file:///film.csv' as row
match (language:Language { languageID: row.language_id} )

as row

match (inventory:Inventory { inventoryID: row.inventory_id}

load csv with headers from 'file:///payment.csv' as row

)

match (customer:Customer { customerID: row.customer_id} )

row

match (inventory:Inventory {inventoryID: row.inventory_id}
match (customer:Customer {customerID: row.customer_

id} )

load csv with headers from 'file:///staff.csv' as row

)

load csv with headers from 'file:///store.csv' as row

)
)

as row

)

)
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Figure 4.8: The Pagila database in Neo4j Browser

match (actor:Actor {actorID: row.actor_id} )
match (film:Film {filmID: row.film_id} )
merge (actor)-[r:ACTS_IN]|->(film);

load csv with headers from 'file:///film_ category.csv'
match (film:Film {filmID: row.film_id} )

match (category:Category {categoryID: row.category_id} )
merge (film)-[r:FILM_CATEGORY]-> (category);

as row

Importing the Pagila database takes about 10 minutes and will yield a graph that can
be explored visually using Neo4j Browser using the following Cypher command that
calls a built-in function for visualizing the database schema. A screen shot of the visual

explorer is shown in Figure 4.8.

CALL db.schema.visualization ()

When importing from files, or exporting to files, Neo4j Community Edi-
tion uses the the /var/lib/neo4j/import/ directory on the server.
Files to import must be placed in that directory, and exported files will
be created there. Additionally, any scripts to be run by calling CALL
apoc.cypher.runFile () must be located in that directory.
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4.8 Graph Queries with Cypher

This section introduces the syntax of Cypher queries using example queries for the
Pagila database as imported in the previous section.

Example: Find actors by last name, limit to 10.

MATCH (a:Actor)

RETURN a.firstName, a.lastName
ORDER BY a.lastName DESC
LIMIT 10;

The Cypher code above shows basic node label matching in the MATCH clause, return-
ing a selection of node properties using the RETURN clause, ordering and limiting the
result set using the ORDER BY and LIMIT clause, which are analogous to the SQL
clauses with the same names.

Example: Find films whose title starts with a *T” and that have a rental rate less than
3, sort by film title, limit to 10.

MATCH (f:Film {rating: "PG"})

WHERE (f.title STARTS WITH "T") AND (f.rentalRate < 3)
RETURN f.title, f.rating, f.rentalRate

ORDER BY f.title ASC LIMIT 10;

The Cypher code above introduces note matching on labels and properties and filterung
using a WHERE clauses. Two conditions are combined using the AND word. Note that
the matching on the rating property value of PG’ could also have been incorportated
into the WHERE clause, but not all WHERE clause conditions can always be moved to
the node property specification in the MATCH clause and queries may be more readable
when using a WHERE clause.

Example: Find rental datas and customer names of customers that live in India.

MATCH (r:Rental)
— [ :RENTAL_CUSTOMER] —> (c)
— [ :CUSTOMER_ADDRESS] —> ()
—[:ADDRESS_CITY]-> ()
—[:COUNTRY_OF_CITY]->(ct {country: "India"})
RETURN c.firstName, c.lastName, r.rentalDate LIMIT 5

This example introduces matching of paths that contain multiple nodes and multiple
relationships. In the above query, the types or labels or nodes and relationships are
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Figure 4.9: Exploring relationships among nodes in Neo4j Browser

specified, but because no properties of the intermediate nodes or relationships are to be
returned, they do not need to be bound to query variables.

Hands-On Exercise

Write a Cypher query to find all customers that have rented a film with rating
”PG”:
1. Explore the graph visually in Neo4j browser, note the relationship types
(see Figure 4.9)
2. Consider the path from customer to film via rental and inventory
3. Design a pattern that starts with a customer node and ends with a film
node
4. Define an appropriate WHERE clause of property restrictions in node pat-
terns

Example: Find the mean and standard deviation of rental payments by country.
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MATCH (p:Payment)
— [ :PAYMENT_RENTAL]-> (r:Rental)
— [ :RENTAL_CUSTOMER] —> (c)
—[:CUSTOMER_ADDRESS] —> ()
—[:ADDRESS_CITY]—> ()
—[:COUNTRY_OF_CITY] > (ct)
WITH ct,
avg (p.amount) AS amountMean,
stDev (p.amount) AS amountSD
RETURN ct.country, amountMean, amountSD
ORDER BY amountMean DESC LIMIT 5

This example introduces aggregation. In contrast to aggregation in SQL where group-
ing variables must be declared in the GROUP BY cluase, grouping in Cypher is implicit
and uses all non-aggregated variables. In the following example, the non-aggregated
variables is ct (the country). The query also introduces the aggregation functions
avg () and stDev () that compute the average and standard deviation, respectively.
More information of aggregation functions can be found in the Neo4j documentation?.

Example: Find the sets of last names of the movie cast, and the total number of
actors.

MATCH (a:Actor)-[:ACTS_IN]->(f:Film)
RETURN f.title,
collect (a.lastName) AS cast,
count (x) AS numActors;

This example introduces aggregation into collections (lists) using the collect ()
function. The query returns a list of actor last names as cast, together with the count
of actors that act in each movie. Grouping happens implicitly for each variable not
aggregated. In this example, that is the variable f, representing the film.

Example: Find the set of film titles by rental customer and the number of rentals.

MATCH (f:Film)-[:FILM_INVENTORY]- ()
— [ :RENTAL_INVENTORY] - (r:Rental)
— [ :RENTAL_CUSTOMER] —> (c:Customer)
RETURN c.lastName,
collect (f.title) AS filmRentals,
count (*) AS numRentals;

This example also uses aggregation with collection and a slightly more complex graph
pattern in the MATCH clause®.

2https://neo4j.com/docs/cypher-manual/current/functions/aggregating/
3From https://neo47j.com/docs/getting-started/cypher—intro/results/
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Example: Find the set of rental customers for each film and the rental count.

MATCH (f:Film)-[:FILM_INVENTORY] - ()
—[:RENTAL_INVENTORY] - (r:Rental)
—[:RENTAL_CUSTOMER] —> (c:Customer)

RETURN DISTINCT f.title,
collect (c.lastName" "+left (c.firstName, 1)+".") AS custNames,
count () as rentalCount

This example introduces string functions and operators. Strings can be concatenated
with the ”+” operator. The function 1eft (., n) returns the leftmost segment of n
characters of the string. In contrast to the last query, here the collection creates a list
of customers, grouped by films, rather than films, grouped by customer. The query
also introduces the DISTINCT key word that limits the result set to unique values of a
variable.

Example: Find the customers who rent films that are in inventory at multiple stores.

MATCH (c:Customer)<-[:RENTAL_CUSTOMER] - (r:Rental)
— [ :RENTAL_INVENTORY] - ()
—[:FILM_INVENTORY]-(f:Film)

WITH c, count({

MATCH (f)-[:FILM_INVENTORY]- ()
—[:STORE_INVENTORY] - (s:Store)
RETURN DISTINCT s.storeID } AS storeNum
WHERE storeNum > 1
RETURN DISTINCT
c.lastName+" "+left (c.firstName,1l)+"." AS custName,
storeNum

This example introduces sub-queries and the WITH clause. The WITH clause intro-
duces elements that will be passed to subsequent clauses. In this example, the result of
the subquery within the { ...} function is passed on in the variable st oreNum in
the “outer” query. This is then used in the WHERE clause of the outer query.

Example: Find Christian Akroyd’s co-actors.

MATCH (a:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
—[:ACTS_IN]->(f:Film)<-[:ACTS_IN]- (coActors)
RETURN coActors.firstName+" "+coActors.lastName AS Name;

This query example emphasizes path matching from a given node. Note the second
ACTS_IN relationship is traversed in reverse order, it’s arrow points “left”.
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Example: Movies and actors up to 2 "hops” away from Christian Akroyd.

MATCH (a:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
—[:ACTS_INx1..2]- (others:Actor)
RETURN distinct others;

This query introduces quantified relationships. In the example, the ACTS_IN relation-
ship may be traversed between 1 and 2 two times on the way to other actor nodes. Note
that no Film nodes or other relationships need to be specified here.

Example: The shortest path of an acts-in relationship between Christian Akroyd and
Charlize Dench.

MATCH path=shortestPath (
(al:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
—[:ACTS_INx] - (a2:Actor {firstName:"CHARLIZE", lastName:"DENCH"}))
RETURN path;

This query introduces the use of built-in functions. In this case, the built-in func-
tion shortestPath () is a graph-theoretic function that computes the shortest path
along ACTS_IN relationships between two specific nodes. Graph databases are par-
ticularly useful and efficient for queries on such graph-theoretic functions, which are
very difficult to express in SQL.

Example: Find actors that Christian Akroyd hasn’t yet worked with, but his co-actors
have. Extend Christian Akroyd’s co-actors, to find co-co-actors who haven’t worked
with him.

MATCH (al:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
—[:ACTS_IN]->(m)<-[:ACTS_IN] - (coActors),
(coActors) —[:ACTS_IN]->(m2)<-[:ACTS_IN] - (cocoActors)
WHERE NOT (al)-[:ACTS_IN]->()<-[:ACTS_IN]- (cocoActors)
AND al <> cocoActors
RETURN cocoActors.firstName+" "+
cocoActors.lastName AS Recommended,
count () AS Strength
ORDER BY Strength DESC

This query example introduces the use of multiple patterns in the MATCH clause that
are separated by commas and are related in the sense that variables in one can be used
in the other and refer to the same node or relationship. The two patterns in the MATCH
clause are connected through the shared variable coActors. Note also that traversal
direction of the various relationships. Finally, this example also introduces the use
of patterns in the WHERE clause, allowing more complex filters on the results. The
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patterns in the WHERE clause are also logically related to the patterns in the MATCH
clause, in this example they share the variable cocoActors.

Example: Find someone who can introduce Christian Akroyd to Susan Davis.

MATCH (al:Actor {firstName:"CHRISTIAN", lastName:"AKROYD"})
—[:ACTS_IN]->(m)<-[:ACTS_IN] - (coActors),
(coActors) —[:ACTS_IN]—> (m2)
<-[:ACTS_IN]-(a2:Actor {firstName:"SUSAN", lastName:"DAVIS"})
RETURN al, m, coActors, m2, a2

The example is similar to the one above with its use of multiple path patterns in the
MATCH clause. The query finds common co-actors of two named actors. Note the
traversal directions of the relationships.

7 3

Hands-On Exercises

The following hands-on exercises are designed to familiarize you with the
Cypher language and use the Pagila database.
1. Are there two customers that have the same address?
2. Which customers have rented the same set of films?
3. Find all films with a single actor
4. Calculate the rental revenue per customer. Who are the top 5?7 Bottom
57
5. Calculate the rental counts for each country of customer. Are there coun-
tries with no rentals?
6. Create a graph that represents a product hierarchy.

4.9 Review Questions

1. What is a graph database, and how does it differ from traditional relational
databases?

2. Describe the different data models used in NoSQL databases. How does the
graph model specifically cater to certain types of data and applications?

3. Explain how data is represented in a graph database. What are nodes and rela-
tionships?

4. List and explain the key benefits of using graph databases over traditional rela-
tional databases.

5. How do graph databases handle relationships differently, and why is this advan-
tageous for certain applications?

6. Give examples of specific industries or applications where graph databases are
particularly useful. Explain why a graph database is chosen over other types of
databases in these scenarios.
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7.

8.

9.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

What are some of the prominent query languages used with graph databases?
Briefly describe their unique features.

How does Cypher, the query language for Neo4j, compare to SQL in terms of
syntax and capabilities?

Discuss the characteristics of Cypher as a query language. How does it enable
efficient querying and manipulation of graph data?

Reflect on a scenario or a problem where you think a graph database would be
more effective than a traditional relational database. Explain your reasoning.
Describe what a node represents in Neo4j and how it is represented in Cypher
syntax.

Explain how properties are associated with nodes in Neo4j. Give an example
using Cypher syntax.

Discuss the significance of relationship directionality in Neo4j. What is the dif-
ference between directed and undirected relationships in querying?

Define what a ’pattern’ is in Cypher and its role in querying the graph database.
Provide an example of a simple Cypher pattern and explain what it matches in
the graph.

Differentiate between the ‘CREATE® and ‘MERGE* statements in Cypher. Un-
der what circumstances would you use each?

Give an example of how to create a node with multiple labels and properties
using Cypher.

How would you create a relationship between two nodes, including setting prop-
erties on the relationship?

Explain the difference between modeling data as a property of a node versus as
a separate node connected by a relationship. Give an example to illustrate your
point.

In the context of Neo4j, why might it be more efficient to model certain data as
relationships between nodes rather than as properties of a single node? Provide
an example where this is the case.

Given a graph model where movie genres are modeled as properties of a movie
node, what are the limitations of this approach when trying to find movies with
shared genres?

Describe the process of translating a relational data model into a graph model in
Neo4;.
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Chapter 5

Introduction to Data
Management with R

Learning Goals

After reading this chapter, you should be able to:

* Create and manipulate basic data structures in R, including arrays, matrices, and
data frames.

* Create summary information from R data frames and other data structures.

» Use the Tidyverse packages to retrieve information from R data frames, includ-
ing filtering, grouping, and aggregation of information.

* Use SQL to operate on R data frames to retrieve information, including filtering,
grouping, and aggregation of information.

5.1 Introduction

R is a highly acclaimed statistical software and programming language known for its
robust capabilities in data analysis, visualization, and statistical computing. It was
conceived in the early 1990s by Ross Thaka and Robert Gentleman at the University of
Auckland, New Zealand. Drawing inspiration from the S language developed at Bell
Laboratories, R was designed to be a powerful and flexible tool for data analysis and
statistical modeling.

One of the key advantages of R is its open-source nature, making it freely available
to users worldwide. This accessibility has fostered a vibrant community of users and
developers, continuously enhancing its functionality through comprehensive packages
and extensions. The Comprehensive R Archive Network (CRAN), a repository of these

125
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joerg@joerg-samsung: ~
: $R
R version 4.1.2 (2021-11-81) -- "Bird Hippie"
Copyright (C) 2621 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Figure 5.1: The R command line interface

packages, is a testament to R’s extensible architecture, offering tools for a myriad of
data analysis tasks.

R’s popularity stems not only from its wide range of statistical techniques, includ-
ing linear and nonlinear modeling, time-series analysis, classification, clustering, and
others, but also from its exceptional capabilities in data visualization. The software
provides an integrated suite of tools for data manipulation, calculation, and graphical
display, making it an invaluable asset for statisticians, researchers, and data scientists.

Moreover, R’s programming language aspect allows for automation and customization
in data analysis, which is highly beneficial for complex and repetitive tasks. Its com-
patibility with various data formats and integration with other programming languages
and tools further enhances its versatility.

5.2 UsingR

R is a command-line oriented software, that is, users type commands to perform calcu-
lations or call functions of R packages. A sequence of R commands can be assembled
in a script file, so that they may be re-run when necessary. The advantage of this type of
software over one with a graphical user interface is in the repeatability and replicability
of the work. Ideally, data analysts will assemble an R script file for their entire data
analysis, from raw data sets to finished statistical analyses and visualizations, so that
all details of the analysis are available for replication and evaluation.

The R system can be launched simply by invoking the R command from the terminal
window, as shown in Figure 5.1. R will display its version information and prompt for
command entry with a > prompt.
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To install R on Microsoft Windows or on MacOS, download the installation files from
CRAN (Comprehensive R Archive Network) athttps://cran.r-project.org
and follow the instructions. R on Microsoft Windows and R on MacOS will show their
command prompts inside a window but otherwise function similarly to R on Ubuntu
that is installed in the course virtual machine.

( D
Tip: A good, easy, and comprehensive introduction to R can be found here:
https://cran.r-project.org/doc/manuals/r-release/
R-intro.pdf

Tips for working efficiently with R: To make using R more efficient, con-
sider doing the following:

* Use the up-arrow key to retrieve earlier commands.

e The history () function shows your command history.

» Use a notepad app to assemble your commands, then copy/paste to R.

» Use a notepad app for your results, copy/paste from R.

¢ The Ubuntu terminal window uses  SHIFT-CTRL-X , SHIFT-CTRL-C ,

SHIFT-CTRL-V for cut/copy/paste.
» Use multiple terminal and R windows (e.g. one for executing commands,
one for reading help documentation or for listing files).
* Don’t update packages in the middle of a project.
* Ensure you have a repeatable, automatable script for your entire data
analysis at the end of a project.

5.3 R Basics

The most basic way to use R is to simply use it as a calculator, as shown in the following
R code example. Type ”1+1” at the ”>" prompt, then press the RETURN key to
execute the statement. R will respond on the following line with the result:

> 1+1
[11 2

A variable in R is a named storage space for numbers, characters, strings, and other
data elements. Traditionally, values are assigned to variables using the <— operator, but
one may also use the more “normal” assignment operator =. Using the <— assignment
operator helps to clearly distinguish assignment from equality testing, which uses ==.

The following R code example introduces the R function called print () that does as
its name suggests. Most data types and data structures that can be assigned to variables
have a useful print function associated to them, so that on the interactive R command
line you can simply type their name to get their value. In interactive mode, R calls the


https://cran.r-project.org
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

128 CHAPTER 5. INTRODUCTION TO DATA MANAGEMENT WITH R

print () function automatically, in an R script that you execute from file, you will
have to exiplictly use the print function.

> a <- 3

> b <- 2

> print (a * Db)
[1] 6

> a

[1] 3

A common structured data type in R is a vector. A vector in R contains elements of
the same data type and is ordered. When assigning elements of different datatypes to a
vector, R will coerce the types of all elements to a common datatype.

> v <- c(1, 'a', TRUE)

> v

[l] lllll "a" ||TRUE"
> v <- c(l, 2, 3, 4

> vx3

[1] 3 6 9 12

Note that R automatically determined that multiplication with a scalar is an element-
wise operation and applies it to each element of the vector.

Useful functions to create vectors are the sequence function seq (), which accepts the
lower and upper limit and a step size as parameter, and the repetion function rep ()
which repeats its first argument the number of times specified by its second argument.

> s <- seq(0, 6, by=.5)
> print (s)

> r <- rep(3.5, 5)

> print (r)

R provides useful functions for numerical vectors, to find their length, their maximum
and minimum value, the square root of their values, as well as the variance and standard
deviation of the elements. Note that R automatically determines whether functions are
applied to the whole vector, like var () or sd (), or whether functions are applied
element-wise to each element, like sqrt (). Vector concatenation, using the c ()
function, automatically “flattens” the vectors.
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length (v)

max (v)

min (v)

sqgrt (vv)

var (v)

sd (v)

vv <- c(v, c(7, 8, 9), v)
print (vv)

V V.V V V V V V

The most common way to select elements from vectors is by indexing with a boolean
vector. In the following example, the expression vv < 5 yields a vector of boolean
values. Indexing the variable vv with that vector determines which elements of vv to
select.

> vv < 5
> vv[vv < 5]
> vv[vv < 5] <- vv[vv < 5] + 5

Vectors can also be indexed numerically, selecting elements by their position. R al-
lows you to specify a sequence using the : operator and exclusion of elements using
-, sometimes called slicing. The first line in the following example selects elements
at positions 3 through 7, the second line selects elemtns except those at positions 3
through 7.

> vv[3:7]
> vv[-(3:7)]

Important:
* R begins indexing positions with 1, while other programming languages
begin at 0.

Tip:
* The boolean constants TRUE and FALSE can be abbreviated by T and F

J

R also has special symbols to denote infinity (1nf) and results that are not a number
(NaN):

>2 /0
[1] Inf
>0/ 0
[1] NaN
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Importantly, NaN is not the same as a missing value, which is denoted by N2, as in the
following R code example. The is.na () function can be used to identify and index
NA and then filter them. Any NA typically yields an NA when an aggregate function is
applied. Many functions offer an option to remove NA values prior to applying them,
as shown for the sum () function in the following R code block.

> v[3] <- NA

> vx3

[1] 3 6 NA 12

> is.na(v)

[1] FALSE FALSE TRUE FALSE
> sum(v)

[1] NA

> sum (v, na.rm=TRUE)

[11 7

The boolean logical and and or are represented by the operators & and | shown in the
R code block below.

> TRUE & FALSE
FALSE

> TRUE | FALSE
TRUE

Character strings in R are enclosed in single or double quotes (but not mixed quotes!).
Two useful functions are paste () which pastes its arguments together with an op-
tional separator between them and returns a characters string, and the strsplit ()
function which accepts a string (or vector of strings) to split, and a separator character
that identifies where to split the string. It returns a list of vectors of strings.

> labell = 'I Love R'

> label2 = 'and BUSI 4760

> paste(labell, label2, sep=' ")

> strsplit ('Hello World! My first string', ' ')

Because you can assign arbitrary values to variables in R, R provides functions to
test the value type and to change or coerce the value type. A factor data type in R
represents categorical data, encoded as different character strings or different numbers.
Categorical data is treated different from numerical or character string data in many
statistical analyses.
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is.numeric (vv)

is.integer (vv)

mode (vv)

as.character (vv)

is.character (as.character (vv))
as.factor (as.character (vv))

levels (as.factor (as.character (vv)))

V V.V V V V V

Important string functions are grep (), which checks whether strings contain a sub-
string that matches a regular expression, and agrep (), which calculates the Leven-
shtein distance between a regular expression and a set of strings. The Levenshtein
distance is defined as the sum of insertions, deletions, and substitutions of characters
to transform one string into another. The first use of grep () in the following R code
block matches a phone number, the second use of grep () matches a Canadian postal
code, while the last two examples of grep () and agrep () exemplify the difference
between exact matching with grep () and approximate matching with agrep () .

> grep ('~ ([0-9]1{3}) [ -12[0-9]1{3}[ -12[0-9]{4}s",
c('709 864 5000', 'abc def 9999', '709-865-5000"))
[1] 1 3

> grep (' [A-V] [0-9] [A-V] [0-9] [A-V][0-9]"',
c('A0OP 1LO', 'OAB L2K', 'AO0X 1z0'"))

[11 1
> grep('apple', c('apricot', 'banana', 'grape', 'pineapple'))
[1] 4
> agrep ('apple',
c('apricot', 'banana', 'grape', 'pineapple'),
max.distance=3)
[1]1 1 3 4

5.4 The R Environment

The collection of variables, functions and libraries that exists in R at any one time
is called the R workspace. R provides many functions to manipulate objects in its
workspace, among them 1s () and rm (), named after their Unix bash shell equiva-
lents. The following R code illustrates the use of these functions. Results may vary
depending on what variables have been created prior to these commands.

> 1s()

[1] Hall Hbll "V"
> rm(v)

> 1s()

[1] "a" npym"

R comes with a built-in user manual that one can access with the help () function or
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simply the ? operator. Help is available on any function in R, as shown in the following
example. For added convenience, R provides a web browser interface to its help pages
that is started by help.start ().

help ()

help (1m)

?1lm

??21lm
help.start ()

VvV V V V V

R has a working directory where it reads and writes files from and to. On Ubuntu Linux,
this is the directory from which the r command was issued. R provides functions to get
the working directory, to set (change) it, and to list the files in the working directory:

> getwd ()

[1] "/home/busid720"

> setwd('DataSets')

> getwd ()

[1] "/home/busid720/DataSets"
> list.files()

Tip: It is often more convenient to change the working directory in the ter-
minal, prior to invoking r.

A collection of related functions is called a library in R. While some libraries come
with the base R system, other packages will need to be downloaded and installed. The
CRAN (comrehensive R archive network) provides libraries in convenient form. To
install packages from CRAN, use the install.packages () which accepts the
name (or a vector of names) of packages to install from CRAN. On some systems, R
may prompt the user from which CRAN location to install packages. Normally, there
is little difference other than download speed.

Installed libraries can be attached to the R workspace with the 1ibrary () function.
The library () function with an argument attaches the specified package and makes
its functions and data sets available for use. The 1ibrary () function without any
arguments shows which libraries are installed. The search () function shows which
packages are currently attached to the workspace. Finally, installed.packages ()
provides details of all installed packages.

search ()

library (matrixcalc)
search ()

library ()

install.packages ('lavaan')
library ()
installed.packages ()

V V.V V V V V
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It is sometimes useful to assemble a set of related R commands in a script file. As
noted earlier, script files are useful to improve the replicability of the data analysis.
The source () function will read and execute a file containing R commands. As
noted earlier, in a script file, you will need to use the print () function to print the
values of variables.

> source ('MyFirstScript.R'")

Finally, the quit () function ends an R session. When using quit () without argu-
ments, R will ask whether to save the workspace image. R stores its workspace in each
directory in a file called ”.RData” and will read it when restarted from that directory.
R also stores its command history in each directory in a file called ”.Rhsitory” and will
read it when restarted from that directory.

> quit ()

5.5 Arrays, Matrices, Lists, and DataFrames

R arrays are multi-dimensional objects that can hold any primitive data type, usu-
ally numerical. A matrix is simply a two-dimensional array. The following example
shows how indexing generalizes from vectors to matrices and arrays simply by index-
ing each dimension with the same syntax as used for vectors. The array () creates
multi-dimensional arrays from existing data, the dim () function returns the number
of dimensions of an array.

A few important things to note in the following R code block example:

* Initially, the array is created from a range of numbers between 1 and 20, and the
dim argument specifies the dimensionality.

¢ A dimension need not be subsetted or indexed, asina [, 2] ora[, 2:4] which
do not subset the first dimension

* Reversing the index reverses the result that is returned, as in a[3:1,2:4]
which reverses the indexing of the first dimension.

e An array with two columns is interpreted as a set of indexes, asina[i] <- 0
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> a <- array(1:20, dim=c(4,5)
> a

(,11 [,21 [,31 [,4] [,5]
[1,1 1 5 9 13 17
[2,1 2 6 10 14 18
[3,] 3 7 11 15 19
[4,1] 4 8 12 16 20
> dim(a)
[1] 4 5
> al,2]
> al,2:4]
> al[3,2:4]
> al[3:1,2:4]
> i <- array(c(1:3,3:1), dim=c(3,2))
> al[i] <- 0
> a

Constructing a matrix with the mat rix () function is similar to constructing an array,
but instead of providing the dimensionality with dim, one must provide the number of
rows or colums (nrow or ncol) and how to fill the matrix from the elements provided
using the byrow argument. The t function returns the transpose of a matrix, that is, it
reverses rows and columns. Binding two matrices together by columns with cbind ()
or by rows with rbind () requires compatible dimensions.

> b <- matrix(20:1, nrow=5, byrow=T)
> b

[»11 [,2]1 [,3] [,4]
1, 20 19 18 17
[2, 16 15 14 13
[3, 12 11 10 9
4, 3 7 6 5
[5,1 4 3 2 1
> is.matrix (b)
> is.matrix(a)
> t (b)
> cbind(a, t (b))
> rbind(t (a), b)

A list in R is an ordered collection of elements that, in contrast to vectors, may be of
different types. Lists are created using the 1ist () function. Note the difference in
selecting elements: The [ [] ] operator returns the element at that position in the list,
whereas the [] operator contains a list that contains the element at that position in the
list.
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1 <- list('a', 3, 'b', 2, TRUE)
1[0[2]]

1[2]

is.list (1)

is.list(1[[211)

is.list (1[2])

as.list (vv)

V V.V V V V V

A data frames are the most widely used data structure for data analytics and statistics in
basic R. It is essentially a table with a set of columns whose elements are of the same
type. Columns are named and columns can be selected using the $ symbol. Useful
functions on data frames are summary (), head () and tail (). The following R
code block creates a variable x as a vector of 50 normally distributed random values
using the rnorm () function. The variable y is created from vector x and additional
normally distributed random variables. The two are then combined into a data frame.
The colnames () function can retrieve the column names, but can also be used to
change/update the column names. The nrow () and ncol () functions return the
number of rows and columns, head () and tail () return the first few or last few
rows, and cov () is an example of a statistical function that returns the covariance
matrix of all columns in the data frame.

> x <— rnorm(50)

>y <- 2xx + rnorm(50)

> data <- data.frame(x, y)
> colnames (data)

> colnames (data) <- c('Pred', 'Crit")
> nrow (data)

> ncol (data)

> dataS$Pred

> summary (data)

> head (data)

> tail (data)

> cov (data)

Data frames may be written to CSV files and read from CSV files, as shown in the
following R code block. Both functions, write.csv () and read.csv () have a
range of options for reading/writing files with or without header lines, different sepa-
rators, for skipping rows, different decimal points, whitespace stripping, etc. Consult
the R built-in help system for details.

> write.csv(data, 'data.csv', row.names=FALSE)
> new.data <- read.csv('data.csv')
> colnames (new.data)
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dplyr Manipulate data

forcats Work with categorical variables (factors)
ggplot2 Grammar of Graphics

lubridate | Date and time parsing and arithmetic

purrr Functional programming
readr Read files in various formats
stringr Work with character strings
tibble A tibble is better than a table
tidyr Make data tidy

Table 5.1: Tidyverse packages for R

5.6 Tidyverse

The Tidyverse is a collection of R libraries designed for data science that share an un-
derlying design philosophy, grammar, and data structures. Developed by Hadley Wick-
ham and others, the Tidyverse libraries are built to work together seamlessly, making
data science tasks more straightforward and intuitive. At the core of Tidyverse’s phi-
losophy is the concept of tidy data,” which arranges data in a structured way that sim-
plifies analysis. This structure involves organizing data into rows and columns where
each variable is a column, each observation is a row, and each type of observational
unit forms a table.

Key libraries in the Tidyverse include ggplot2 for data visualization, dplyr for data
manipulation, tidyr for data tidying, readr for reading data, purrr for functional pro-
gramming, and tibble for providing a better version of a table data structure. In par-
ticular, ggplot2 allows for complex and aesthetically pleasing visualizations using a
layered grammar of graphics (hence the name), while dplyr provides a set of tools for
efficiently manipulating datasets, such as filtering rows, selecting columns, and aggre-
gating data. tidyr helps in transforming messy data into a tidy format, making it easier
to analyze and visualize. Table 5.1 contains a summary of the libraries.

The Tidyverse also emphasizes readability and expressiveness in code, which not only
makes data analysis easier to write but also easier to read and understand. It has become
a popular choice among data scientists and statisticians for its ease of use, efficiency,
and the cohesive way it handles data analysis tasks. The integration of these packages
under the Tidyverse umbrella simplifies the process of data manipulation, exploration,
and visualization, greatly enhancing the productivity and effectiveness of data analysis
in R.

Tip: An introduction to data science with the Tidyverse packages, directly
from their authors, can be found here: https://r4ds.hadley.nz/
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= library(tidyverse)
— Attaching core tidyverse packages ————————————————————————— tidyverse 2.0.0 —
heilaz

e
2.1.
1.5
3
1,

— Conflicts ——————————————————— +tidyverse_conflicts() —
23 masks s:filter()
HH masks ::lag()
Use the conflicted package to force all conflicts to become errors

>

Figure 5.2: Attaching the tidyverse packages in R

Loading and attaching the t idyverse library in R, using the 1ibrary (tidyverse)
function, loads all the associated core packages, as shown in Figure 5.2.

This section can give only a very brief outline of the capabilities of the tidyverse pack-
ages. The extensive documentation and various “cheat sheets' provide additional de-
tails. This section focuses on the use of dplyr to analyze data from a set of CSV files
representing the data of the Pagila database. The Pagila database’ is a demonstration
database originally developed for teaching and development of the MySQL RDBMS
under the name Sakila®. Pagila is designed as a sample database to illustrate database
concepts and is based on a fictional DVD rental store. It originally consists of several
tables organized into categories like film and actor information, customer data, store
inventory, and rental transactions. For this section, the Pagila data was summarized in
a few related CSV files.

When reading CSV files with readr, the data is stored in a tibble, not a data frame.
A tibble provides a number of extensions and convenience operations that make it
significantly more capable than a data frame. When using data frames with dplyr, they
are automatically converted to tibbles.

The following R code reads a CSV file using the read_csv () function and prints
the first few lines and a summary. The output looks slightly different than that for data
frames, but accomplishes essentially the same things.

rentals <- read_csv('rentals.csv')
head (rentals)
summary (rentals)

Attaching a tibble or data frame with attach () means that its columns become vari-
ables in the R workspace and need not be selected from the tibble (or data frame) using
the $ operator. The following R code block transforms the data read from the CSV file

"https://posit.co/resources/cheatsheets/

2https://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila/blob/master/LICENSE. txt

3https://dev.mysql.com/doc/sakila/en/,
https://dev.mysqgl.com/doc/sakila/en/sakila-license.html
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into the rentals tibble into appropriate data types, then detaches the tibble and prints a
summary.

# Fix the column datatypes:

attach (rentals)

rating <- as.factor (rating)

language <- as.factor (language)
customer_address <- as.integer (customer_address)
customer_store <- as.integer (customer_store)
rental_staff <- as.integer (rental_staff)
payment_staff <- as.integer (payment_staff)
rental_duration <- as.integer (rental_duration)
detach (rentals)

summary (rentals)

The tidyverse libraries make extensive use of the pipe operator in R. The pipe oper-
ator allows chaining of function calls and plugs the result of one function as the first
argument into the next function. Originally, tidyverse used the $>% pipe operator from
the magrittr library, but can now also be used with the new (since R version 4.1),
native R pipe operator |>. For simple usage, the two behave identically and can be
intermixed.

The following R code block demonstrates a simple sequence of data manipulation op-
erations using functions from the dplyr library. It begins with the data tibble which is
piped into the first function. The outputs of each function are piped into the following
function, ending with print (). Note that print output can also be piped into other
functions, allowing printing of intermediate results.

rentals |>
filter(if_any(everything(), is.na)) |[>
select (last_name, rental_date, return_date, title, amount) |[>
print (n=Inf, width=Inf)

e The filter (if_any (everything (), is.na)) function is the first in
the pipeline. It filters rows in the rentals data frame based on the presence of
NA (missing) values. The 1 £_any () function checks each column (indicated
by everything () ) for NA values. The filter function then retains only those
rows that have at least one NA value in any column.

* Next, the select () function specifies the columns to retain in the resulting
data frame. It narrows down the data frame to include only the last_name,
rental_date, return_date, title, and amount columns. This step reduces the dataset
to focus on these key variables, for easier analysis and reporting.

* Finally, the print (n=Inf, width=Inf) function displays the output. The
n=Inf argument tells R to print all rows of the data frame, instead of just the
first few rows as is the default behavior. Similarly, width=Inf ensures that all
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full_join | Joins tibbles (also outer join, left_join, inner_join,
right_join)

filter filters by row

select selects columns to retain
mutate creates new columns
rename renames columns

distinct finds unique values

group_by groups data

nest nests data, tibbles in tibbles
arrange sorts data rows

relocate moves data columns
print prints a tibble

Table 5.2: Important dplyr functions

columns are printed without any being truncated, which is useful for wide tibbles
or data frames.

In summary, this R code example is used to filter a rentals table for rows containing
missing values in any column, and then to select and print specific columns of interest.
This kind of operation is typical in data cleaning and exploratory data analysis pro-
cesses. The result shows that some films have not been rented (i.e. there is no rental
date for them), and some rentals have not been returned (i.e. there is no return date for
them).

The following paragraphs show examples of further data analysis with Tidyverse, in-
troducing additional dplyr functions and their use. Dplyr functions are intended to
mirror the SQL queries from the earlier chapter on relational databases. The main
dplyr ’verbs” used in the examples are summarized in Table 5.2.

Example: Find all films and the actors that appeared in them, ordered by film cate-
gory and year, for those films that are rated PG.
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actors <- read_csv('actors.categories.csv')
rentals |[>
full_ join(actors, by='title',
suffix=c('_customer', '_actor'),
relationship="'many-to-many') |>
filter (rating == 'PG') |[>
mutate (actor =
paste(last_name_actor, ', ', first_name_actor, sep='"')) |[>
rename (year=release_year) |[>
select (actor, title, category, year) [>
distinct (actor, title, category, year) |[>
group_by (category, year, title) [>
nest () [>
arrange (category, year, title) |[>
relocate (category, year, title) |[>
print (n=Inf, width=Inf)

This R code processes the rentals tibble and the actors tibbles through a sequence of
functions in a pipeline.

* The read_csv () function is used to read data from a CSV file named “ac-
tors.categories.csv” into an R data frame called “actors”.

The “rentals()” data frame is combined with the “actors” data frame using a full
join. The join is performed on the “title” column common to both data frames.
The suffix argument adds distinct suffixes to column names from each data
frame to avoid name clashes. The relationship='many-to-many’ indi-
cates the nature of the join.

* The filter () on the combined data retains only rows where the “rating” col-
umn has the value "PG”.

* The mutate () function is used to create a new column named “actor”, which
concatenates the actor’s last name and first name, separated by a comma and a
space.

* The release_year’ column is renamed to ’year’ using the rename function.

* The select () function is used to narrow down the data frame to only the

CLENET)

columns “actor”, “’title”, ’category”, and year”.

Following this, the distinct () function ensures that only unique rows are
retained, removing any duplicates.

CLIET]

The data is grouped by “category”, ’year”, and “title”, and then nest is used to
create a nested data frame, i.e. a dataframe where the actors for each group are
in a list-valued columns.

CIINEY)

» the arrange () sorts the data frame by “category”, “year”, and title”, while
relocate moves these columns to the front of the data frame for easier view-
ing.
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* Finally, the entire data frame is printed with all rows (n=Inf) and without trun-

cating any columns (width=Inf).

Example: Find the most popular actors in the rentals in each city.

This R code block below involves combining multiple data frames and then manipu-
lating and summarizing the data. It builds on the reantal and actor tibbles from the

previous example and includes address information.

addresses <- read_csv ('addresses.csv')
addressesSphone <- as.character (addressesS$phone)

full_data <-

full_data |[>

rentals |>
inner_join (addresses, by=c('customer_address'='address_id')) |[>
inner_join(actors, by='title',

'_actor'),

relationship='many-to-many")

suffix=c('_customer',

mutate (actor =

paste (last_name_actor, ', ', first_name_actor, sep='"')) |[|>
group_by (city, actor) >
summarize (count=n()) |>
mutate (ranking = min_rank (desc(count))) |[>
filter (ranking < 4) |>
arrange (city, ranking, actor) |[>

print (n=25)

» The analysis starts by reading a CSV file containing addresses into a data frame.

e An inner join is first performed between these two data frames, matching them
on a specified key.

 This is followed by another inner join with an ‘actors‘ data frame. This sec-
ond join involves a many-to-many relationship and adds suffixes to overlapping
column names to distinguish them.

* With the full data set, a new column is created by concatenating the first and last
names of actors, forming complete names.

¢ The data is then grouped by city and actor.

* A new summary column is created that counts the number of occurrences (records)
for each group.

* To create rankings, a new column is added that ranks the groups based on the
count in descending order. The min_rank () function allows ties in the rank-
ing, use rank () to break ties with gaps in ranking or dense_rank () to break
ties with no gaps in ranking.
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* The data is then filtered to include only those records with a ranking less than 4,
focusing on the top three ranks for each group.

* Finally, the data is sorted by city, ranking, and actor and then printed.

Example: Find the customers who spend the most on rentals, with their phone num-
bers and cities, and the number of rentals with the higest total rental payments for each
category grouped by rental duration.

full_data |>
mutate (customer= paste (first_name_customer, last_name_customer)) |
select (customer, amount, rental_duration, category, phone, city) |

group_by (category, rental_duration, customer ) |>
mutate (payments=sum(amount), num_rentals=n()) |[>
select (—amount) |[>

group_by (category, rental_duration) |[>

mutate (ranking = min_rank (desc (payments))) [>
slice(which.min (ranking)) |[|>

print (n=Inf, width=Inf)

By now, it should be clear what the functions in the analysis pipelines accomplish.
However, a few interesting things to note. First, there is no summarize () func-
tion because summarize () omits all non-grouped columns, but the example requires
phone numbers and citites of customers. Either these would need to be included some-
how in the summarize () function, or as is done in this R code, summary columns
are created with mutate (). Second, note the "negative” argument to the select ()
function, which is used to remove the “amount” column. Third, the pipeline uses
multiple group_by () statements with different aggregate functions (sum (), n (),
min_rank ()) for the different groups. Finally, the R code uses slice () to select
the rows with the smallest ranks.

Example: Get the total rental revenue, number of rentals, and the mean and standard
deviation of the rental amounts for each country.

full_data |[>

group_by (country) |[>

summarize (revenue=sum (amount) ,
numrentals=n (),
mean_amount=mean (amount) ,
sd_amount=sd (amount) ) |[>

arrange (desc (mean_amount) ,

desc (revenue)) |>
print (n=Inf, width=Inf)

The R code for this query demonstrates a number different aggregate summary func-
tions, sum (), n (), mean () and sd () (standard deviation). It also shows how to use
the desc () function to arrange or sort data in decreasing order.
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Example: Get the top 5 and the bottom 5 grossing customers for each quarter.

full_data |>
mutate (customer=paste (first_name_customer, last_name_customer)) |>
mutate (g=as.character (quarter (rental_date, with_year=T))) |[>
select (customer, g, amount, rental_date) |[>
group_by (g, customer) |[>
mutate (payments=sum(amount)) |[>
select (—amount) |[>
distinct (customer, g, payments) [>
group_by (q) |>
mutate (rank_top = min_rank (desc (payments))) |[>
mutate (rank_bot = min_rank (payments)) |>
filter (rank_top < 6 | rank_bot < 6) >
arrange (q, desc(payments)) |>
relocate (g, customer, payments, rank_top, rank_bot) [>
print (n=Inf, width=Inf)

The code for this query again does not use a summarize () function. It also shows
the use of the quarter () function from the “lubridate” library. The lubridate library
contains a large range of date and time related functions. Two ranking columns are
created using the mutate () and min_rank () functions, once in descending or-
der to get the top ranks, and again in ascending order to get the bottom ronks. The
code uses filter () instead of slice () to select the top and bottom 5 ranks, uses
arrange () to sort the data, and then uses relocate () to re-arrange the order of
columns prior to printing.

Example: Find the set of film titles by rental customer and the total number rentals
for each customer.

full_data |>
mutate (customer=paste (first_name_customer, last_name_customer)) |>
select (customer, title) |[>
nest (titles=title) |[>
rowwise () |>
mutate (rentals=nrow(titles)) |[>
mutate (unique_titles=1list (distinct (titles))) |[|>
select (-titles) |[>
arrange (customer) |[>
print (n=Inf, width=Inf)

The code for this query works with nested data, that is, data with columns that contain
lists, created using the nest () function. In this example, nest (titles=title)
creates a columns called “titles” that contains a list of all the elements of the “title”
column for each customer. The R code also demonstrates row-wise operations. Both
mutate () functions after rowwise () function operate by row. Specifically, the
first use of the mutate () function creates a new column ’rentals” which contains
the number of rows in the titles column for each row (recall that the “titles” column
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contains lists of film title). Similarly, the second use of the mutate () function creates
a new column “unique_title”that contains a list of distinct film titles from the “titles”
column for each row.

5.7 SQL and R

The ”’sqldf” library in R allows users to perform SQL queries on R data frames. Es-
sentially, it provides a bridge between SQL and R. This integration allows users who
are familiar with SQL to leverage its powerful querying capabilities directly on R data
structures, without the need to switch between different tools or environments.

One of the main advantages of ”sqldf” is its ability to handle large data frames more ef-
ficiently than some of R’s native functions. By utilizing SQL queries, users can perform
complex data manipulations and aggregations with ease. The package supports vari-
ous SQL commands including SELECT, JOIN, ORDER BY, and GROUP BY, among
others, enabling a wide range of data operations that are familiar to SQL users.

Under the hood, ’sqldf” operates by temporarily converting data frames into databases,
typically by creating an in-memory SQLite database, or, alternatively, using an existing
database connection to any of a variety of RDBMS such as PostgreSQL. It then creates
a table for each data frame, moves the data to the database tables, and executes SQL
statements. It then moves the result set back into R as a data frame. This seamless
process allows for a smooth integration of SQL’s data processing capabilities within
the R environment.

”sqldf™ is particularly useful for R users who are already comfortable with SQL syn-
tax and for complex data manipulation tasks that might be more cumbersome or less
intuitive in R’s native syntax. Its ability to handle data frames as if they were SQL
tables makes it a highly valuable tool for data analysts and statisticians who work with
large datasets and require the flexibility and power of SQL within the R programming
environment.

The following R code block shows a very simple example. Note that the SQL FROM
clause recognizes data frame names; any columns used in the SQL query must be
named columns from those data frames.

library (sqldf)
result_df <- sqgldf('select distinct (title) from full_data')

When faced between the choice of data analytics using an SQL RDBMS or R/Tidyverse,
there are a number of issues to consider:

* Size of data: R is limited by the amount of main memory of the computer. While
large computers may offer 128GB or more, modern RDBMS can scale massively
larger, in particular when distributing databases across a cluster of computers.



5.7. SQL ANDR 145

* Access speed: RDBMS have sophisticated indexing of tables and query planners
that optimize complex queries for performance. While a dplyr analysis pipeline
can also be optimized by carefully considering the order of function calls, the
onus is on the data analyst to do this, while an RDBMS offer this ”out-of-the-

2

box”.

* Currency: Using an RDBMS means that analytics can be performed on opera-
tional data, that is, the most current and up-to-date data. In contrast, the use of R
involves first exporting data from the operational system and then analyzing it at
a later time. However, while tempting, it is not generally recommended to per-
form complex analytics on an operational database, as it can significantly affect
performance.

* Transactions: An RDBMS ensures consistent views of data across multi-user,
concurrent updates. This means that, when using an operational database, the
analysis sees consistent data, whereas an exported snapshot of the data may not
necessarily be consistent, depending on the export mechanism.

* Tools: R has tools for statistical analysis and visualization, beyond mere report-
ing. So far, we have considered only simple descriptive analytics. However,
when the data is to be used for sophisticated statistics or predictive analytics, it
is no longer possible to do this on RDBMS.

These issues motivate the following recommendations:

* Do not "hit” operational RDBMS for heavy-weight or frequent analytics. While
it may be fine to do the occasional summary analytics on an operational database,
this should not be normally done.

* Regularly export consistent data from RDBMS. If up-to-date data is needed,
automate the export from the database to occur at regular intervals. However,
note also that exporting data has a performance impact on operational databases.

* Sometimes, SQL may be the more intuitive language to specify the required
analysis. In these cases, use separate in-memory or on-disk RDBMS for analyt-
ics (e.g. with sgldf) if desired/required.

* Finally, if the size of data is too large to handle in R, consider distributed tools
such as Hadoop/Spark that are made for Big Data analytics.
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Hands-On Exercises

The following hands-on exercises are designed to familiarize you with the
Tidyverse packages, especially the dplyr package. Use these exercises with
the Pagila CSV data set.

1. Find all films with a rating of "PG’

2. List all customers who live in Canada (with their address)

3. Find the average actual rental duration for all films

* This requires date arithmetic, use the 1ubridate package

4. Find the average overdue time for each customer

* This requires date arithmetic, use the lubridate package
List all films that have never been rented
6. List the names of actors who have played in more than 15 films

9]




Chapter 6

Introduction to Data
Management with Python

Learning Goals

After reading this chapter, you should be able to:

» Create and manipulate basic data structures in Python, includings lists, tuples,
and dictionaries.

* Create and manipulate arrays using the Numpy package for Python, in particular,
be able to use slicing to retrieve portions of an array.

» Create and manipulate series and data frames in the Pandas package for Python.
* Compute summary information and to retrieve portions of a Pandas data frame.

» Use Pandas to retrieve information from multiple data frames, including filtering,
grouping, and aggregation of information.

6.1 Introduction

Python is a high-level, interpreted programming language known for its simplicity and
readability. It was created by Guido van Rossum and first released in 1991. Python’s
design philosophy emphasizes code readability through the use of significant! whites-
pace. This unique approach has contributed to Python becoming one of the most pop-
ular programming languages in the world.

Python’s standard library of functions is large and comprehensive, covering a range of
programming needs including web development, data analysis, artificial intelligence,

1Significant” in this context does not mean lots, it means that spaces at the beginning of a line, that is,
line indentations, have meaning and Python code does not work the same way without those spaces.

147
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scientific computing, and more. Its simplicity and versatility allow programmers to
express concepts in fewer lines of code compared to languages like C++ or Java. Ad-
ditionally, Python supports multiple programming paradigms, including procedural,
object-oriented, and functional programming.

One of the biggest advantages of Python is its strong community support and the vast
availability of third-party packages, which extend its capabilities even further. Frame-
works like Django for web development, Pandas for data analysis, and TensorFlow for
machine learning are just a few examples of Python’s extensive ecosystem.

Python’s popularity can be attributed to its wide range of applications in various fields,
such as web development, data science, artificial intelligence, scientific computing,
and scripting. It’s often used in academic and research settings due to its ease of learn-
ing and its ability to handle complex calculations and data manipulation. Major tech
companies and organizations use Python, showcasing its reliability and robustness.

In terms of benefits, Python is known for its efficiency, reliability, and speed of de-
velopment. It is often used for rapid prototyping and iterative development. Python’s
syntax is clean and its code is generally more readable and maintainable compared to
many other programming languages. This readability makes it easier for developers to
work on projects collaboratively.

Overall, Python’s combination of versatility, simplicity, and powerful libraries makes it
a preferred choice for both beginners and experienced developers across diverse fields.
Its continued evolution and adaptation to new technologies and paradigms ensure its
relevance in the fast-paced world of software development.

Intro Tutorial: A very good introduction to Python can be found at ht tps:
//python.swaroopch.com/, or, as a downloadable PDF, at https://
github.com/swaroopch/byte-of-python/releases/

6.2 Python versus R

Python and R are two of the most popular programming languages used in data science,
each with its unique strengths and applications. Python, known for its general-purpose
nature, offers a more comprehensive approach to busienss analytics, allowing not just
data analysis and visualization, but also the integration of data science processes into
web applications, production systems, and more. Its simplicity and readability make it
a go-to language for a wide range of developers, including those who are not primarily
data scientists.

Python’s extensive libraries like Pandas for data manipulation, NumPy for numeri-
cal computations, Matplotlib and Seaborn for data visualization, and Scikit-learn for
machine learning make it a powerful tool for business analytics. Moreover, Python’s
capabilities in machine learning and deep learning, with libraries like TensorFlow and
PyTorch, make it a preferred choice for cutting-edge applications in Al
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On the other hand, R, originally designed for statistical analysis, is highly specialized
in statistical modeling and data analysis. It offers a rich ecosystem of packages for
statistical procedures, classical statistical tests, time-series analysis, and data visualiza-
tion. R is particularly favored for its advanced statistical capabilities and its powerful
graphics for creating well-detailed and high-quality plots.

The choice between Python and R often comes down to the specific requirements of
the project and the background of the business analytics team. Python is generally
more versatile and better suited for integrating business analytics into larger produc-
tion applications. It is also the more popular choice for machine learning projects.
R, meanwhile, is excellent for pure statistical analysis and visualizing complex data
sets. It’s often preferred in academia and research settings where complex statistical
methods are more commonly required.

Both languages have strong community support and a wealth of resources, making
them continually evolving tools in the field of business analytics. Many business ana-
lysts are proficient in both, choosing the one that best fits the task at hand. In collabo-
rative settings, it’s not uncommon to see teams utilizing both Python and R, leveraging
the strengths of each to achieve more comprehensive and powerful data analysis out-
comes.

6.3 Using Python

The Interactive Python Shell, Jupyter Notebooks, and PyCharm IDE represent different
environments for Python development, each with distinct features and use cases.

Interactive Python Shell The Python shell is the most basic and straightforward
environment for Python programming. Users can type Python code and see the results
instantly. The simplicity is the primary advantages of the Python shell. The immediate
feedback makes it excellent for experimentation, learning Python syntax, and quick
tests. There is no need for creating files or setting up a project environment. This
feature is especially beneficial for beginners who are just starting to learn Python, as
it provides a straightforward way to test out new concepts and functions without the
overhead of more complex development environments. Figure 6.1 shows a screenshot
of the Python shell.

While the Python shell supports all the features of the Python language. However, it
lacks advanced features found in full-fledged Integrated Development Environments
(IDEs), such as code completion, debugging tools, or project management, which are
essential for larger projects. Its simplicity is both a strength and a limitation: while it
is easy to use, it might not be the best choice for larger programming projects.

On Unbuntu Linux, simply type python in a terminal window to launch the Python
shell. On Windows and MacOS systems, you will find applications to launch the
Python shell in a window. The shell prompts you for commands with the > > >
prompt. Simply enter the command and press the ENTER key to execute a com-
mand. Use the quit () function to exit the shell. The Python shell remembers your
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joerg@joerg-samsung: ~

: S python
Python 3.10.12 (main, Nov 20 2023, 15:14:085) [GCC 11.4.8] on linux
", "copyright", "credits" or "license" for more information.

Figure 6.1: The Interactive Python Shell

previous commands, so you can use the up and down arrow keys to recall commands
and edit them. The Python shell also performs code completion using the | TAB key,
which helps speed up coding and reduce typing errors. Similar to an R session, you
should use a notepad editor application to assemble commands and then copy/paste
them into the Python shell, as copy/paste results into a notepad editor. This makes
editing long commands easier and ensures that your analysis will be repeatable.

Jupyter Notebooks Jupyter notebooks offer a more interactive and versatile plat-
form, particularly favored in data science and academic research. Jupyter Notebooks
allow users to create and share documents that can contain “cells” where each cell
may contain Python code, text (using Markdown), equations (using LaTeX), or visu-
alizations. This mix of Python code, documentation, description, and results makes it
ideal for data exploration, visualization, and complex analyses where explaining the
process is as important as the code itself, allowing for a narrative approach to coading.
While Jupyter Notebooks support various programming languages, they are predomi-
nantly used with Python. Figure 6.2 shows a screenshot of a Jupyter notebook in the
JupyterLabs Desktop environment.

The immediate feedback upon code execution helps in quick hypothesis testing and
data manipulation. Furthermore, the integration of rich media alongside code makes
Jupyter Notebooks an excellent tool for creating comprehensive documentation, tuto-
rials, and educational materials.

Notebooks can be easily shared, making them popular in collaborative projects. The
ability to see the code, along with its output and accompanying explanation, in a sin-
gle document enhances understanding and teamwork. Jupyter Notebooks run in a web
browser, offering platform independence and eliminating the need for complex soft-
ware application setups.
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Untitied.ipynb - JupyterLab = conda: jlab_server = o x
File Edit View Run Kemel Tabs Settings Help

Untitled.ipynb .|+ a,
B+ X DO » = C » code v #  Python 3 (ipykemel) O

 / Current / Jupyter / | wim [ &5 0

| Name - Last Modified I ;2
" - [ untitledip. last month

simple O B 3 @ Python3 (ipykernel) | idle Mode: Command @ Ln1,Col4 Untitledipynb 0 [}

Figure 6.2: Jupyter Notebook

When working with Jupyter Notebooks, the term “kernel” denotes a particular version
of the Python programming language and environment (i.e. Python packages, etc.)
that runs your code. You can enter code in an empty cell and press | CTRL-ENTER to
execute code in the cell. A cell can contain multiple lines of code. Jupyter Notebook
cells can be merged, split, moved, copied, and deleted, and you can save, import, and
export notebooks, among much other, advanced functionality.

PyCharm IDE: The PyCharm Integrated Development Environment (IDE) is a full-
featured software development environment designed specifically for Python. It offers
a wide range of tools and features for professional software development, including
code completion, debugging, project management, version control integration, and a
powerful code editor. PyCharm is more suited for larger and more complex software
projects. Its sophisticated environment, while powerful, might be overwhelming for
beginners or for those who require a simple platform for exploratory data analysis.
Figure 6.3 shows a screenshot of the PyCharm IDE.

One of the key strengths of PyCharm is its intelligent code editor, offering features like
code completion, code inspections, and automated refactoring. These features greatly
enhance productivity and reduce the likelihood of programming errors. Additionally,
PyCharm includes an integrated debugger and testing support, simplifying the process
of diagnosing and fixing issues in programming code. The IDE also offers seamless
integration with version control systems like Git, which is essential for collaborative
development and code management.

In summary, while the Interactive Python Shell is best for quick, simple tasks and learn-
ing the basics, Jupyter Notebooks are ideal for business analytics projects that benefit
from an interactive, explanatory, and exploratory approach. PyCharm is the most suit-
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Busl4720 (After installing and configuring ProM) [Running] - Oracle VM VirtualBox - o ox

Dec 14 08:10

Welcome to PyCharm

Welcome to PyCharm

Learn

pgAdmin4.

Take a quick onboarding tour

Start Tour
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Figure 6.3: PyCharm Integrated Development Environment (IDE)

able for comprehensive software development, offering robust tools and features for
managing complex codebases. The choice among these depends largely on the specific
requirements of the project and the preferences of the developer.

6.4 Python Basics

The basic Python code in the following example prints a character string. The print
function in Python is very versatile and provides different ways to print the values of
multiple variables. In particular, character strings have a format function that can be
used to substitute the { } placeholders with values, either by index/number, by name,
or by position, as shown in the following Python code block that defines two variables,
age and name and prints their values in a variety of ways:

print ('hello world')

age = 19

name = 'Malina'

print ('{0} is {1} years old'.format (name, age))

print ('{name} is {age} years old'.format (name=name,age=age))
print ('"{} is {} years old'.format (name, age))

print (f'{name} is {age} years old')

print (name+' is '+str(age)+' years old')
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Because Python commands can get quite long, Python allows for backslashes to break
long lines and continue the command on the following line. While not needed in this
case, the following code block illustrates how to use them:

print ('This is a very long \
string and needs a second line')

i =\
5
print (1)

Multiline character strings are enclosed in triple quotes, and the line breaks form part
of the string, as shown in the following example. Note that the print (s) function
prints the line breaks in the character string.

s = '"'"'"This is line 1
and here is line 2

and now this is line 3'"''
print (s)

As with R, you can use Python interactively as a calculator. It provides the usual arith-
metic operators and comparison operators The // operator is for integer division with
floor (rounding down), the % operator is the modulus (remainder) operator. Boolean
values are True and False in Python and cannot be abbreviated (unlike in R). The
following Python code block illustrates typical usage:

and (4 < 2)
or not (4 < 2)

The next code example shows some useful string functions. The startwith () func-
tion does what its name suggests and returns a boolean (True or False) value. The
find () function returns either the first position of a string in another string, or -1 if
the string is not found.
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language = 'Innuktitut'
if language.startswith('Innu'):
print ('Yes, the string starts with "Innu"')
if 'u' in language:
print ('Yes, it contains the string "u"')
if language.find('nuk') != -1:
print ('Yes, it contains the string "nuk"'")

The join () and split () functions for character strings do as the their names sug-
gest and work with Python lists, illustrated in the code block below:

# Joining and Splitting
delimiter = '_x*
mylist = ['Nain', 'Hopedale', 'Makkovik', 'Rigolet']
mystring = delimiter.join(mylist)

print (mystring)

thelist = mystring.split (delimiter)

print (thelist)

1

Important: Note the use of leading whitespace or indentation in the lines af-
ter the if statement in the above code. In Python, this whitespace is required
for defining the program logic! In the above example, the indented lines indi-
cate the extent of the program block to be executed after the i f statement. The
normal leading whitespace is four spaces.

Lists in Python are ordered collections of items, and use square brackets [] as delim-
iters. Lists are mutable, i.e. their contents can be changed. Lists may contain items of
different data types, including other lists or structured data types. Useful list functions
are len () which returns the number of items in a list, append (), which adds items
to the end of the list, and sort (), which sorts by value (only for compatible data
types in the list). Items can be removed by position using the del () or by value using
the remove () functions.
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# Inuit deities
gods = ['Sedna', 'Nanook', 'Akna', 'Pinga']
print ('There are', len(gods), 'deities:')
for god in gods:

print (god, end=' ")

# Appending to a list
gods.append ('Amaguq')
print ('\nThe list of deities is now', gods)

# Sorting a list
gods.sort ()
print ('The sorted list is', gods)

# Removing items from a list

print ('The first deity is', gods[0])
olditem = gods[0]

del gods[0]

print ('I removed', olditem)

print ('The list is now', gods)
gods.remove ('Pinga')

print ('The list is now', gods)

The above example also shows the use of Python comments, beginning with # to the
end of the line. The example also shows iteration (“repeating”) with the for state-
ment. Similar to the earlier example illustrating the i f statement, note the required
indentation (leading whitespace) in the line(s) after the for statement to indicate the
extent of the code block that is repeated.

Tuples in Phython are also ordered collections of items, but they are immutable, i.e.
their contents cannot be changed. Tuples use round brackets () as delimiters.

# Inuit Nunangat
regions = ('Inuvialuit', 'Nunavut', 'Nunavik', 'Nunatsiavut')
print ('Number of regions is', len(regions))

all _regions = 'NunatuKavummiut', 'Kalaallit', 'Inupiag', regions
print ('Number of all Inuit regions:',len(all_regions))

print ('All Inuit regions are', all_regions)

print ('Regions in Inuit Nunangat are', all_regions[3])

print ('First region in Inuit Nunangat is', all_regions[3][1])
print ('Number of all Inuit regions is', \
len(all_regions)-1+len(all_regions[3]))

Important: Indexing in Python is zero based, that is, the first element in a
list or tuple is number O, while the last element is number len () - 1. This is
in contrast to R, where indexing starts at 1.
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Dictionaries (or short, ”dicts”) in Python are key-value pairs that map one element to
another. In other programming languages, this data structure is also called a map or
an associative array (because it associates keys with their values). Python uses curly
brackets {} as delimiters; the keys and values are separated using :. The value for a
key is retrieved using the square bracket operator [ ]. Keys and values may be any data

type.

# Largest citites

c = {
'Tnuvialuit': 'Inuvik',
'Nunavut': 'Igaluit',
'Nunavik': 'Kuujjuaq',
'Nunatsiavut': 'Nain'

}

print ("Nunavik's largest city is", c|['Nunavik'])

Keys and values can be retrieved separately using the function keys () and values ().
Dicts are mutable, as the following example shows by removing an entry with del and
adding another entry.

# Retrieving keys and values
print (list (c.keys()))
print (list (c.values()))

# Deleting a key-value pair
del c['Nunavut']
print ('\nThere are {} cities left\n'.format (len(c)))
for region, city in c.items{():
print ('{} is largest city of {}'.format (city, region))

# Adding a key-value pair

c['Nunavut'] = 'Igaluit'
if 'Nunavut' in c:
print ("\nNunavut's largest city is", c['Nunavut'])

A useful function to create dicts from two lists is the zip () function, shown below.
The zip () function creates an iterator over fixed-length tuples that are passed into the
dictionary creation function dict () as key—value tuples:

towns = ['Hopedale', 'Makkovik', 'Nain', 'Postville', 'Rigolet']
pops = [596, 365, 1204, 188, 327]

pop_by_town = dict (zip (towns, pops))

print (pop_by_town)

In Python, lists, tuples, and character strings are examples of sequences. All sequences
provide membership tests using in or not in operators, as shown in some of the
examples above. Sequences also provide integer indexing and slicing. Note that the
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end index in a slicing expression is not inclusive, that is, the slice extends up to but
does not include the final index. This makes it easy to write a slice like [:len (a) ]
where a is some sequence (rather than having to write [ : 1len (a) -1] as one would
in R or other programming languages where the end index is inclusive).

The following code shows some examples for slicing tuples. Note the negative end
index in the third example. A negative end index iterates from the end of a sequence
forwards”. The slice regions[1:-1] extends from the second element to the third

of the four elements.

regions = ('Inuvialuit', 'Nunavut',
'Nunavik', 'Nunatsiavut')
# Slicing on a tuple

print ('"Item 1 to 3 is', regions[1:3])
print ('Item 2 to end is', regions[2:])
print ('Item 1 to -1 is', regions[l:-1])

print ('Item start to end is', regions[:])

Slicing in Python is more advanced than slicing in R as not only the beginning and end
index can be specified, but also the step size, as shown in the next Python code block.
The final example slices backwards.

# Slicing with step
print (regions[::1])

print (regions[::2])
print (regions[::3])
print (regions[::-17])

Character strings are also sequences, and they support slicing or indexing the same way
as other sequences in Python.

language = 'Innuktitut'

# Slicing on a string

print ('characters 1 to 3 is', language[l:3])
print ('characters 2 to end is', language[2:])
print ('characters 1 to -1 is', language[l:-1])
print ('characters start to end is', languagel[:])

In the above example, pay careful attention to the use of negative indices in the slicing
expressions, both for the index as well as the step size.

Tip: To read and execute Python statements from a file, use the expression
exec (open (' filename.py’) .read())
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Hands-On Exercise

1. Create a list containing the numbers 1 to 10. Use list slicing to create a
sublist with only the even numbers.

2. Using a for loop, sum all the items in the list.

Using a for loop, iterate over the list and print each number squared.

4. Write a program to append the square of each number in the range [1:5]
to a new list.

(O8]

Hands-On Exercise

1. Create a tuple with different data types (string, int, float).

2. Demonstrate how tuples are immutable by attempting to change its first
element.

3. Write a program to convert the tuple into a list.

Hands-On Exercise

1. Create a dictionary with at least three key-value pairs, where the keys are
strings and the values are numbers.

2. Write a Python script to add a new key-value pair to the dictionary and
then print the updated dictionary.

3. Create a nested dictionary, that is, a dictionary whose values are dictio-
naries, and demonstrate accessing elements at various levels.

6.5 NumPy

NumPy, short for Numerical Python, is an essential package for the Python program-
ming language, widely used for scientific computing and data analysis. It provides
powerful numerical arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays. The cornerstone of NumPy is its
“ndarray” (n-dimensional array) object. These arrays are more efficient than Python’s
built-in lists, especially for numerical operations, due to their fixed type and contiguous
memory allocation.

NumPy arrays facilitate advanced mathematical and statistical operations, including
linear algebra, Fourier transform, and random number generation. The ndarray object
supports vectorized operations, broadcasting, and indexing capabilities. This means
that operations can be applied to entire arrays without the need for explicit loops, lead-
ing to cleaner and faster code.

One of the reasons for NumPy’s popularity in the scientific and data science commu-
nities is its seamless integration with other Python libraries. Libraries like Pandas for
data manipulation and analysis, Matplotlib for data visualization, and SciPy for scien-
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ndarray.ndim Number of axes

ndarray.shape Typle describing the size of each axis (dimension)
ndarray.size Total number of elements

ndarray.dtype The datatype of the elements, for example

numpy .int32, numpy.intl6, numpy.float32,
or numpy.float64

ndarray.itemsize | Number of bytes for each element

Table 6.1: Attributes of NumPy ndarray

tific computing all build upon and work in conjunction with NumPy, creating a robust
ecosystem for scientific computing tasks.

Tip: The NumPy website provides two very good introductions, in the form
of the Quick Start and the NumPy for absolute beginners tutorials.

NumPy ndarrays have a set of useful properties or attributes, summarized in in Ta-
ble 6.1. Note that the terminology is “axes”, rather than “dimensions” as in the previ-
ous chapter on R, although the ndim property of an ndarray uses the term “dimension”
in its name.

The following Python code block illustrates the use of these properties. Note the use
of the arange () function to create a one-dimensional array of 15 numbers (from 0
to 14), that is then reshaped into a 2-dimensional array with 3 rows and 5 columns.
Rows are axis 0, and columns are axis 1.

# Import the numpy package
import numpy as np

# Create an array
a = np.arange (15) .reshape (3, 5)

print (a.shape)
print (a.ndim)
print (a.dtype.name)
print (a.size)
print (type (a))

The following Python code block shows element-wise operations and array operations
on a NumPy array. Python determines automatically which functions are array func-
tions (like sum () ) and which ones are element-wise functions (like sqrt () ). Note
the creation of the array with the array () function from a list of two tuples. Note
also the use of the axis pararmeter in the max function to specify whether to aggre-
gate by row or by column. The axis parameter can also be applied to other functions
like sum () or std ().


https://numpy.org/doc/stable/user/quickstart.html
 https://numpy.org/doc/stable/user/absolute_beginners.html
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# Create an array from Python lists and tuples
b = np.array([(1.5, 2., 3), (4, 5, 6)1])

# Elementwise operations
print (3 * b)

print (b + 5)

print (np.sqrt (b))

# Array operations

print (np.max (b))

print (np.max (b, axis=0))
print (np.max (b, axis=1))
print (np.std (b))
print (np.cov (
print (np.sum/(

In the above example, the st d () function without axi s parameter computes the stan-
dard deviation of all elements in the array, while cov treats each row of the array as
a vector and computes their variances and covariances. To treat array columns as vec-
tors, either transpose the array first, using the T operator or use the rowvar=False
parameter for the cov () function.

To create pre-initialized arrays, NumPy provides two convenience functions to create
arrays filled with Os or 1s:

# Create an array of zeros with shape (3,4)
x = np.zeros ((3,4))
print (x)

# Create an array of ones with shape (2,3,4)
y = np.ones((2,3,4))
print (y)

In a generalization of the slicing expressions for Python sequences, each axis of a
NumPy array can be sliced using the [:] or [::] expressions, as shown in the
following example of a two-dimensional array. The slicing expressions for different
dimensions are separated by commas.

b = np.array([[ 0, 1, 2, 3],
[10, 11, 12, 131,
[20, 21, 22, 23],
[30, 3i, 32, 331,
[40, 41, 42, 4311)

1

print (b[2, 31)

print (b[0:5, 11])

print (b[:, 11)

print (b[1 : 1)
[7

83,
print (b 1)
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When not all axes are supposed to be sliced, one can omit initial or final unsliced axes
in the slicing expression using the ellipsis ...” as shown in the following Python code
block.

c = np.array ([[[ O, i, 2] o
[ 10, 12, 1311,
[fioo, 101, 1021,
[110, 112, 113111)

print (c[1, -1)

print (c[1, o 8 1)

print (c[..., 21)

print(c[: , , 21)

print(c[..., : , 11)

NumPy arrays also provide convenient iteration of their rows and their elements. Note
the use of the £1at operator to “flatten” a multi-dimensional array to a single dimen-
sion in the code block below.

for row in b:
print (row)

for element in b.flat:
print (element)

NumPy provides an easy way to reshape arrays to any dimension. However, it is im-
portant to be aware of where and how the elements move during such a reshape. The
order can be specified using an optional argument to rehshape; consult the NumPy
documentation for details. The following example also demonstrates the use of the de-
fault random number generator’ (rng) in NumPy to create an array of shape (3, 4)
filled with random numbers between 0 and 1.

# Create a random number generator with seed 1
rg = np.random.default_rng (1)

# Create an array of shape (3, 4) of random numbers
a = np.floor (10 * rg.random( (3, 4)))

# Show information about the array and reshape

print (a

print (a.
print (a.
print (a.
print (a.

shape)

T)
.T.shape)

flatten())
reshape (6, 2))

2A random number generator in computer science is always a pseudo-random number generator that
creates a sequence of numbers according to a deterministic formula (because computers are deterministic),
starting from an initial “seed” number. The sequence is repeatable when beginning with the same seed. A
good pseudo-random number generate will create sequences that are indistinguishable from true random
numbers, for example, those created by rolling dice.
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The above example uses the flatten () function which returns a one-dimensional
array, whereas the f1lat property returns an iterator to be used in a for loop. The
T property returns the transpose of the array. In two dimensions, the transpose swaps
rows and columns. The NumPy transpose is also defined for more than two dimensions,
the axes are transposed such that a. T. shape==a.shape[::-1].

The next example illustrates concatenation or stacking operations to stack two arrays
either vertically, that is, by row, or horizontally, that is, by column. The arrays must be
of compatible shape for these stacking operations.

b = np.floor (5 » rg.random( (3, 4)))
print (np.vstack((a, b)))
print (np.hstack((b, a)))

Arrays can be indexed also by boolean arrays. For example, in the following Python
code block, the expression a < 5 constructs a boolean array whose entries are True
when the corresponding element in a is less than 5. This boolean array is then used to
select or index the array a:

a = np.array([[1l, 2, 3, 41,
[5, 6, 7, 81,
[9, 10, 11, 12]11)
print (ala < 5]
print (a < 5)
print (a[a%2 == 0]
print (a%2 == 0)

Finally, NumPy provides easy ways to identify unique elements in an array and to count
how often particular elements occur in an array. The following example also demon-
strates another use of the zip () function, already introduced above, to construct a list
of tuples.

a = np.array([11, 11, 12, 13, 14, 15, 16,
17, 12, 13, 11, 14, 18, 19, 20]
print (np.unique (a))

# Return the first index of a unique value
values, indices = np.unique(a, return_index=True)
print (list (zip(values, indices)))

# Return the counts of each unique value
values, counts = np.unique(a, return_counts=True)
print (list (zip(values, counts)))
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Hands-On Exercises

1. Create an array with random numbers in the shape indicated by the last
four digits of your student number (if your student number contains a 0,
use a 1 instead)

2. Construct a new array by swapping the first half of rows (axis 0) with the
second half of rows (axis 0)

3. Calculate all covariance matrices formed by the last two axes of your
array. Tip: Iterate over the first two axes/dimensions with a for loop

4. Subtract the mean of the array from each element in the array (mean

normalization)

Select all elements that are greater than the overall mean

6. Sort the selected elements from the previous step

2

6.6 Data management with Pandas

Pandas is a Python package widely used in data science, data analysis, and machine
learning. It is known for its powerful data manipulation and analysis capabilities. It
provides fast, flexible, and expressive data structures designed to make working with
structured (tabular, multidimensional, potentially heterogeneous) and time series data
both easy and intuitive.

Pandas is useful for data cleaning, data transformation, and data analysis. It offers func-
tions for reading and writing data in various formats such as CSV, Excel, JSON, and
SQL databases. The Pandas package simplifies handling missing data, merging and
joining datasets, reshaping, pivoting, slicing, indexing, and subsetting data. Its time se-
ries functionality is particularly robust, offering capabilities for date range generation,
frequency conversion, moving window statistics, date shifting, and lagging.

The library’s design and functionality are heavily influenced by data analysis needs in
finance, which is evident in its powerful group-by functionality for aggregating and
transforming datasets, as well as its high-performance merging and joining of datasets.
As part of the broader Python scientific computing ecosystem, which includes libraries
like NumPy, Matplotlib, and Scikit-learn, Pandas plays an important role in data anal-
ysis and machine learning workflows.

Tip: The Pandas website provides very good 10 Minutes to Pandas introduc-
tory tutorial for Pandas.

Central to Pandas are two primary data structures: the DataFrame and the Series. A
Series in Pandas is a one-dimensional array-like object that can hold any data type,
including integers, floats, strings, and Python objects. A DataFrame in Pandas is a
two-dimensional, size-mutable, and potentially heterogeneous tabular data structure
with labeled axes (rows and columns).


http://pandas.pydata.org/docs/user_guide/10min.html
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The following Python code constructs a Pandas Series of random numbers. The axis
labels of a Series (and a DataFrame) are called ”index” and allow one to name the
elements. The example also shows how a Python dict can be converted into a series
with named elements.

# Import the Pandas package
import pandas as pd

# Create a series from a NumPy array of random numbers
s = pd.Series (np.random.randn (5))
print (s.index)

# Provide indices (labels) when creating the series
s = pd.Series (np.random.randn(5), index=["a", "b", "c", "d", "e"])
print (s.index)

# Create a series from a Python dict that provides labels and values
d= {"a": 0.0, "b": 1.0, "c": 2.0}
print (pd.Series(d))

# Create a series from a dict and reorder the entries
print (pd.Series(d, index=["b", "c", "d", "a"l))

Note that in the last line of the above example, renaming or reordering the elements of
the Series d introduces a NaN element for the index ’d”, because the dict contains no
value for the key ~’d”.

Pandas series behave largely like NumPy arrays, but note that to access their elements
by numerical index, one has to use the i 1 oc operator, as shown in the following Python
code block. This allows slicing the same way as for Python sequences or NumPy
arrays. The following example also shows that Series can behave like a Python dict, in
that values for a named index (key”) can be retrieved. Series also provide membership
tests for “keys” using in.

# Series behave like an ndarray
print (s.iloc[0]

print (s.iloc[:3]

print (s[s > s.median()])

print (s.iloc[[4, 3, 111)

print (np.exp(s))

# Series behave like a dict
print(s['a'l)

print(s['e'])

print ('e' in s)

print ('f' in s)

# Series have a datatype and name
s.name = 'My First Series'
print (s.dtype)
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Pandas DataFrames are two-dimensional objects. Their columns may have different
data types. Conceptually, DataFrames can be considered as a dict of Pandas Series, as
the following example demonstrates.

d = {
"one": pd.Series([1.0, 2.0, 3.0],
index=['a', 'b', 'c']l),
"two": pd.Series([1.0, 2.0, 3.0, 4.0],
index=['a', 'b', 'c', 'd'l)

}

df = pd.DataFrame (d)

print (df)

print (df.index)

print (df.columns)

print (pd.DataFrame (d, index=['d', 'b', 'a'l,
columns=['two', 'three']))

Constructing the DataFrame df lines up” the two Series on their common indices,
and will introduce a ”NaN” for index ”d” in column “one”, because that Series does
not contain a value for ”d”. Similarly, inserting a column named “three” in the last line
of the above example yields a column filled with "NaN” because the dict d does not
contain values for the key “three”.

DataFrame columns can be accessed using their quoted name, and will yield a Pandas
Series with the usual operations. The following Python code example shows that new
columns can be added simply by defining them, as in the "flag” column below or using
the assign () function, which works similarly to the mutate function in R/dplyr.
Columns can be removed using the del command or the pop () function. The latter
returns the deleted column as a Series.

print (df['one'])

df['three'] = df['one'] % df['two']
df['flag'] = df['one'] > 2
print (df)

del df['two']
three = df.pop('three')

df['foo'] = 'bar'
df['one_trunc'] = df['one'][:2]
df.insert (1, 'bar', df['one'])
print (df)

# Similar to 'mutate' in R/Dplyr
df = df.assign(four = df['one'] * np.sqgrt(df['bar']))
print (df)

Pandas DataFrames can be index by colum, by label, by integer location, or by boolean
vectors. Table6.2 shows an overview of the different methods and their return values.
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Select column df [’ colname’ ] Series
Select row by label df.loc[’label’ ] | Series
Select row by integer location | df.iloc[loc] Series
Slice rows df[::] DataFrame
Select rows by boolean vector | df [bool] DataFrame

Table 6.2: Methods for indexing Pandas DataFrames

As noted earlier, Pandas automatically aligns data by indices, that is, by row and col-
umn labels, for operations on dataframes. Note how the addition of two dataframes
of unequal shape introduces "NaNs”. For convenience, NumPy operations can also be
used to operate on Pandas DataFrames, which are automatically converted to NumPy
ndarrays before and converted back after such an operation.

df = pd.DataFrame (np.random.randn (10, 4),

columns=["A", "B", "C", "D"])
df2 = pd.DataFrame (np.random.randn (7, 3),
columns=["A", "B", "C"])

print (df + df2)

# Elementwise operators
print (df » 5 + 2)

print (1/df)

print (dfxx4)

# Transpose
print (df.T)

# Using Numpy functions
print (np.exp (df))
print (np.asarray (df))

To apply element-wise character string operations on Series or DataFrames it is useful
to use the st r property:

r 1

# String functions with 'str
s = pd.Series(
["A", "B", "C", "Aaba", "Baca", np.nan,
"CABA", "dog", "cat"], dtype="string")

s.str.lower ()

Pandas provides a number of useful functions to get information about the contents
of a DataFrame. The info () function provides information about the columns and
their data types, while head () and tail () print the first and last few lines of a
DataFrame.
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df.info ()
df.head ()
df .tail (3)

The boolean reduction functions a1l () and any () operate by column on DataFrames
with boolean values. As their names suggest, al1l () returns True when the all entries
in a column are true, whereas any () returns True if any of the entries in a column are
true. The last line of the following Python code block re-applies any () to the Series
that results from the first application of any () .

# Boolean reductions
(df > 0).all()
(df > 0) .any ()
(df > 0) .any () .any ()

When making comparisons on DataFrames that include "NaN”, it is important to real-
ize that two ”NaNs” are not equal when using the == operator, but they are equal when
using the equals function. The following example illustrates this difference.

# NaN's are not the same
df.iloc[0,0] = np.nan
(df+df == df=x2).all()
(df + df) .equals (dfx2)

Pandas provides useful functions for basic descriptive statistics and aggregation on
DataFrames. In particular, the describe () function is useful to get a basic infor-
mation on the data in a DataFrame. The mean () function takes as its optional first
argument the axis number (0 for rows, 1 for columns) and can skip missing values
when summing. Multiple aggregates can be formed using the agg () function. The
Python code block below illustrates the use of these functions.

# Descriptive statistics

df .mean (0)

df .mean (1, skipna=False)

df_std = (df - df.mean()) / df.std()
df .describe ()

# Aggregation with 'agg'
df.agg(['sum', 'mean', 'std'], 0)

Pandas DataFrames can be sorted by columns, and the functions nlargest () and
nsmallest () can be used to select a DataFrame with only the n smallest or largest
values in a given column.
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# Sort by values

df .sort_values (by=['A'"', 'B'])
df .nsmallest (3, 'A")

df .nlargest (3, 'A'")

A very useful way to identify or select data in a Pandas DataFrame is the query ()
function, which accepts a simplified boolean condition as argument. This allows one
to write much shorter and compact selection logic, as shown in the following example.
Note the two different forms of the same logical operator & and and.

df = pd.DataFrame (np.random.rand (10, 3),
columns=list ('abc'))

# Pure python
df[(df['a'] < df['b']) & (df['bD'] < df['c'])]

# Shorter with Query

df .query('(a < b) & (b < c)")
df .query('a < b b !
df .query('a < b and
df .query('a < b €

The query () function can also be used for membership tests in Series and DataFrames
using the in operator. This also is much more compact and easy to read than the pure
Python isin () function. The following example code block shows the pure Python
selection followed by equivalent selection with query () :

df = pd.DataFrame ({'a': list ('aabbccddeeff'),
'b': list ('aaaabbbbcccc'),
'c': np.random.randint (5, size=12),
'd': np.random.randint (9, size=12)})

# Pure Python versus Query
df[df['a'].isin(df['b"'])]
df.query('a in b'")

df[~df['a'].isin(df['D'])]
df .query('a not in b')

df [df['b'].isin(df['a']) & (df['c'] < df['d'])]
df .query('a in b and c < d")

df[df['b'] .isin(["a", "b", "C"])]
df.query (bl == [Fal, opt = Ecu])

df[df['c'].isin([1, 2]1)]
df .query('[1l, 2] in c')

Pandas DataFrames also offer easy functions to remove duplicates. The following
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Python example code block shows how to identify rows that contain duplicate elements
in a list of columns, and then remove the duplicates, keeping either the first or the last
row. Note the different row indices in the retained results of drop_duplicates and
their different values columns ”c” and ~d”.

df2 = df.copy ()

df2.duplicated(['a', 'b'l)
df2.drop_duplicates(['a', 'b
b

'], keep='last')
df2.drop_duplicates(['a', 'b'

1, keep='first'")

Finally, Pandas provides many functions for reading and writing DataFrames from and
to a variety or serialization formats and even SQL RDBMS. See the Pandas IO user
guide for details.

6.7 The Pagila Database in Pandas

This section the use of Pandas for descriptive data analysis using the Pagila database
data as an example. The Pagila database® is a demonstration database originally devel-
oped for teaching and development of the MySQL RDBMS under the name Sakila*.
Pagila is designed as a sample database to illustrate database concepts and is based
on a fictional DVD rental store. It originally consists of several tables organized into
categories like film and actor information, customer data, store inventory, and rental
transactions. For this chapter, the Pagila data was summarized in a few related CSV
files.

The following Python code block reads the rentals data of the Pagila database into a
Pandas DataFrame using the read_csv () function. It then converts the data type of
some columns from character strings to datetime types so that one can use date and
time operations and arithmetic later.

3nttps://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila/blob/master/LICENSE. txt

4https://dev.mysql.com/doc/sakila/en/,
https://dev.mysqgl.com/doc/sakila/en/sakila-license.html
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# Read CSV
rentals = pd.read_csv('rentals.csv')

# Convert data types

rentals['rental_date']l = \

pd.to_datetime (rentals['rental_date'], utc=True)
rentals['return_date'] = \

pd.to_datetime (rentals|['return_date'], utc=True)
rentals['payment_date'] = \

pd.to_datetime (rentals|['payment_date'], utc=True)

# Basic information
rentals.info ()
rentals.describe ()
rentals.index
rentals.columns
rentals.shape

When working with data, it is often useful to first identify and remove missing values.
The following Python code block first identifies columns (axis=1) in the dataset that
contain any (any () ) missing values (isna () ). Of these filtered rentals, only some
columns are selected.

filtered_rentals = rentals[rentals.isna() .any(axis=1)]
selected_rentals = \
filtered_rentals|
['last_name', 'rental_date', 'return_date', 'title', 'amount']]

When printing DataFrames, Pandas by default abbreviates the output to manageable
size. The number of rows and number of columns to be printed is controlled by two
Pandas options that can be set as shown in the following example, which removes any
limits.

pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)

The remainder of this section shows how Pandas can be used to provide equivalent
results as obtained in the previous chapter using R/dplyr and in the chapter on relational
databases with SQL. Compare the Python code to the R code and the SQL code to
achieve similar results.

Example: Find all films and the actors that appeared in them, ordered by film cate-
gory and year, for those films that are rated PG.
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actors = pd.read_csv('actors.categories.csv')

result = pd.merge (rentals, actors, on='title',

suffixes=('_customer', '_actor'), how='outer')
result = result[result['rating'] == 'PG']
result['actor'] = result['last_name_actor'] + \

', ' + result['first_name_actor']
result.rename (columns={'release_year': 'year'}, inplace=True)
result = result[['actor', 'title', 'category', 'year']]
result.drop_duplicates(['actor', 'title', 'category', 'year'],

inplace=True)

result.sort_values (['category', 'year',K 'title'], inplace=True)
grouped = result.groupby(['category', 'year', 'title'l])
g_result = grouped['actor'].apply(list) .reset_index/()

print (g_result)

This Python code block above performs a series of data manipulation operations using
Pandas. The operations merge, filter, transform, and group data from the Pagila movie
rental dataset.

* Reading Data: The code reads a CSV file named ’actors.categories.csv’ into a
DataFrame called “actors”.

* Merging DataFrames: It then merges two DataFrames: “rentals” and “actors”,
based on the title” column that is common to both DataFrames. The suffixes
parameter is used to differentiate columns with the same name in both DataFrames,
by adding either ”_customer” or ”_actor” to the column names. The how=' outer’
parameter ensures that all records from both DataFrames are included in the re-
sult, even if there are no matching titles in one of them.

e Filtering Data: After merging, the script filters the resulting DataFrame to in-
clude only rows where the “rating” column contains the value "PG”.

* Creating a New Column: A new column, “actor”, is created by concatenating the
“last_name_actor” and “first_name_actor” columns, separated by a comma.

* Renaming a Column: The “release_year” column is renamed to “year”.

e Selecting and Rearranging Columns: The DataFrame is then reduced and rear-
ranged to include only the columns “actor”, title”, “category”, and “’year”.

* Dropping Duplicates: Duplicate rows based on the combination of “actor”, ti-
tle”, “category”, and “year” are removed. This ensures that each combination is
unique in the dataset.
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* Sorting Data: The DataFrame is sorted by “category”, then “’year”, and finally
“title”.

CIINEL)

* Grouping Data and Creating a List: The data is grouped by “category”, ’year”,
and “title”. For each group, the “actor” values are aggregated into a list. This
creates a list of actors for each movie title, categorized by year and category.

* Resetting Index: After the grouping and aggregation, the index is reset to turn
the grouped data back into a regular DataFrame.

* Printing the Final Result: Finally, the processed DataFrame is printed.

Example: Find the most popular actors in the rentals in each city.

The Python code block below combines the data frames from the multiple CSV files
that make up the Pagila data set, because the combined, full data is used for other
analysis examples below.

* The Python code merges the “’rentals” DataFrame with the addresses” DataFrame
based on the columns ”customer_address” in “rentals” and ’address_id” in “ad-
dresses” to linking rentals with corresponding customer addresses.

* The script then merges the resulting DataFrame with the “actors”, based on the
“title” column.

addresses = pd.read_csv('addresses.csv')
addresses|['phone'] = addresses|['phone'].astype (str)

full_data = pd.merge (rentals, addresses,
left_on='customer_address',
right_on='address_id"')

full_data = pd.merge(full_data, actors, on='title',
suffixes=('_customer', '_actor'))

The following Python code block performs the required analysis to on the full data
constructed above, using the following steps:

* The code groups the data by “city” and “actor” and calculates the size of each
group. This results in a count of how many times each actor’s movies were rented
in each city. The result is reset into a DataFrame “grouped” with a new column
“count” representing these sizes.

» Within each city, actors are ranked based on the ”count” column, with the rank-
ing stored in a new column “ranking”. The rank method is set to 'min’,
which means actors with the same count will have the same rank, and it ranks in
descending order of count.

* The code filters the DataFrame to select the top 3 actors (or ties) in terms of
rental counts in each city.
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» The filtered data is then sorted by “city”, “ranking”, and “actor” before being

printed.
full_data['actor'] = full_data['last_name_actor'] + ', ' + \
full_data['first_name_actor']
grouped = full_data.groupby(['city', 'actor']).size() \
.reset_index (name="'count')
grouped['ranking'] = grouped.groupby ('city') ['count'] \

.rank (method="'min', ascending=False)
filtered = grouped[grouped['ranking'] < 4]

sorted_df = filtered.sort_values (by=['city', 'ranking', 'actor'l])

print (sorted_df)

Example: Find the customers who spend the most on rentals, and the number of
rentals with the highest total rental payments for each category grouped by rental du-
ration.

full _data['customer'] = full data['first_name_customer'] + ' ' + \
full_data['last_name_customer']

selected_data = full_data[['customer', 'amount', 'rental_ duration', \
'category', 'phone', 'city']]

grouped_data = selected_data \
.groupby ([ 'category', 'rental_ duration', 'customer']) \
.agg (payments=('amount', 'sum'), num_rentals=('amount', 'count')) [\
.reset_index ()

grouped_data['ranking'] = grouped_data \
.groupby (['category', 'rental duration']) ['payments'] \
.rank (method="'min', ascending=False)

top_entries = grouped_data.loc]|
grouped_data.groupby ([ 'category', 'rental duration']) ['ranking'] \
.idxmin () ]

print (top_entries)

By now, it should be clear what most of the functions in the analysis accomplish. How-
ever, two important new things to note. First, the agg () function computes aggregates
of the values in its first argument using the function in its second argument and stores
the aggregate values in a new column. For example, the code below creates a new col-
umn “payments” with the “sum” of the values of the "amount” column of the grouped
data, and a new column num_rentals” with the ”count” of the values of the amount”
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column. Second, the idxmin () function within the 1oc [ ] operator of the dataframe
selects the smallest index, i.e. the smallest (highest) ranking when the data is grouped
by category and rental duration.

Example: Get the top 5 and the bottom 5 grossing customers for each quarter.

This example demonstrates the Pandas date and time function to_period (). The
argument Q returns quarters. Other frequently used arguments are *D’ for days, "W’ for
weeks, "M’ for months, *Y’ for years, '"H’ for hours, and *T” for minutes. The use of
the sort_values () function demonstrates "mixed” sorting, ascending by quarter,
and descending by payments.

full_data['customer'] = full_data['first_name_customer'] + ' ' + \
full_data['last_name_customer']
full datal['qg']l = pd.to_datetime (full_data['rental date']).dt \
.to_period("Q")
selected_data = full_data[['customer', 'q', 'amount', 'rental_date']]
grouped_data = selected_data.groupby (['qg', 'customer']) \
.agg (payments=('amount', 'sum')).reset_index()
distinct_data = grouped_data \
.drop_duplicates (['customer', 'q', 'payments'])
distinct_data['rank_top'] = distinct_data \
.groupby ('q") [ 'payments'].rank (method="'min', ascending=False)
distinct_data['rank_bot'] = distinct_data \
.groupby ('gq") [ '"payments'] .rank (method="min', ascending=True)
filtered_data = distinct_datal (distinct_datal['rank_top'] < 6) |
(distinct_datal'rank_bot'] < 6)]
sorted_data = filtered_data \
.sort_values (by=['qg', 'payments'], ascending=[True, False])
print (sorted_data)

Example: Find the set of film titles by rental customer and the total number rentals
for each customer.

The code below introduces Lambda functions. Lambda functions are unnamed, in-line
functions, here it is a function that converts its parameter x to a set (i.e. it removes
duplicates), and then converts the set to a list. The Lambda function is used as an
argument to the apply function, that is, it is applied to all elements of the “titles”
column in the grouped data. Recall that the titles” column was introduced earlier in
the script when the 1ist function was applied to the “title” column of the grouped
data and contains a list of film titles.
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full data['customer'] = \
full_data['first_name_customer'] + ' ' + \
full_data['last_name_customer']

selected_data = full_data[['customer', 'title']]
grouped_data = selected_data \

.groupby ('customer') ['title'] \

.apply (list) \

.reset_index (name="'titles"')

grouped_datal['rentals'] = grouped_data['titles'].apply(len)

grouped_data['unique_titles'] = grouped_data['titles'] \
.apply (lambda x: list (set(x)))

grouped_data = grouped_data.drop (columns=['titles'])
sorted_data = grouped_data.sort_values (by='customer"')

print (sorted_data)

Hands-On Exercise

—_

Find all films with a rating of "’PG’
2. List all customers who live in Canada (with their address)
3. Find the average actual rental duration for all films
* This requires date arithmetic

4. Find the average overdue time for each customer

* This requires date arithmetic
List all films that have never been rented
6. List the names of actors who have played in more than 15 films

2
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Chapter 7

Data Visualization in R and
Python

Learning Goals

After reading this chapter, you should be able to:
* Explain different purposes for information visualization.

* Identify deceptive visualization techniques and avoid such techniques in your
own visualizations.

» Understand different types of color palettes and be able to choose a color palette
for a given visualization purpose.

» Understand the impact of color vision deficiency and its implications for creating
meaningful visualization.

* Select a type of plot that is appropriate for a given purpose.

* Create different types of plots in R and Python, including customization of col-
ors, axes, labels, and titles.

7.1 Introduction

Data visualization, the practice of transforming information into a visual context, has
become an indispensable part of modern data analysis and communication. This field
intersects art and science, requiring both creativity and analytical skills to convert com-
plex data sets into comprehensible, insightful visual representations. The motivations
for visualizing data are multifaceted. Primarily, it enhances understanding by simpli-
fying complex information, making patterns, trends, and correlations more apparent
than they would be in raw data. It also aids in storytelling, where data-driven narratives

177
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can be compellingly presented to a broad audience, regardless of their expertise in data
analysis.

The purpose of visualization is to simplify, summarize and abstract complex infor-
mation into an easy to understand format for human consumption, for understanding,
persuasion or explanation, or for decision making. Visualizations can help to compare
different objects or things, they can help identify trends, patterns, and relationships. In
general, visualizations help in understanding data and gaining insight into a domain or
pheonomenon.

The recent history of data visualization is marked by rapid advancements fueled by
technology. In the last few decades, the advent of powerful computing and sophisti-
cated software tools has revolutionized this field. Where once it was the domain of
experts and specialists, data visualization has become accessible to a broader audience.
Tools ranging from simple spreadsheet applications to advanced data visualization soft-
ware have democratized the creation and interpretation of visual data. The rise of big
data and machine learning has further escalated the importance of data visualization.
As data sets have grown in size and complexity, the need for effective visualization
tools has become more pronounced, leading to innovative methods and approaches. In-
teractive visualizations, real-time data mapping, and the use of virtual and augmented
reality are some of the cutting-edge trends redefining how we see and interact with data
today. This evolution continues as we find new ways to visually interpret the vast and
growing ocean of data that characterizes the digital age.

Visualization is important because humans are very good at visual pattern recognition.
In fact, humans are too good at this, as they tend to also recognize patterns where
none exist. This makes it easy to deceive oneself or others with data visualizations.
Hence, visualization should always be undertaken with and supported by statistical
data analysis.

Visual Discovery

Visual discovery refers to the use of interactive visualization tools to uncover hidden
patterns, trends, and insights in data. This approach is a crucial aspect of modern data
analysis, emphasizing the power of human visual perception. Visual discovery lever-
ages the human brain’s innate ability to process visual information rapidly. By trans-
lating complex data sets into graphical representations, it enables quicker and more
intuitive understanding. Users can spot trends, outliers, and patterns more easily than
they could through rows of numbers or text.

Visual discovery is a highly iterative and dynamic process. Analysts rapidly create
or change data visualizations, such as charts, graphs, and maps, to explore different
aspects of the data. This interactivity allows for real-time exploration and analysis,
making it easier to drill down into specifics or zoom out for a broader view.

Visual discovery may be purely exploratory, without any prior knowledge by the data
analyst, or it may seek to confirm or verify the beliefs or hypotheses that the data
analyst has formed about the particular domain. However, even this confirmation is
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never final, but only a way to new insights and exploration. In this process, the analyst
explores the data, forms some beliefs or hypotheses based on the exploration, tries to
support it with a different visualization, and updates their beliefs or hypotheses based
on the later visualization.

Declarative Visualization (”’Storytelling”’)

In contrast to visual discovery, declarative visualization is purpose-driven and aims to
provide explanations to a particular audience. It is not interactive or dynamic. Visual-
izations are intended to affirm or support a conclusion and to convince an audience or
group of stakeholders. Information is not so much explored, as it is merely presented
and explained in visualization. Declarative visualization is used to support decision
making and is mainly static.

Operational Visualization (Monitoring)

In operational visualization, graphs and charts are used for supervision or monitoring
of the operation of a system. They provide system supervisors or controllers with a
real-time view of the state of key system properties and are used to spot situations or
trends that require intervention in the system’s operation, that is, operational decision
making.

Quantitative Messages

Good visualizations are focused on the quantitative message they are intended to con-
vey. For example, to present information about a time-series, that is, time-dependent
behaviour of one or more variables, a line chart is a good type of visualization. How-
ever, that line chart would not be as useful to convey relative rankings of items or
objects. For this purpose, a bar chart may be better suited. On the other hand, to
describe part-whole relationships, a pie chart may be useful to show what part of the
whole is contributed by its parts. Deviations from a mean or other standard, whether
positive or negative, can be easily understood from a bar chart as well. To understand
frequency distributions, one might use boxplots or histograms. Boxplots show median
values, and measures of the ’spread” or variability of the data. Histograms can show
a one or two dimensional frequency distribution of values. To understand correlations
of variables, a scatterplot is useful, where individual data points are plotted in a two
or three dimensional coordinate system, often augmented with statistical information
about their relationship. Finally, geographic information may use map data for visual-
ization. This is sometimes called a “cartogram”. Points may be overlaid on a map, or
areas of a map may be colored or otherwise highlighted. In summary, it is important to
consider the message to convey or the insight to be gained from a visualization when
selecting the type of graph or chart.
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7.2 Honesty in Visualization

For a number of reasons, it is easy to deceive with misleading visualizations. Humans
are prone to see trends or patterns where none exist. A misleading visualization can
use exploit this propensity in order to suggest relationships between objects or vari-
ables that do not exist. Humans recognize some aspects of visualization better, earlier,
and easier than others. For example, humans recognize the length of a line easier than
the area of a surface, and recognize variations in color better than they interpret textual
labels. A misleading visualization can exploit these cognitive effects to make the in-
terpreter focus on particular, misleading aspects in the visualization. Finally, because
visualizations are intended to abstract from the data itself and provide a summary, vi-
sualizations may not include sufficient information about the data or its processing to
allow the reader to understand what is shown, making it easy to suggest interpretations
that are misleading.

Here are some general guidelines for using visualizations:
* Do not deceive the target audience
* Do not diminish or hide relationships or trends
* Do not exaggerate relationships or trends
¢ Do not obfuscate, confuse, or hide information

The term “dark pattern” has been coined to describe the opposite of best practices in
a field, practices intended to deceive, mislead, or frustrate others. There are many of
such dark patterns in visualizations:

» Use an inappropriate graph or chart type to hide or obfuscate relationships or
trends. As noted above, different types of graph are suitable to convey different
types of messages. An example is shown in Figure 7.1 that illustrates that a
bar or column chart is more useful for comparisons of objects than pie charts,
so the use of a pie chart could hide or obfuscate trends that may otherwise be
prominent.

* Graph unrelated data to suggest non-existent relationships. The viewer of a visu-
alization expects that data that is graphed together has a meaningful relationship.
Simply by graphing data together, the analyst suggests a relationship where none
may exist.

 Scale multiple vertical axes to suggest correlations. Scaling a graph with mul-
tiple vertical axes so that lines better align shows visual similarities that are not
borne out by the data.

* Use confusing colors. For example, a color palette whose perceived color differ-
ences do not map linearly to the actual differences in the data may be misleading.
For another example, using different shades of the same color for values that are
very different will visually diminish the difference.
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Figure 7.1: Comparing Pie Charts
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Figure 7.2: Truncated Axes

* Omit summary statistics. For example, showing only the mean or median values,

e.g. in a line or bar chart, omits the uncertainty in the data. It is better to also
include error bars, information about quartiles or outliers in the chart to show
variability or uncertainty, especially when there is significant uncertainty about
differences or absolute values.

Truncate or scale axes to hide or exaggerate trend. Truncating or scaling axes
leads to increased slopes of lines or perceived differences between points or lev-
els. This exaggerates differences or trends. Figure 7.2 shows an example of how
small differences (right) can be exaggerated (left) in a bar chart. Similarly, Fig-
ure 7.3 shows how scaling or the use of different aspect ratios can be used to
visually exaggerate or diminish trends or relationships between variables.

Scale in multiple dimensions. The relative change or difference should be repre-
sented by a single dimension only. For example, in a bar or column chart, only
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Figure 7.4: 3D Pie Charts

the height or length of bar/column should change, not its width or area as well.
This issue is often connected to the use of 3-dimensional graphics. While visu-
ally appealing, they exaggerate the apparent visual area of a foreground object,
as illustrated in Figure 7.4. A related issue is the use of images in graphs, shown
in Figure 7.5. In the improper scaling, the image is enlarged in two dimensions,
suggesting a larger difference than there actually exists in the data.

Plot cumulative growth to hide trend. A cumulative trend will always a positive
trend, even as the contribution of individual items decreases sharply.

Use maps for non-geographic data. Maps represent geographical area, rather
than population or some other variables of interest. For example, coloring a
map by voter preference visually overemphasizes thinly populated but large ge-
ographic areas.

Use incomplete data (”cherry-picking”). This includes examples such as show-
ing only the previous year’s data, instead of data for the previous five years to
hide a trend, showing quarterly data instead of weekly data to hide volatility, or
showing every data for every second month instead of for every month to hide
specific data points or trends. Figure 7.6 shows an example of this dark pattern.
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Figure 7.6: Incomplete Data

* Use invalid data. When data is known to be unreliable, that is, its quality is low,
its uncertainty may be high, and it has a large error rate, it is misleading to use it
to convey a quantitative message.

The comics in Figure 7.7, taken from the popular XKCD website! shows some of these
visualization dark patterns in a humorous way.

In summary, misleading charts and visualizations can be particularly problematic be-
cause they exploit the visual nature of human perception, making the deception less
noticeable. It is crucial for both creators and consumers of data visualizations to be
aware of these pitfalls and to approach data representation and interpretation with a
critical eye.

7.3 Special Types of Data and Visual Analytics

Streaming Data

Visualizing streaming data, also known as real-time data visualization, involves the
dynamic representation of data that is continuously updated as new data arrives. This

T All XKCD comics are copyright by their creator (www . xkcd . com) and licensed under CC-BY-NC.
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Figure 7.7: Visualization Comics by XKCD
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type of visualization is essential in contexts where timely and rapid data interpretation
is critical, such as in financial trading, or network monitoring.

Streaming data presents some specific challenges for visualization. One of the primary
challenges is managing the high velocity and volume of streaming data. The system
must process and visualize data quickly enough to keep up with the incoming stream.
Typically, only a limited window of data is available while older data is discarded. This
means that, since the focus is on real-time data, it can be challenging to provide suffi-
cient historical context for users to understand the current data in a broader temporal
perspective. Moreover, due to the highly dynamic nature of the data, presenting stream-
ing data in a way that is not overwhelming to the user is challenging. The visualization
must strike a balance between providing enough detail and overloading the user with
information, in particular information about changes, and between providing respon-
sive graphs and overloading the user with such rapid changes they lose the ability to
understand the data.

Spatial Data

Visualizing geospatial or geographical data involves representing information that has
a spatial component on a map or in a spatial context. While this type of visualization
can be powerful for revealing patterns and insights related to location and geography,
it presents some unique challenges. Geospatial data is often complex and multidi-
mensional, encompassing not only locations but also attributes like time, elevation,
population density, and more. Geospatial datasets can be very large, especially with
the advent of satellite imagery, IoT (Internet of Things) sensors, and other sources of
big data. Moreover, the granularity of physical space can range from very small areas
of a few square meters to very large areas, such as provinces or states. For example,
postal-code level data can produce very large data sets, even in small jurisdictions.

A specific problem is the choice of areal unit to use for data analysis or visualization.
For example, location data points can be aggregated by counties or districts, by postal
code areas, by school districtcs or school intake areas, by police or fire service cov-
erage, or many others. Each of these different areal units will lead to different data
summaries and therefore also to different visualizations. Choosing the type of area to
use as the basis for visualization can have a large impact on the insights gained or the
messages conveyed to the audience. A simple example is shown in Figure 7.8 that
shows how aggregate statistics depend on the type of areal unit or boundary.

Another particular challenge with spatial data is mapping the three-dimensional Earth
onto a two-dimensional surface. This mapping inevitably involves some form of pro-
jection, which can distort spatial relationships. Choosing an appropriate map projection
that minimizes distortion for the specific data and use case is a critical challenge. There
are many such projections?, that distort or leave undistorted various properties such as
lengths, areas, or angles. Figure 7.9 shows some of these issues in a humorous way.

https://en.wikipedia.org/wiki/Map_projection
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Figure 7.8: Different types of spatial divisions lead to different interpretations

Network and Graph Data

Visualizing network or graph data involves representing entities as nodes and the re-
lationships between them as edges in a graphical format. This type of visualization is
crucial for understanding complex structures in various fields like social network anal-
ysis, biology, computer science, and more. Typically, nodes are represented as boxes,
circles, or textual labels, while edges are represented as lines or curves. Directed graphs
use arrowheads on lines or curves to indicate the directionality of an edge.

Network visualization poses several unique challenges. Networks, especially large
ones, can become very complex and cluttered when visualized. As the number of nodes
and edges increases, the visualization can quickly become a tangled mess, making it
difficult to discern meaningful patterns or relationships.

To effectively explore graph data, especially large graphs, interactive features like
zooming, panning, and highlighting are essential. Finally, graphs often contain large
sets of attributes for nodes and edges. Representing these attributes effectively with-
out cluttering the visualization or overwhelming the viewer is challenging. Techniques
like color coding, sizing, or shaping nodes and edges are commonly used but require
careful design.

In densely connected networks, edges can overlap, and nodes can occlude each other,
leading to a loss of information and making it difficult to trace relationships or identify
individual elements. Choosing an appropriate layout algorithm is therefore crucial for
network visualization. There exist many different ways to visually layout a graph to
make it visually clear and easy to understand and generally of high quality.

One of the most commonly-used types of algorithms position graph vertices based
on physical metaphors of attractive and repulsive forces, for example an imaginary
system of physical springs, sometimes called a force-directed graph layout. Adjacent
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Figure 7.9: Map Visualization Comics by XKCD

vertices are modelled with an attractive force, while all vertices have a repulsive force.
The graph layout algorithm then tries to produce a layout in which an overall energy
function is minimized. Figure 7.10 shows an example of such a graph layout.

Another commonly used graph layout algorithm is the simple circular layout, where
nodes are arranged equidistantly around a circle with edges drawn as lines or arrows.
Figure 7.11 shows an example this type of graph layout.

In an arc diagram, as shown in Figure 7.12, the nodes are arranged on a straight line
while edges are drawn as semicircles between nodes. In this layout, it is important to
arrange the nodes to minimize the number of crossings of edge semicircles.

A common type of layout for directed and acyclic graphs is the layered graph, typically
layed out from top to bottom or from left to right. The layout begins at the root node
or nodes, and increments the layer for each edge between adjacent nodes, as shown in
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Figure 7.10: Force-directed graph layout example
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Figure 7.11: Circular graph layout example

Figure 7.13.

When assessing the quality of the graph layout, a number of considerations are impor-
tant:

* Number of crossings of lines or curves. Such crossings are visually confusing
and should be minimized. In fact, this is such an important criterion that graph
theory has defined a planar graph as one that can be visualized in two dimensions
without any line crossings. Another qual

* Area of the graph. Graphs should be drawn in the minimal amount of space
while still being easy to read and understand.

» Symmetries. Being able to exploit symmetries in the underlying graph data and
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Figure 7.12: Arc graph layout example
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Figure 7.13: Layered graph layout example

represent or highlight them in the graphical layout makes the graph visualization
easier to understand.

» Shape homogeneity. A particular problem when using node labels, e.g. for names
or node attributes, is the size of the node shape in the graph visualization. It
is preferrable to maintain equal size, despite differences in label length. Lines
should have the lowest or an equal number of bends.

* Angular resolution. In graphs with many edges from nodes, it is important to
draw lines in such a way that the edges can be clearly differentiated. This is very
important in circular layouts, but also plays a large role in other types of graph
layouts.
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7.4 Color Palettes

The use of color in data visualization is crucial, serving not only to enhance the visual
appeal of a graphic but also to improve its clarity and interpretability. Color choices
in data visualizations, determined by the selected color palettes, play a significant role
in distinguishing different data points or categories, setting the tone of the presentation
(for example, formal versus informal presentations), ensuring accessibility for viewers
with color vision deficiencies, and enhancing the overall aesthetic appeal. Desirable
characteristics of color palettes are:

* Range of Values: Colorful palettes are required when many different values have
to be represented and distinguished.

* Perceptual Unformity: The relative perceived differences between colors in the
palette should mirror the relative differences in the data values represented by
the colors.

* Robustness to Color Vision Deficiency: Colour vision deficiency (CFD), collo-
quially called “color blindness” impacts almost 10% of the population and must
therefore be a consideration when choosing color palettes so that the data visu-
alization can be properly perceived and interpreted by everyone.

* Consistency: When using multiple plots, their color palette should be the same
or at least consistent so as not to cause confusion in interpretation and require
less effort for understanding by the reader.

* Aesthetic Appeal: Finally, a colour palette should also be pretty”.

Types of Color Palettes

Color palettes can be distinguished by the number of colours they use, and whether the
colors span a continuous color space or are a discrete set.

Sequential color palettes

Sequential color palettes, like the one in Figure 7.14a, use a single color and vary the
hue or depth of the color. They are best used for data that has an inherent order, as
they clearly show progression or gradation. However, they are not suitable for data
that lacks a natural ordering. The monochromatic color palette is a special case of a
sequential palette. This may be suitable when it is likely that the output will be printed
on media without the use of color.

Diverging color palettes

Diverging color palettes, like the one in Figure 7.14c, on the other hand, use two colors
as anchors and use gradations either through white, as in Figure 7.14c, or through
black. They are ideal for emphasizing deviations from a median or mean value, or for
highlighting extremes on either side of a critical midpoint. However, these palettes may
be misleading if used for data without a meaningful center.
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(a) Sequential color palette
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(b) Monochromatic color palette

o .. ...

(c) Diverging color palette

- . . . .

(d) Spectral color palette

Figure 7.14: Types of Color Palettes

Spectral color palettes

Spectral color palettes, like the one in Figure 7.14d use a variety of different colors
without any implicit ordering. They are used to represent discrete categories without
inherent ordering, and are useful for differentiating distinct groups of data. The down-
side is that they can become confusing with too many categories.

Sequential and diverging color palettes may be discrete, like the ones shown in Fig-
ure 7.14, or continuous, while spectral palettes are always discrete.
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Color Vision Deficiency

The human eye contains three different types of color receptor cells, called ”S-cones”
that perceive the color blue, "M-cones” that perceive the color green, and ”L-cones”
that perceive the color red. Color vision deficiency (CVD) is a biological impairment
where some color receptor cells in the eye are missing, less frequent, or their function
is diminished. In protanopia, the S-cones are missing or impaired, in deuteranopia, the
M-cones are missing or impaired, and in tritanopia, the L-cones are impaired. When
all are missing or non-functional, one speaks of monochromatism. CVD is a fairly
common disability, afflicting approximately 1 in 12 men and 1 in 200 women, with an
overall incidence rate in Canada of more than 5%.

To show the different types of color deficiencies, consider the images in Figure 7.15.
Figure 7.15a shows the original image as it is perceived by a person who does not suffer
from CVD. The remaining four images show how the photo appears to persons with
different types of CVD.

Realizing the prevalence and the effects of CVD means that the color palette that is
chosen for data visualization should be interpretable for and lead to the same inter-
pretation even for readers with CVD. For example, the Viridis color palette available
in many visualization software packages was designed with CVD readability in mind.
Compare the popular ”Color Brewer Paired” palette in Figure 7.16 to the Viridis palette
in Figure 7.17. The figures show that the Viridis palette is readable and interpretable
with any CVD condition, whereas the Paired palette is not because some colors cannot
be distinguished under various CVD conditions.

In summary, the thoughtful application of color in data visualization is not merely
an artistic decision but a strategic one. It influences how effectively the data is com-
municated and understood, ensuring that visualizations are not only informative and
accurate, but also inclusive and engaging to a diverse audience.
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Figure 7.15: Simulated Color Vision Deficiencies
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Figure 7.16: Example: Colourbrewer Palette “Paired”

Viridis Palette

Figure 7.17: Viridis Colour Palette
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7.5 Common Types of Plots

Depending on the number of variables to visualize, whether they are discrete or contin-
uous, and the quantitative message to convey, different types of plots may be chosen.
While the list of plot types presented here is not comprehensive, and new ways of vi-
sualizing data are constantly being invented, these are widely used plot types that are
available in most visualization software packages and can be created with little effort.

* Plots for One Variable
— Continuous
= Area: Degree of change over time, or relationship of parts to aggregate

+ Density, Dot, Frequency, Histogram: Show frequency distribution
of data

— Discrete

+ Bar: Connections among individual things, compare items of different
groups

« Pie: Relationships of parts to aggregate
¢ Plots for Two Variables
— Both Continuous

+ Point: Connections among numeric values, show multiple groups of
data

+ Lines, Local Regression: Relationships/correlations among multiple
data series or over time

+ Text / Label: Frequency of labels in content/document
— One Discrete, One Continuous
# Column: Correlations among things or information changes over time

+ Box, Dot, Violin: Compare distributions between many groups, dis-
play spread and skew of data

— Both Discrete
+ Points/Counts: Magnitude of counts
+ Jitter: Plots of data points

— Distributions of Two Variables

+ Bin2D, Density2D, Hex: Shows frequency of values over two contin-
uous variables

¢ Plots for Three Variables

— Continuous
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x Contour, Raster and Tile: Shows relationships among three data se-
ries

* Visualizing Errors and Uncertainty

— Give a general idea of how precise a value is, or how far a value might be
from the true value

— Typically used to augment a given visualization
— Common Visualization Styles:

* Crossbar

s« Errorbar

* Range (line, point)

7.6 Graphics Libraries and Frameworks

R

The R software system offers several powerful data visualization packages, each with
unique features and strengths. Among the most prominent are ggplot2, Plotly for R,
ggvis, and Shiny, which collectively cater to a wide range of visualization needs.

At the forefront is ggplot2, a package based on the Grammar of Graphics, which pro-
vides a coherent system for describing and building graphs. Its strength lies in its
ability to create complex, multi-layered graphics with a syntax that is both powerful
and expressive. ggplot2’s approach allows users to build plots layer by layer, making it
easier to handle and modify the components of a graphic. Its extensive customization
options and the ability to handle a wide variety of graphical forms make it popular for
static graphics.

Plotly for R integrates the functionality of the Plotly JavaScript library into R, enabling
the creation of interactive, web-based graphs. This package extends the interactive
capabilities of R visualizations, allowing users to produce graphics that can be zoomed,
panned, and hovered over to reveal additional information. Its integration with R makes
it a popular choice for adding an interactive element to data presentations, bridging the
gap between static and dynamic visualizations.

ggvis, another package in the R visualization landscape, combines the concepts of gg-
plot2 with the interactivity of the web. It is designed to integrate well with R’s reactive
programming package, Shiny, and the dplyr package, enabling a smooth workflow for
interactive data exploration. ggvis focuses on web-based, interactive visualizations,
providing a syntax similar to ggplot2 but with additional capabilities to interactively
change the data display and explore data in real-time.

Shiny, distinct from the traditional visualization packages, is an R package for building
interactive web applications. It allows users to turn their analyses into interactive web
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applications without requiring HTML, CSS, or JavaScript knowledge. Shiny applica-
tions have the power to not only display complex visualizations but also to interact with
the user, making it possible to dynamically change the data, the types of plots, filters,
and other aspects of the visualization based on user input. This interactivity makes
Shiny particularly useful for creating data dashboards, where users need to explore and
interact with data in a flexible manner.

Together, these packages provide R users with a comprehensive toolkit for creating
static and interactive visualizations. From detailed and layered static plots with ggplot2
to dynamic, user-driven applications with Shiny, the R ecosystem enables a vast array
of data visualization possibilities, catering to both simple and complex, interactive data
exploration and presentation needs.

Python

The Python programming environment also offers a rich landscape of data visualization
packages, each tailored to different needs and preferences.

Matplotlib is the foundational library for data visualization in Python, offering a wide
array of functionalities to create static, animated, and interactive plots. It is highly cus-
tomizable and capable of creating virtually any type of chart or graph. The versatility
of Matplotlib allows for detailed control over plot elements, but this can also lead to
more complex code for intricate visualizations.

Seaborn builds on Matplotlib and simplifies the creation of beautiful, informative sta-
tistical graphics. It integrates closely with Pandas, a data manipulation library in
Python, and provides a high-level interface for drawing attractive and informative sta-
tistical graphics. Seaborn’s strength lies in its ability to create complex visualizations
like heatmaps, time series, and violin plots with relatively straightforward commands.

Plotnine is inspired by R’s ggplot2 library and brings the Grammar of Graphics to
Python. It offers a similar layer-based approach to visualization, making it a familiar
choice for users transitioning from R to Python. Plotnine is particularly effective for
creating complex, multi-layered graphics with a syntax that emphasizes the declarative
nature of the visualization process.

Plotly Express is a high-level interface for the Plotly library, designed to make it easy to
create complex, interactive, and beautifully rendered visualizations. It offers a simple
syntax for creating a wide variety of chart types and is particularly adept at handling
large and complex datasets. Plotly Express’s strength lies in its integration with Dash,
another Plotly product, for building interactive web applications.

Plotly Graph Objects is the lower-level interface of the Plotly library, providing more
granular control over the visualization elements. It’s ideal for users who need to cre-
ate highly customized visualizations or who require fine-tuning beyond what Plotly
Express offers.

Plotly Dash is a framework for building interactive web applications with Python (and
R and Julia). Dash is unique in its ability to create richly interactive, web-based data
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visualizations and dashboards without requiring advanced knowledge of web develop-
ment. It integrates seamlessly with Plotly’s suite, allowing for the creation of sophisti-
cated data visualization interfaces.

Bokeh, another prominent Python library, excels in creating interactive and real-time
streaming visualizations. It is particularly well-suited for web-based dashboards and
applications, offering both simplicity in creating complex interactive plots and the
power to handle streaming datasets.

In summary, Python’s ecosystem for data visualization is diverse and robust, ranging
from Matplotlib’s comprehensive capabilities for static plots to the interactive and web-
based functionalities of Plotly and Bokeh. Each library offers unique strengths, whether
it be in creating complex statistical visualizations, interactive web applications, or real-
time data streams, catering to a wide range of data visualization needs and preferences.

JavaScript/Web

JavaScript, being the standard language of web development, boasts several powerful
data visualization libraries that are integral for creating interactive and dynamic visual-
izations on the web. Among these, D3.js, Chart.js, and Google Charts are particularly
noteworthy, each with their unique capabilities and strengths.

D3.js stands out as the most sophisticated and flexible JavaScript library for data vi-
sualization. Its core strength lies in its ability to bind arbitrary data to a Document
Object Model (DOM), and then apply data-driven transformations to the document.
D3 allows for extremely detailed and sophisticated visualizations by giving developers
direct control over the SVG or HTML output. This level of control enables the creation
of complex, interactive, and highly customizable visualizations. However, this power
comes with a steep learning curve and can be overkill for simpler visualizations.

Chart.js is a more lightweight and user-friendly alternative, specifically designed for
creating simple yet beautiful and interactive charts. It uses HTMLS5 Canvas for render-
ing, which makes it efficient in terms of performance. Chart.js supports a variety of
chart types, including bar, line, pie, radar, and more, all of which are responsive and
mobile-ready by default. Its simplicity and ease of use make it a popular choice for
developers who need to implement standard charts quickly and without the complexity
of D3 js.

Google Charts provides an even simpler way of incorporating charts into web pages.
It offers a wide array of chart types and is particularly known for its integration with
other Google services, like Google Spreadsheets. Google Charts is designed to be easy
to use, and it handles a lot of the heavy lifting behind the scenes, such as drawing the
charts, which makes it an appealing option for users who prefer a more straightforward
and less code-intensive approach. The downside is that it offers less customization
compared to D3.js and is reliant on external Google services, which might raise privacy
concerns or issues with data control.

Each of these libraries serves different needs within the web development and data vi-
sualization community. D3.js is ideal for creating complex, interactive visualizations
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where control and customization are paramount. Chart.js offers a balance between sim-
plicity and functionality, suitable for standard web-based charts. Google Charts, with
its ease of use and integration with Google products, is excellent for straightforward
visualizations where ease of implementation is a priority. The choice among these
libraries largely depends on the specific requirements of the project, the complexity
of the visualizations needed, and the developer’s proficiency with JavaScript and web
technologies.

7.7 Mapping Data to Plot Elements

Creating a basic visualization in two dimensions, such as bar chart, a line chart, or a
bubble chart, means that data elements or data series must be mapped to visualization
elements. This is the core of the visualization task, and the most fundamental choice
the data analyst has to make. Table 7.1 shows plot elements that data variables can
be mapped to. In principle, a different data variable can be mapped to each of these,
resulting in potentially being able to represent more than a dozen variables in one
diagram. However, in practice, the number of concurrent variables to represent should
be limited to no more than 3, in order for the visualization to remain interpretable and
not to require too much cognitive effort on the part of the reader.

X, Y, Z axes

Colour (of points, lines, areas, shapes)
Transparency (”alpha”)

Patterns (within areas, shapes)

Size, Weight/Width (of points and lines)
Shape, Style (of points and lines)

Table 7.1: Plot elements that can be mapped to data variables

7.8 Visualization in R using ggplot2

This section provides an introduction to data visualization using the ggplot library in
R. The example dataset for this section is the Fuel Consumption Ratings for battery
electric vehicles, provided the Government of Canada through its Open Government
Portal®. At the time of writing, the dataset was last updated on October 10, 2023. The
dataset contains the variables shown in Table 7.2.

Reading and preprocessing the data is straightforward in R, shown in the following
code block:

3https ://open.canada.ca/data/en/dataset/98f1al29-f628-4ce4-b24d-6£f16bf24dd64


https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64

200 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

Column ‘ Data Type ‘ Definition

Make Discrete Manufacturer
Model Discrete Model name
Year Numeric Model year

Category | Discrete Small, Midsize, Large, Pickup, SUV, Station Wagon, etc.

City Numeric Consumption in 1/100km equiv.
Hwy Numeric Consumption in 1/100km equiv.
Comb Numeric Consumption in 1/100km equiv.
Range Numeric Driving range in km

Table 7.2: Fuel efficiency data set variables

# Import libraries

library (tidyverse)

# Read CSV

e <- read.csv('https://evermann.ca/busid720/fuel.csv")
# Pre-process for data types
eSYear <- as.numeric(eSYear)
esCategory <- as.factor (e$Category)
eSFuel <- as.factor (eSFuel)

e$City <- as.numeric(e$City)

eSHwy <- as.numeric (eSHwy)

eSComb <- as.numeric (e$Comb)
eSRange <- as.numeric (e$Range)
eSAnnual <- as.numeric (e$Annual)
e.clean <- e

Next, load the required graphics libraries. A number of extensions to the core ggplot2
library have been developed to provide additional capabilities, such as radar plots, pat-
tern fills, providing more control over scales and axes, etc.

library (ggplot2)
library (ggpattern)
library (ggstream)
library (ggsci)
library (scales)
library (ggrepel)
library (ggradar)

The core ggplot () function can be used in a dplyr pipeline and accepts the processed
data tibble. The core argument to ggplot () is the "aesthetic” that maps plot elements
to data variables. The actual plots themselves are then added through the use of various
”geoms”. Such geoms respresent commonly used plot types. The geoms “inherit” the
aesthetic specified in ggplot () and can add to it by including more variables mapped
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to different plot elements. More than one geom can be added to a plot, allowing the
analyst to overlay plot types or combine plots for multiple data series or data sets. The
final graph can be saved in a variety of different image formats.

The first example below introduces the histogram geom. Histograms show the count of
values in a certain range. The ggplot () function’s aesthetic maps the "Range” vari-
able of the tibble to the x axis of the plot. The argument to the geom_histogram ()

function indcates that 50 bins should be formed, i.e. the data is divided in 50 separate
regions for counting and plotting. The ggsave () function saves the last plot in a file
with the specified height and width.

e.clean |>
ggplot (aes (x=Range)) +
geom_histogram(bins=50)

ggsave ("histogram.pdf",
height=5, width=7.5, units="in")

count
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A density plot using the geom_density () function, is similar to a histogram in
that it indicates the frequency of values. However, a density plot shows a continuous
probability distribution of the data values, and as such is limited in range between 0
and 1.

-al 1

s .
400 600 800
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The example below adds a number of elements to the basic density plot. The function
labs () allows specification of labels for all plot elements. The geom_vline ()
geoms add vertical lines. Note that these geoms do not receive the data from the pipe,
but the data is specified using the dat a argument. The aesthetics of a vertical line map
the x axis intercept to a data variable. Different line types are used for the different
lines. The annotate () function adds text annotations to the plot. Each annotation
prints a label at a set of x and y coordinates in the plot, with a specific size and hor-
izontal justification. For example, hjust=0 means the text is left-justified. Consult
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the documentation for further details.

# Prepare summary statistics

mean_v <- e.clean |[>
summarize (mean_v = mean (Range),
median_v = median (Range),
lower95=quantile (Range, .025),
upper95=quantile (Range, .975),
maxdensity = max(density (Range)Sy))

e.clean |>
ggplot (aes (Range)) +
geom_density (kernel="gaussian',
fill="lightblue') +
labs (x = 'Range (km)',
y = 'Proportion of Vehicles',
title='Density Plot - Electric Vehicle Range',
subtitle="'Years 2012 to 2024',
caption='Lower and Upper 95 percentile, \
median and mean') +
geom_vline (data=mean_v,
aes (xintercept=mean_v),
linetype="'dashed') +
geom_vline (data=mean_v,
aes (xintercept=median_v),
linetype='dotdash') +
geom_vline (data=mean_v,
aes (xintercept=lower95),
linetype='dotted') +
geom_vline (data=mean_v,
aes (xintercept=upper95),
linetype='dotted') +
annotate ('text',
label=paste (' L95=\n ', round(mean_vS$lower95),sep=""),
x = mean_vS$lower95, y = mean_vSmaxdensity/2,
size=3.5, hjust=0) +
annotate ('text',
label=paste (' Med=\n ', round(mean_vSmedian_v),sep="'"),
x = mean_vSmedian_v, y = mean_vSmaxdensity«+3/4,
size=3.5, hjust=0) +
annotate ('text',
label=paste (' Mean=\n ', round(mean_vSmean_v),sep="'"),
X = mean_vSmean_v, y = mean_vSmaxdensity*5/8,
size=3.5, hjust=0) +
annotate ('text',
label=paste (' U95=\n ', round (mean_vSupper95),sep=""),
x = mean_vSupper95, y = mean_vSmaxdensity/2,
size=3.5, hjust=0)
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Density Plot — Electric Vehicle Range
Years 2012 to 2024
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The next example shows how histograms and density plots can be combined. The R
code fragment below indicates only the relevant changes to the previous example.

geom_histogram(aes (y=..density..), bins=50,
alpha=0.5, fill='white', color='black',6 ) +
geom_density (kernel="'gaussian',
alpha=0.25, fill='lightblue') +

Density Plot — Electric Vehicle Range
Years 2012 to 2024
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An area plot is essentially a line plot where the area under the line filled. However,
in contrast to a line plot, when plotting multiple data variables in an area plot, the
area plot is cumulative, that is, data are stacked on top of each other. The following
example first uses dplyr functions to compute a summary statistic, and then pipes the
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result into the ggplot () function. geom_text () is another way to add annota-
tions to the data. This geom uses its own aesthetic in the example below. Note that
position=’jitter’ indicates that overlapping points (i.e. points with the same
data values) should be randomly moved a little bit to show them separately.

e.clean %>%
group_by (Year) %>%

summarize (meanRange = mean (Range)) %>%
ungroup () %>%
ggplot (aes (Year, meanRange)) +

geom_area (fill="purple') +
geom_text (aes (label=round (meanRange) ),
size=5, position="'jitter') +
labs (x="'Year', y='Mean Range (km)"',
title='Vehicle Range by Year',
subtitle="Years 2012-2024")

Vehicle Range by Year
Years 2012-2024
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The next example shows a column chart. Again, dplyr functions are used to create suit-
able summary statistics to plot, and the summarized data is then piped to ggplot ().
The variable “metric” is mapped to the "fill” element of the plot, that is the color with
which columns are filled. The position="dodge’ argument to the the geom_col ()
function indicates that columns are located next to each other, instead of being stacked
on top of each other.

This example also shows customization of the scales. Here, the fill scale (that is, the
colour) is customized, first by specifying a colour palette, and then by providing la-
bels for the different categories. The legend is automatically added to the right of the
column plot.
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e.clean %>%
group_by (Year) %>%
summarize (meanCity = mean(City), meanHwy = mean (Hwy)) $%$>%
ungroup () %>%
pivot_longer (cols=c ('meanCity', 'meanHwy'),
names_to="metric',

values_to='consumption') |>
ggplot (aes (Year, consumption, fill=metric)) +

geom_col (position="'dodge') +
scale_fill brewer (palette="Paired") +
scale_fill discrete(labels=c("City", "Highway")) +
labs(x = 'Year',

y='Mean Fuel Consumption\n(1/100km equivalent) ',

fill='",

title='Electric Vehicle Range',
subtitle="'Years 2012 to 2024")
Years 2012 to 2024
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When it is clear that a plot is likely to be printed in black and white, it may be useful
to omit the use of colours and instead use different fill patterns. They are provided by
the ggpattern package that provides the geom_col_pattern geom. As shown
in the code below, the aesthetics for this geom can map data values to different aspects
of a fill pattern, such as the pattern type and the pattern angle.

This example also customizes the scale for the “pattern” geom to provide values for
the different pattern types and labels for the two data series. Note that more then the
required two values for patterns are listed in the example to showcase the different
options provided by the ggpattern package. Additionally, the guides () function
is used to omit the legend for the pattern angle (because the same data is mapped to
pattern type and pattern angle) and the theme () function customizes the layout of the
legend.
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ggplot (aes (Year, consumption)) +

clean %>%
group_by (Year) %>%
summarize (meanCity = mean (City)

r
meanHwy = mean (Hwy)) %>%
ungroup () %>%
pivot_longer (
cols=c('meanCity', 'meanHwy'),
names_to="metric',
values_to="'consumption') %$>%

geom_col_pattern (
aes (pattern_type=metric, pattern_angle=metric),
pattern='polygon_tiling"',
pattern_fill="'white',
pattern_scale=0.5,
position="dodge',
pattern_key_scale_factor=0.4) +
scale_pattern_type_manual (
values = c('hexagonal', 'rhombille', 'pythagorean',
'truncated_square', 'rhombitrihexagonal',
'truncated_trihexagonal'),
labels=c ("City", "Highway")) +
labs(x = 'Year', y='Mean Fuel Consumption',
pattern_type='",
title='Electric Vehicle Range',
subtitle="'Years 2012 to 2024'"') +
guides (pattern_angle=FALSE,
pattern_type=guide_legend (nrow=1)) +
theme (legend.key.size=unit (1.5, 'cm'),
legend.position="'bottom')

Electric Vehicle Range
Years 2012 to 2024
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A box plot, also known as a box-and-whisker plot, is a way of displaying the distribu-
tion of data based on 5 summary statistics: the minimum, first quartile (Q1), median,
third quartile (Q3), and the maximum. A box plot provides a visual summary of the
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spread, central tendency, and symmetry of the data. Boxplots contain the following
elements:

e The Box:’indexBox (in Box plot) The bottom and top edges of the box represent
the first quartile (Q1, the 25th percentile) and the third quartile (Q3, the 75th per-
centile), respectively. The box therefore describes the interquartile range (IQR),
i.e. the distance between the first and third quartiles.

* The Median: Inside the box, there is usually a line that denotes the median (the
50th percentile) of the dataset. By comparing the placement of the median line
to the extent of the first and third quartiles, one can judge whether the data is
skewed.

* Whiskers: Extending from the box are lines called whiskers. One common
method is to extend the whiskers to the furthest data point within 1.5 times the
IQR from the quartiles. This means that the lower whisker extends to the small-
est data point greater than Q1 - 1.5 * IQR and the upper whisker extends to the
largest data point less than Q3 + 1.5 * IQR.

e Qutliers: Data points that fall outside of the whiskers are often considered out-
liers and may be plotted as individual points.

Box plots are particularly useful for displaying the distribution of data, comparing
multiple distributions, and identifying outliers.

The following example introduces the stat_summary () function to add a summary
statistic in the form of a text label to the plot. The label is computed by the stat (y)
function, which in turn calls fun . y specified within the stat_summary () function
itself. The function as used in this example determines how to label the outlier points
in the box plot, using the fext geom and its label.

e.clean %>%

pivot_longer (cols=c('City', 'Hwy'),
names_to="metric',
values_to='consumption') $>%
ggplot (aes (x=as.factor (Year), y=consumption, fill=metric)) +

geom_boxplot () +
stat_summary (

aes (label round (stat (y), 1)),

geom = "text",

size=2,

fun.y = function(y) {

o<-boxplot.stats (y) $out;
if (length(o)==0) NA else o}) +

scale_fill brewer (palette="Paired") +
labs(x = 'Year',

y='Mean Fuel Consumption\n(l1/100km equivalent)',

fill="",

title='Electric Vehicle Range',
subtitle="'Years 2012 to 2024"') +
theme (legend.key.size=unit (1, 'cm'),
legend.position="'top")
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Electric Vehicle Range
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Violin plots are another way to visualize the spread and distribution of the data. Their
width is determined by the frequency/distribution of data points. The following exam-
ple introduces the geom_violin geom and the geom_jitter geom. As the name
suggests, the jitter geom plots and “jitters” the data points, by moving them slightly
to avoid overlap. The arguments provided to geom_jitter () set the width, the
color and size of the points, the fill color and the transparency level ("alpha”). the plot
indicates the distribution of data, which is reinforced by the visual “density” of the
individual data points in the plot.

e.clean %>%
ggplot (aes (x=as.factor (Year), y=Comb)) +

geom_violin (fill='lightblue') +

geom_Jjitter (width=0.15, color='black',
size=1, fill=NA, alpha=0.5) +

scale_fill brewer (palette="Paired") +

labs(x = 'Year',
y='Mean Fuel Consumption\n(l1/100km equivalent) ',
fill="",

title='Electric Vehicle Range',
subtitle="'Years 2012 to 2024")
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A dot plot is useful for showing individual data points. In this example, the data are
binned along the y axis (that is, by combined fuel economy). The stack ratio determines
the horizontal separation of points.

e.clean %>%
ggplot (aes (x=as.factor (Year), y=Comb)) +

geom_dotplot (binaxis="y"',
stackdir="'center',
stackratio=0.5,
binpositions='all',
dotsize=0.5,
color="'black',

fill="orange') +
scale_fill brewer (palette="Paired") +
labs(x = 'Year',
y='Mean Fuel Consumption\n(l1/100km equiv)',
fill='",

title='Electric Vehicle Range',
subtitle="'Years 2012 to 2024")
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Electric Vehicle Range
Years 2012 to 2024
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Instead of using a jitter plot with a violin plot, it is sometimes better to combine a violin
plot with a dot plot, as in the following example.

e.clean %>%

filter (Year > 2019) %>%
ggplot (aes (x=as.factor (Year), y=Comb)) +
geom_dotplot (binaxis="y"',
stackdir='center', stackratio=0.5,
binpositions='all', dotsize=0.5,
color='black', fill='orange') +
geom_violin(color="'black',6 £fill=NA) +
stat_summary (fun.data=mean_sdl,
fun.args=1list (mult=1),
size=1, color='blue',

geom="pointrange") +
scale_fill brewer (palette="Paired") +
labs(x = 'Year',
y='Mean Fuel Consumption\n(l1/100km equiv)',
fili="",

title='Electric Vehicle Range',
subtitle="'Years 2020 to 2024') +
theme (legend.position="none'")
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Years 2020 to 2024

(1/200km equiv)

Mean Fuel Consumption
889

2020 2021 2022 2023
Year

A count plot is useful to show the count of data values as the size of a point. In the
following example, the point size is determined by the count of values in each combi-
nation of ”Year” and ”Category”. All points have the same color, and the area is scaled
to a maximum size of 10 using 6 different sizes. Additionally, this examples shows
further customization of the plot legend using the theme () function, by surrounding
the legend with a black rectangle without fill (transparent). The guides () function
omits a legend for the color.

e.clean %>%
ggplot (aes (as.factor (Year), as.factor (Category))) +
geom_count (color="'darkolivegreen4')+
scale_size_area (max_size=10, n.breaks=6) +
scale_color_brewer (palette="Paired") +
scale_y_discrete(

labels=c('Compact', 'Large', 'Mid-Size', 'Pickup truck',
'Subcompact', 'Two-seater', 'SUV (standard)',
'SUV (small)', 'Station Wagon (small)')) +
guides (color=FALSE) +
labs(x = 'Year',
y='Category',
fili='"",

title="'Electric Vehicle Models by Category',
subtitle='Years 2012 to 2024') +
theme (legend.background=element_blank (),
legend.box.background=element_rect (color="'black', fill=NA),
legend.key.size=unit (1, 'cm'))




212 CHAPTER 7. DATA VISUALIZATION IN R AND PYTHON

Electric Vehicle Models by Category
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A similar effect can be achieved with jitter plot, where the size of the points “cloud”
indicates is used analogous to the size of the point. Visually, the following plot achieves
a similar goal as the previous dot plot. Here, the same variable is mapped to both the
x axis as well as the color element, but the guides function omits a legend for the
colour element.

e.clean %>%
ggplot (aes (x=as.factor (Year),
y=as.factor (Category),
color=as.factor (Year))) +
geom_jitter (width=0.2, height=0.2) +
scale_color_manual (values=c25) +
scale_y_discrete(
labels=c ('Compact', 'Large', 'Mid-Size',
'Pickup truck', 'Subcompact',
'Two-seater', 'SUV (std)',

'SUV (sm)', 'Station Wagon (sm)')) +
guides (color=FALSE) +
labs(x = 'Year',

y="'Category',

fill="Make"',

title="Electric Vehicle Models by Category',
subtitle="'Years 2012 to 2024"'")
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A points plot, sometimes called a bubble chart, generalizes the count plot. Whereas
the count plot uses the number of data values to determine the size of the point, the
points plot allows one to provide an explicit mapping for the point size. However, the
following example also maps the size of the point to the count of values by ”Year” and
”Category”, while the colour is mapped to the ”Category” variable.

The point size scale is continuous in the range from 0 to 20, the color scale is set to the
’tron” colour palette, while the y axis is continuous. The colous are mapped to specific
labels for displaying in the legend. Note that the legend contains information both for
the size as well as the colour of the points.

e.clean %>%
group_by (Year, Category) %>%
summarize (totalcount=n (), meanRange=mean (Range)) %>%
ungroup () %>%

ggplot (aes (x=as.factor (Year), y=meanRange,

size=totalcount, color=Category)) +

geom_point (alpha=0.8) +
scale_size_continuous (range=c (0, 20)) +
scale_color_tron() +
scale_y_continuous (labels=scales: :comma) +
scale_color_discrete (

labels=c('Compact', 'Large', 'Mid-Size', 'Pickup truck',
'Subcompact', 'Two-seater', 'SUV (dtd)',
'SUV (sm)', 'Station Wagon (sm)')) +
labs(x = 'Year', y='Range',

fill="Make', size='Number of Models',
title='Electric Vehicles by Year and Category',

subtitle="'Years 2012 to 2024', ) +
guides (color=guide_legend (position='right'),
size=guide_legend(position="right')) +

theme (legend.background=element_blank (),
legend.box.background=element_rect (color="'black', fill=NA),
legend.key.size=unit (1, 'cm'))
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Electric Vehicles by Year and Category
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The next example uses two geoms, geom_1line () to show aline plot and geom_point ()
to also include the data points themselves. While visually not very informative in this
case, the example illustrates an aesthetic that maps variables to five different plot ele-
ments. However, the same variable ’Category” is here mapped to three different plot
elements, the colour (of both points and lines), the shape of a point, and the style or
type of the line. The code R fragment below omits specification of labels and theme
information for the legend, which may be assumed similar to the above example.

e.clean %>%
filter (Year >= 2022 & Year <= 2023) %>%
filter (Comb <= 4) %>%
filter (Category != 'PL') %
filter (Category != 'T'") $>%
ggplot (aes (Comb, Range,
color=Category,
shape=Category,
linetype=Category)) +
geom_line (size=1) +
geom_point (size=4) +
scale_color_manual (values=c25,

labels=c ('Compact', 'Large', 'Mid-Size',
'Subcompact', 'SUV (std)',
'SUV (sn)', 'Station Wagon (sm)')) +
scale_linetype (
labels=c ('Compact', 'Large', 'Mid-Size',
'Subcompact', 'SUV (std)',
'SUV (sm)', 'Station Wagon (sm)')) +
scale_shape (
labels=c('Compact', 'Large', 'Mid-Size',
'Subcompact', 'SUV (std)',

'SUV (small)', 'Station Wagon (sm)')) +
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To add ”’steps” to the line, one can use the geom_step () instead of geom_1line (),
as in the following example.

geom_step (size=1) +

Electric Vehicle Fuel Consumption
Years 2012 10 2024

[ . |

Combined I1100km

A pie chart is produced in ggplot2 by taking a stacked bar chart, and “bending” it by
plotting on a polar coordinate system. The following example uses the coord_polar ()
function to specify a coordinate system where the ’y” axis is mapped to the angle of
rotation, direction=-1 indicates clock-wise rotation and start=0 indicates to
begin the chart at the top of the ”pie”. The geom_text () geom is used to spec-
ify labels and compute their position in the pie chart. It provides its own aesthetic
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for the label’s color and position. Note that it assumes a stacked bar chart so that
position_stack (vjust=0.5) positions the label vertically in the center of the
area. When plotted in the polar coordinate system, this translates to the label centered
in the pie slice.

e.clean %>%
filter (Year==2023) $%>%

group_by (Make) %>% summarize (totalcount = n()) %$>%
filter (totalcount >= 5) %>%
ungroup () %>%

ggplot (aes (x='", y=totalcount, fill=Make)) +
geom_bar (stat="identity"',
color="'black', size=0.25, width=1) +
coord_polar('y', direction=-1, start=0) +
geom_text (aes (
label=ifelse (totalcount >= 5,totalcount,'"')),
color="lightgrey"',
position = position_stack(vjust=0.5)) +
scale_y_continuous (labels=NULL) +
scale_color_brewer (palette="Paired") +
labs(x = "', y ="', fill="Make',
title='Electric Vehicle Offerings by Make',
subtitle='2023, Makes with >= 5 models') +
theme_void() +
theme (legend.key.size=unit (1, 'cm'))

Electric Vehicle Offerings by Make
2023, Makes with >= 5 models

Make
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Mercedes-Benz

Porsche

A donut chart is simply a pie chart with a hole in the center. As the pie chart in ggplot2
is a "bent” bar chart, the hole is achieved by adding “whitespace” to the right of the
stacked bars (that is, by moving the x axis limits), which will end up getting bent” into
the hole in the center (recall that the coord_polar () function bends clock-wise).
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holesize <- 2

ggplot (aes (x=holesize, y=totalcount, fill=Make)) +
geom_col () +
x1lim(c (0.2, holesize+0.5)) +

Electric Vehicle Offerings by Make
2023, Makes with >= 5 models

A radar plot, sometimes called a spiderweb plot, is useful to show a comparison of
different objects on a range of variables. In R, the radar plot is produced by its own
library, ggradar. In contrast to ggplot, ggradar requires its data in ”wide” for-
mat, that is, rather than a single column that provides values for different categories,
the values for each category must be provided in their own column.

The following example computes some summary statistics, and scales the resulting
variables to a range between 0 and 1, i.e. it standardizes them using the mutate_at ()
function. The radar plot does not require an aesthetic specification, as it is based on the
number of columns in the data frame or tibble provided from the pipe.
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clean $>%

filter (Year == 2023) %>% group_by (Make) %$>%
summarize (meanCity = 1/mean(City),

meanHwy = 1/mean (Hwy),

meanRange = mean (Range) /100,

nModels = n()) %>%
filter (nModels >= 5) %>% ungroup() %>%
select (-nModels) 3%>%
mutate_at (vars (-Make), rescale) %>%
ggradar (axis.labels=

c('City', 'Highway', 'Range (100km)"'),

values.radar="'",
group.line.width=0.75,
group.point.size=3) +
scale_color_ucscgb () +
labs(x = "', y ="', fill="Make',
title='Canadian Fuel Consumption Data',
subtitle='2023, Makes with more than 5 models'

Canadian Fuel Consumption Data
2023, Makes with more than 5 models
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Sometimes, it is useful to compare trends of variables that use different scales. How-
ever, beware of the potential for misuse; that is, it is easy to visually suggest correlations
where none exist. The following example includes three line plots (geom_1line ())

and
the

specifies a secondary y axis using sec.axis=sec_axis (...). In ggplot2,
secondary axis cannot be arbitrary but must be a scaled version of the primary

axis. In this example, it is scaled by multiplying by one hundred using the formulat



7.8. VISUALIZATION IN R USING GGPLOT2

219

.x100. Accordingly the data is provided by dividing by a hundred using mutate ().

e.clean %>%
group_by (Year) $%>%
summarize (meanCity = mean (City),

meanHwy = mean (Hwy) ,
meanRange = mean (Range)) %>%
ungroup () %>%
mutate (meanRange2 = meanRange/100) $>%

ggplot (aes (x=Year)) +
scale_color_manual (name='Region',

values=c ('Mean City' = 'red',

'Mean Highway' = 'blue',

'Mean Range' = 'orange')) +
geom_line (aes (y=meanCity, color='Mean City')) +
geom_line (aes (y=meanHwy, color='Mean Highway')) +
geom_line (aes (y=meanRange2, color='Mean Range')) +

scale_y_continuous (labels=scales: :comma,
name="Fuel Consumption\n(1/100km equiv)",
sec.axis=sec_axis(~ .x100,
labels=scales: :comma,
name="Mean Range (km)")) +
scale_x_continuous (breaks=seq(from=2012,to=2024,by=1)) +
labs(x = 'Year', color='",
title='Canadian Fuel Consumption Data',
subtitle='2012 to 2024"') +
theme (legend.key.size=unit (1.5, 'cm'),
axis.text.x = element_text (angle=45, hjust=1))
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So called trendlines” can be added to plots easily with the geom_smooth geom.
Different options to compute the trendlines exist, but the most frequently used one is the
local polynomial regression, where the slope of the line is determined by a regression
that uses data points in the vicinity of the line, weighted by their proximity. As with
any regression, there is uncertainty around the estimated slope parameter (standard
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deviation or variance) and this uncertainty can be visualized as well, as shown in the

plot below

by the gray area around the trendline. Note that the uncertainty is greater in

areas where there are fewer data points, as would be expected.

e.clean %>%
ggplot (aes (Year, Range)) +
geom_point () +
geom_smooth () +
scale_y_continuous (labels=scales::comma) +

title='Canadian Fuel Consumption Data',
subtitle='2012 to 2024")

labs(x = 'Year', color='', y = 'Mean Range (km)',
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The next three examples augment the previous plot with indicators for the variability or
spread of the data. First, a red point range indication is overlayed (geom="pointrange")
using the stat_summary () function. This shows mean and standard deviation. An-
other way to visualize variability is with the error bars or cross bars. All show the same
information, but in different ways:

e.clean %>%
ggplot (aes (Year, Range)) +
geom_point () +
geom_smooth () +

stat_summary (
fun.data=mean_sdl,
fun.args=1list (mult=1),
color="red',
geom="pointrange") +
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Canadian Fuel Consumption Data
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stat_summary (
fun.data=mean_sdl,
fun.args=1list (mult=1),
color="red',
geom="errorbar") +
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stat_summary (
fun.data=mean_sdl,
fun.args=1list (mult=1),
color='"red',
geom="crossbar",
width=0.4) +
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The one-dimensional density plots seen earlier can be generalized to show the two-
dimensional joint distribution of values of two variables. The following example uses
two geoms for this, one to show the density lines (geom_density_2d () ), and one
to fill the lines in shades of color (geom_density_2d_filled()). Additionally,
individual data points are plotted using the point geom.

e.clean %>%
ggplot (aes (x=Hwy, y=City)) +

geom_point (color="black", size=1,
position='jitter') +
geom_density_2d_filled (alpha=0.5) +
geom_density_2d(linewidth=0.25, colour='black') +
scale_x_continuous (labels=scales::comma) +
labs (x = 'Highway Consumption\n(1/100km equiv)',
y = 'City Consumption\n(1/100km equiv) ',
title='Density Plot-Fuel Consumption Ratings',
subtitle="'Years 2015 to 2024') +
theme (legend.position="none'")
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Density Plot-Fuel Consumption Ratings
Years 2015 to 2024
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When one is interested in discretizing the two variables, one may show the frequencies
or counts in a two-dimensional bin plot. Again, individual data points are shown using
the point geom. A somewhat different version is shown below in two-dimensional hex
plot, using hexagonal tiles and a different color scale. However, the same information
is visualized.

e.clean %>%
ggplot (aes (x=Hwy, y=City)) +
geom_point (color="black", size=1,
position="'"Jitter') +

geom_bin2d(alpha=0.5, bins=5) +

scale_x_continuous (labels=scales::comma) +

labs (x = 'Highway Consumption\n(1/100km equiv)',
y = 'City Consumption\n(1/100km equiv)',
fill='Count',
title='Density Plot-Fuel Consumption Ratings',
subtitle="'Years 2012 to 2024")
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Density Plot-Fuel Consumption Ratings
Years 2012 to 2024
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geom_hex (alpha=0.5, bins=5) +
scale_fill distiller (palette=4, direction=-1) +
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Note that the above two plots are essentially plots of two variables. If, instead of count
or density, a third variable is to be shown, one can use the raster geom geom_raster ().
This requires the aesthetic to specify a data variable mapping for the color element of
the plot, as in the following example. Again, individual data points are included with
the point geom.
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e.clean %>%
ggplot (aes (x=Hwy, y=City)) +
geom_point (color="black", size=0.5,
position="Jjitter') +
geom_raster (aes (fill=Range), alpha=0.7,
interpolate=TRUE) +
scale_fill distiller (palette=4, direction=-1) +
scale_x_continuous (labels=scales::comma) +
labs(x = 'Highway Consumption\n(1/100km equiv)',
y = 'City Consumption\n(1/100km equiv)',
fill="Range',
title='Raster Plot-Fuel Consumption Ratings',
subtitle="'Years 2012 to 2024")

Raster Plot-Fuel Consumption Ratings
Years 2012 to 2024

5-

IS
'

Range
800

City Consumption
(1/100km equiv)
w

2 3 4 5
Highway Consumption
(//100km equiv)

The last example shows the use of so-called "rugs” that show marginal distributions of
the plot variables. They can be added to different types of plots, including 3D raster
plots as done here, as well as 2D bin and hex plots, or one-dimensional histograms.
Rugs are added by using the geom_rug () function.

e.clean %>%
ggplot (aes (x=Hwy, y=City)) +
geom_point (color="black", size=0.5,
position="'jitter') +
geom_raster (aes (fill=Range), alpha=0.7,
interpolate=TRUE) +
geom_rug (position="'jitter') +
scale_fill distiller (palette=4, direction=-1) +
scale_x_continuous (labels=scales::comma) +
labs(x = 'Highway Consumption\n (1/100km equiv)',
y = 'City Consumption\n(1/100km equiv)',
fill="'Range',
title='Raster Plot-Fuel Consumption Ratings',
subtitle="'Years 2012 to 2024")
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Raster Plot-Fuel Consumption Ratings
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Hands-On Exercises Using the Pagila database files from the previous chap-
ter on data analysis with R, create the following plots using ggplot2/R. Use the
appropriate ggplot2 functions to add informative labels for axes, useful legends
to the plots, and use suitable color palettes.
1. A histogram and/or density chart of film length by film category
2. A column chart of the mean rental payments for films by film category
* Add error bars to this chart
3. A scatter plot of total rental payments by week
* Add a local regression line to this plot
4. A pie or donut chart of rental counts by film rating

7.9 Visualization in Python using Plotly Express

This section demonstrates visualization in Python using Plotly Express. Plotly Express
by default produces web-based, i.e. JavaScript based, interactive plots. On the Python
side, the diagram is expressed in more primitive graphical descriptions, serialized in a
JSON document, which is sent to the web browser, where the Plotly JavaScript library
renders them. Interactivity includes the ability to zoom and pan the plot, and to hover
over plot elements to get tooltip overlays, e.g. specific values of points or lines in the
plots.

The examples in this section use the same data set as the R examples above, and as
much as possible try to provide similar diagrams. The first Python code fragment
imports the required packages and loads the data set.
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import pandas as pd

import plotly.express as px
import plotly.io as pio
pio.kaleido.scope.mathjax = None

# Read data
fuel = pd.read_csv('https://evermann.ca/busid720/fuel.csv")

The histogram function does as its name suggests, and produces a histogram. The
figure must the shown and can be written to a file using a variety of format. By default
show () opens the standard web browser to show the figure. In this mode, the figures
are interactive, and can be manually saved to a PNG file.

# Create histogram
fig = px.histogram(fuel, x='Range', nbins=50)

# Show histogram, by default show in web browser
fig.show ()

# Save figure to image
fig.write_image ("px.histogram.pdf", height=500, width=750)

count

Range

Similar to the R example earlier, summary information can be added to figures. This

is done using the add_vline () functions, in the example below with different line

styles, annotation text, and annotation positions. The example below also uses update_layout ()
for adding a plot title and providing more informative labels for the x and y axes.
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fig

fig.

fig.

fig.

fig.

mean_v =
median_v
lower95
upper95

update_layout (

title='Density Plot - Years 2012 to 2024',
xaxis_title='Range (km)',
yaxis_title='Proportion of Vehicles')

# Calculating summary statistics
fuel['Range'] .mean ()
fuel['Range'] .median ()
fuel['Range'].quantile (0.025)
fuel['Range'] .quantile (0.975)

# Creating the density plot
= px.histogram(fuel, x='Range',
color_discrete_sequence=["'pink'])

# Adding vertical lines and annotations

fig.add_vline (x=mean_v, line_dash='dash',
annotation_text=f'Mean = {round(mean_v)}"',
annotation_position="'top right')

add_vline (x=median_v, line_dash='dot"',
annotation_text=f'Median = {round (median_v)}"',
annotation_position='bottom right')

add_vline (x=lower95, line_dash='dot"',
annotation_text=f'L95 = {round(lower95)}"',
annotation_position="'top left')

add_vline (x=upper95, line_dash='dot"',
annotation_text=f'U95 = {round(upper95)}’',
annotation_position="'bottom left')
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The following column chart example uses the mean fuel consumption information.
The fuel grouped DataFrame is prepared by aggregating within groups using the
NamedAgqg () function of Pandas dataframes, forming new columns in the DataFrame
for the aggregated information. These columns are then “melted” using the me 1t func-
tion so that instead they become rows with names “metric” and ”consumption” instead,
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where “metric” contains they type of value (city or highway fuel consumption) and
“consumption” contains the actual numeric value. The values in the metric” column
are then mapped to new values using the map () function on the DataFrame column.
This is done so that the chart legend shows “nice” labels. The resulting DataFrame is
then used in the px .bar () function to produce a bar chart with columns next to each
other (barmode=’ group’ ), informative labels and a title. Note that labels are set in
px.bar to ensure that tooltip labels on hover are displayed nicely. Finally the figure
layout is updated with x and y axes titles.

fuel_grouped = fuel.groupby ('Year') .agg(
meanCity=pd.NamedAgg ('City', 'mean'),
meanHwy=pd.NamedAgg ('Hwy', 'mean')) .reset_index()

fuel_long = pd.melt (fuel_grouped,
id_vars=['Year'],
value_vars=['meanCity', 'meanHwy'],
var_name='metric',
value_name="'consumption')

fuel_long['metric'] = fuel_long['metric'] \
.map ({ 'meanCity': 'City', 'meanHwy': 'Highway'})

fig = px.bar (fuel_long, x='Year', y='consumption',
color="metric', barmode='group',

labels={"'consumption': 'Mean Cons\n(1/100km equiv)', 'metric': ''},
title='Electric Vehicle Range (2012 to 2024)',
color_discrete_map={'City': 'blue', 'Highway': 'green'})

fig.update_layout (
xaxis_title="'Year',
yaxis_title="Mean Cons\n(1/100km equiv) ')

Electric Vehicle Range (2012 to 2024)

2012 2014 2016 2018 2020 2022 2024

Year

3 W ciy

M Highway

N

5

Mean Cons (I/200km equiv)
=
- & N

)
2]

0

Patterns are easier to do in Plotly Express than in R. Below is the same plot, but using
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the pattern_shape attribute for the fuel efficiency metric. As for the R example
earlier, the sequence of pattern shapes for different categories is provided. Here too,
more than the required two are shown to demonstrate the full set of options. The
template is set to simple_white so as not to show the grid lines or filled background
that can be seen in the above plots. The update_yaxes () function sets the tick
labels to two significant digits, right justified. The update_traces () function sets
the pattern to black, the fillmode to transparent and

fig = px.bar(fuel_long, x='Year', y='consumption',

pattern_shape = 'metric', barmode='group',
pattern_shape_sequence = ['.', 'x', "'"+', ‘'"[', '=‘', ‘'/'],
title = 'Electric Vehicle Range {2012 to 2024)',

text_auto=True,
template="simple_white",
labels={"'consumption': 'Mean Cons\n(1/100km equiv)', 'metric': ''})

fig.update_yaxes (tickformat=", .2r")
fig.update_traces (
marker=dict (color='black', line_color='black',
pattern_fillmode="'replace'))
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A box plot is created using the px.box () function. Again, the DataFrame is first
“melted” from wide format to long format to be able to compare city and highway fuel
consumption numbers in the box plot. The example below uses the update_layout ()
function to provide extra information for placing the legend in horizontal format at the
top of the plot and centered along the x axis.
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fuel_long = pd.melt (fuel,
id_vars=['Year'], value_vars=['City', 'Hwy'l],
var_name='metric', value_name='consumption')

fig = px.box (fuel_long,
x=fuel_long['Year'].astype(str),
y="'consumption', color='metric',
labels={'consumption': 'Mean Cons\n(1/100km)', 'metric': ''},
title="'Electric Vehicles (2012 to 2024)"'")

fig.update_layout (
xaxis_title='Year',
yaxis_title="'Mean Cons\n(1/100km equiv) "',
legend_title_text="'",
legend=dict (orientation="h",
yanchor="top", y=1,
xanchor="center", x=0.5))
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A violin plot is constructed similarly to a box plot. Because only the combined fuel
consumption numbers are to be shown, there is no variable to be mapped to the “color”

plot attribute, and the DataFrame does not need to be transformed first. The update_traces ()
function is used to set the color of the “’violins” to black and make them somewhat
transparent (opacity=0.5). Individual points are shown with a slight jitter to make

them distinguishable.
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fig = px.violin(fuel,
x=fuel['Year'].astype(str),
y="'Comb', box=True,
points='all'")

fig.update_traces (jitter=0.15, pointpos=0,
marker=dict (color="'black', size=1, opacity=0.5)

fig.update_layout (xaxis_title='Year',
yaxis_title="'Mean Consumption\n(1/100km)"',
title='Electric Vehicle (2012 to 2024)"',
legend_title_text="")
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For a count plot, the data frame is first grouped, and the size (that is, the count of
values) of each group is recorded in a new column “counts”. This transformed data
frame is then used for a scatter plot that maps the “counts” variable to the size of the
points in the px . scatter () function.

count_df fuel.groupby (['Year', 'Category']l) \
.size () .reset_index (name="'counts')

fig = px.scatter (count_df,

x="'Year', y='Category', size='counts',
color_discrete_sequence=['darkolivegreen'],
labels={"'Category': '', 'Year': 'Year', 'counts': 'Count'},

title="'EV Models by Category (2012 to 2024)"')
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EV Models by Category (2012 to 2024)
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The following points plot is another example of the use of the px.scatter () func-
tion, which adds a fourth variable to the plot: The vehicle category is mapped to the
color plot element. Note also that update_layout () is used to provide axis title,
create a legend for the ”Category” variable (that is mapped to colour), and make the
legend horizontal at the top of the plot, right-justified above the x axis.

grouped_fuel = fuel.groupby (['Year',6 'Category']l) .agg(
totalcount=pd.NamedAgg ('Range', 'size'),
meanRange =pd.NamedAgg ('Range', 'mean')) .reset_index()

fig = px.scatter (grouped_fuel,

x="'Year', y='meanRange', size='totalcount',
color="'Category', hover_name='Category',
labels={'meanRange': 'Range', 'totalcount': 'Number of Models'},

title='EV by Year and Category (2012 to 2024)',
size_max=20, opacity=0.8)

fig.update_layout (
xaxis_title="'Year',
yaxis_title='Range',
legend_title_text='Category',
legend=dict (orientation="h", yanchor="bottom",
y=1.02, xanchor="right", x=1))
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EV by Year and Category (2012 to 2024)
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To reduce the amount of information in the following line plot, the data frame is fil-
tered to limit the data set. The px.line () function creates the line plot, the option
markers=True adds the points to the lines. Again, the horizontal legend for the
”Category” variable is moved to the top of the plot, right-justified above the x axis.

fig

filtered_fuel

filtered_fuel
filtered_fuel = \

fig.

=\
fuel[ (fuel['Year'] >= 2022) & (fuel['Year'] <= 2023)]
= filtered_fuel[filtered_fuel['Comb'] <= 4]

filtered_ fuel[~filtered_fuel['Category'].isin(['PL', 'T'])]

= px.line(filtered_fuel,

x='Comb', y='Range', color='Category',

line_group="'Category', markers=True,

labels={'Range': 'Range', 'Comb': 'Combined Fuel Consumption'},
title='EV (2012 to 2024)")

update_layout (

xaxis_title='Combined Fuel Consumption',

yaxis_title='Range',

legend_title_text='"'Category',

legend=dict (orientation="h", yanchor="bottom",
y=1.02, xanchor="right", x=1))
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Pie charts in Plotly Express are created using the px.pie () function. To reduce the
number of pie slices to show, the data frame is first filtered for those vehicle makes
with 5 or more models and limited to the 2023 model year. The pie chart then shows
the number of models for each manufacturer. Labels in the pie chart must be set in-
dividually for each pie slice using a for loop over the grouped DataFrame rows. For
each group (row), an annotation is added to the figure using add_annotation that
shows the "totalcount” value. Finally, the figure layout is updated to show the legend
at the top, right-justified above the x axis.

fuel_2023 = fuel[fuel['Year'] == 2023]
fuel_grouped = \
fuel_ 2023.groupby ('Make') .size () .reset_index (name='totalcount"')

fuel_grouped = fuel_grouped[fuel_grouped['totalcount'] >= 5]

fig = px.pie (fuel_grouped,
names="'Make', values='totalcount', hole=0,
title='EV Offerings by Make (2023, >= 5 models)',
labels={"'totalcount': 'Number of Models'})

for i, row in fuel_grouped.iterrows () :
fig.add_annotation (text=str (row|['totalcount']),
x=row['Make'], y=row['totalcount'],
showarrow=False, font_color='lightgrey"')

fig.update_layout (legend=dict (orientation="h", yanchor="bottom",
y=1.02, xanchor="right", x=1),
showlegend=True, legend_title_text="'Make')
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EV Offerings by Make (2023, >= 5 models)
ik m

A donut chart is easily created simply by providing the hole argument to px.pie (),
as in the following example:

fig = px.pie(fuel_grouped,
names="'Make', values='totalcount', hole=0.4,
title='EV Offerings by Make (2023, >= 5 models)',
labels={"'totalcount': 'Number of Models'})

EV Offerings by Make (2023, >= 5 models)
Make B g W ooww B e B vercsdessers B ofos W e
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A radar plot is created as a line plot on a polar coordinate system, using the px . 1ine_polar ()
function. First, the data frame is grouped by vehicle make and aggregate statistics are
computed. The grouped data is then filtered to reduce the number of information shown

in the radar plot. The aggregate values are then scaled to values between 0 and 1, using

the MinMaxScaler from the sklearn package. Finally, the data frame is “melted”

into long format and then used for creating the radar plot shown below.

from sklearn.preprocessing import MinMaxScaler

fuel 2023 = fuel[fuel['Year'] == 2023]

grouped = fuel_2023.groupby ('Make') .agg (
meanCity =pd.NamedAgg ('City',lambda x: 1/x.mean ()
meanHwy =pd.NamedAgg ('Hwy',lambda x: 1/x.mean()),
meanRange=pd.NamedAgg ('Range',lambda x: x.mean()/100),
nModels =pd.NamedAgg ('Make', 'size'))

grouped = grouped[grouped]['nModels'] >= 5]

) 4

grouped[['meanCity', 'meanHwy', 'meanRange']] = \
MinMaxScaler () .fit_transform(
grouped|[['meanCity', 'meanHwy', 'meanRange'l]])

melted = grouped.reset_index () .melt (
id_vars='Make', var_name='metric',
value_vars=['meanCity', 'meanHwy', 'meanRange'])

fig = px.line_polar (melted,
r="'value',
theta='metric',
color="Make',
line_close=True,
labels={'metric': '', 'value': '', 'Make': 'Make'},
title='EV Data (Makes with more than 5 models) ')
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EV Data (2023, Makes with more than 5 models)
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A scatter plot can be created with the px.scatter () function which can include
trendlines computed using different methods. The most commonly used local regres-
sion estimation is specified with the trendline='lowess’ argument, as in the
example below.

fig = px.scatter (fuel,
x='Year', y='Range', trendline='lowess',
labels={'Range': 'Mean Range (km) '},
title='EV Range by Year')

fig.update_layout (xaxis_title='Year',
yaxis_title='Mean Range (km) ")
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EV Range by Year
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Two-dimensional density plots can be created with the px.density_heatmap ()
function, as shown in the following example. This example also uses themarginal x
and marginal_y options to add histograms for each marginal distribution along the
x and y axis. Some other useful options for marginal plots are "rug” and ’box”.

fig = px.density_heatmap (fuel,
X 'City', y = 'Hwy',
nbinsx=20, nbinsy=20,
color_continuous_scale=px.colors.sequential.Viridis,
marginal_x="histogram",
marginal_y="histogram",
title='EV Fuel Consumption Data',

labels={"range"
n Hwy n .
"City":

"Highway Economy",

"Range",

"City Economy"})
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EV Fuel Consumption Data

count

40

Highway Economy

3

City Economy

Hands-On Exercises

Using the Pagila database files from the previous chapters, create the following
plots using Plotly Express/Python. Use the appropriate Plotly Express func-
tions to add informative labels for axes, useful legends to the plots, and use
suitable color palettes.

1. A histogram and/or density chart of film length by film category

2. A column chart of the mean rental payments for films by film category
* Add error bars to this chart

3. A scatter plot of total rental payments by week
* Add alocal regression line to this plot

4. A pie or donut chart of rental counts by film rating

7.10 Review Questions

The following review questions are intended to check your understanding of the mate-
rial on visualization.

1.

[ B NS I S

~N

Explain the significance of data visualization in modern data analysis and com-
munication.

. How does data visualization blend artistic creativity with analytical skills?

. List and explain the main reasons why data visualization is used.

. What is visual discovery in the context of data visualization?

. Contrast declarative visualization with visual discovery in terms of their purpose

and interactivity.

. Define operational visualization and its role in monitoring and decision making.
. Explain the importance of focusing on quantitative messages in visualization.

Provide examples of how different types of graphs or charts convey different
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types of data or relationships.

. Discuss some of the challenges or pitfalls that can occur in data visualization,

especially regarding pattern recognition and data interpretation.

. Explain how the choice of a specific type of data visualization depends on the

message or insight that needs to be conveyed.

What are ’dark patterns” in the context of data visualization? Provide examples
of common dark patterns used to deceive or mislead viewers.

How can cognitive biases be exploited in creating misleading data visualizations?
Explain how scaling and truncating axes in graphs can mislead the viewer. Pro-
vide examples.

How can the choice of an inappropriate graph type lead to misleading conclu-
sions? Give specific examples.

Describe how the use of color in data visualization can be misleading. What are
the best practices in choosing colors for visualizations?

Discuss the problems associated with using 3D elements or images in graphs.
How can these elements distort the data representation?

Describe the unique challenges of visualizing streaming or real-time data. How
do these challenges impact the design of such visualizations?

What are the specific challenges of visualizing network or graph data? How do
these challenges influence the choice of visualization techniques?

Describe the different types of graph layouts (force-directed, circular, arc, lay-
ered) and their use cases. What are the benefits and drawbacks of each layout?
Why are interactive features like zooming, panning, and highlighting important
in graph visualizations, especially for large datasets?

List and explain the criteria for assessing the quality of a graph visualization.
Why are these criteria important?

Discuss the challenges associated with projecting three-dimensional Earth onto
a two-dimensional surface in map visualizations. How do different projections
affect the representation of spatial data?

Discuss the techniques used to represent attributes of nodes and edges in network
visualizations. How can these techniques enhance or hinder the understanding
of the network?

Explain how different areal units (e.g., counties, postal codes, districts) can im-
pact the interpretation of geospatial data visualizations.

Explain why color choice is crucial in data visualizations and list the desirable
characteristics of color palettes.

Describe sequential color palettes and discuss their appropriate use cases. Pro-
vide an example where a sequential palette is suitable.

What are diverging color palettes and when are they most effectively used in data
visualization? Illustrate with an example.

Explain spectral color palettes and their application in visualizing data. Discuss
the potential drawbacks of using spectral palettes.

Discuss the importance of considering color vision deficiency (CVD) in choosing
color palettes for data visualizations.

How do the different types of color vision deficiencies (e.g., protanopia, deuter-
anopia, tritanopia) affect the perception of colors in data visualizations?
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Define and discuss the importance of perceptual uniformity in color palettes.
How does it impact the interpretation of data?

What are monochromatic color palettes and in what situations might they be
preferred?

What is a box plot and what are the key summary statistics it displays?

Explain the concept of the interquartile range (IQR) in a box plot. How is it
calculated and what does it represent?

Describe the significance of the median line in a box plot. How can the median
line’s placement provide insights into data skewness?

What do the whiskers in a box plot represent? Explain the common method for
determining their length.

How are outliers represented in a box plot? What criteria is typically used to
classify a data point as an outlier in this context?

How can you determine if a dataset is symmetric or skewed based on its box
plot?

Compare and contrast box plots and histograms. In what scenarios might one be
preferred over the other?

Compare and contrast box plots and violin plots. In what scenarios might one be
preferred over the other?



Chapter 8

Business Process Analytics

Learning Goals

After reading this chapter, you should be able to:

* Read and understand the contents of a business process event log, differentiate
between events and activities and between trace and event attributes.

* List and describe the aim of different types of business process analytics.

* Filter an event log and summarize basic statistics from an event log.

* Discover a business process model from an event log.

* Evaluate the quality of a discovered process model using fitness and precision.
* Mine process performance metrics from an event log.

* Mine organizational characteristics from an event log.

8.1 Introduction

Business process analytics is concerned with using event data to improve the opera-
tional efficiencies of business processes. A business process is how an organization
creates value for its customers. Improvements to operations may yield better customer
service and increase customer satisfaction, it may also reduce the time it takes to com-
plete a business process, it may reduce employee workload and improve employee
satisfaction, it may reduce cost, or free up capacity.

Every organization manages and executed a multitude of business processes. An im-
portant business process in many organizations is the order-to-cash process, which is
the sequence of activities that begins when a customer submits an order and ends when
the money has been received and a receipt has been issued. Another important process
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is issue-to-resolution, which begins when a customer contacts the organization with
a problem about a product or service, and ends when the problem has been resolved
to the satisfaction of the customer. Business processes exist in all kinds of organi-
zations, from for-profit manufacturing or service enterprises, to healthcare clinics and
hospital, to education and government services, to non-profit and charity organizations.
Typically, a business process is characterized by its business object. For example, the
business of for the order-to-cash process is the customer order, the business object for
the issue-to-resolution process is the customer complaint.

8.2 Business Processes and Business Process Models

A business process is defined as a sequence of activities that are executed in a defined
order to create some type of value for a customer. Besides activities, a business pro-
cess also includes the resources that carry out activities. Resources may be human
resources, that is people or employees, or they may be machines or computer systems.
Resources typically play one or more roles in organization, such as accountants, ware-
house workers, service technician, etc.

A business process may also contain events. Events can trigger or start a business pro-
cess or they may occur within a business process. Typical events are customer orders
arriving, customer inquiries arriving, goods or materials arriving, goods or materials
being dispatched, etc.

A business process may also contain decisions. For example, in an order-to-cash pro-
cess, a decision may need to be made how to source a part, or how to ship a part,
or whether to invoice a customer, etc. In a healthcare process, decisions may involve
treatment options, medical tests, or hospital admissions.

Business processes are typically defined using business process models or business
process diagrams. A common way to describe processes is with the Business Process
Modelling Notation (BPMN), the industry standard developed by the OMG (Object
Management Group)' and adopted as the ISO/IEC 19510 standard. Figure 8.1 shows
an example of a business process model in BPMN.

In this model, the circles represent events, rectangles represent activities, diamond
shapes represent ”gateways” and arrows represent process flow dependencies. Depen-
dencies describe what must happen before something else can happen, or, alternatively,
what can follow once something is completed.

The diamond with the X"’ symbol represents an exclusive gateway, which means that a
decision is made and only one outgoing path can be taken by the process. For example,
after the activity ”Check Stock Availability”, either the activity "Check Raw Materials
Availability” is carried out, or the "Retrieve product from warehouse” activity.

In contrast, the "+ symbol represents a parallel gateway, which means that the pro-
cess proceeds along all outgoing paths, in any order, or possibly at the same time. For

ttps://www.omg.org/bpmn/
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Management”, 2nd edition, Springer Verlag. Figure 3.12.

Figure 8.1: Example BPMN model

example, after the ”Confirm order” activity, both the ”Get shipment address” and the
”Send invoice” activities are carried out, in any order and possibly at the same time.

Finally, the ”()” symbol represents an inclusive gateway. The process may proceed
along any number of outgoing paths. For example, after the "Check Raw Materials
Auvailability” activity, the process may proceed with the "Request raw materials from
supplier 17 activity, or the "Request raw materials from supplier 2” activity, or both of
them.

8.3 Business Process Event Logs

A case is one instance of a business process. For example, the execution of the order-
to-cash process and its activities for the order number 1234 is one case (instance);
executing the process for order number 2345 is another case (instance).

A trace is the sequence of events for one case. An event in this context is usually
the execution of an activity instance (for example, ”Check Stock Availability” for or-
der 1234) or the occurrence of an outside event (for example, ”goods have arrived at
warehouse”). However, activity instances themselves can have a complicated lifecycle.
Figure 8.2 shows an example of the lifecycle model of the XES standard? for event log
data. The XES standard defines how event data is represented in an XML document.

Each arrow in this figure represents a lifecycle transition and each box represents a
lifecycle state. For example, an activity instance is first scheduled, then assigned to a
resource, then started by the resources, and finally completed successfully. However,
other lifecycles are possible in the XES lifecycle model. For example a resource may
be repeatedly reassigned before being started, it may be suspended and resumed, and it
may be skipped or aborted. Each of these lifecycle transitions may be captured by an
event in an event log.

https://www.tf-pm.org/resources/xes-standard
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Figure 8.2: Process Activity Lifecycle

Each event may be associated with additional information, either about the particular
activity instance or about the case. These are called event attributes or case attributes.
Case attributes in an order-to-cash process instance may be name of the customer,
the list of ordered products, etc. An example of an event attribute for a ”Confirm
order” activity instance completion event is the confirmation number that is generated
by the activity instance. Each event is also typically associated with information about
the resource that executed the activity instance that the event refers to, as well as a
timestamp of when the event occurred.

An event log is a collection of one or more traces for one process. Hence, an event log
describes the execution of one or more cases of the same process. Note that event logs
may contain incomplete cases (e.g. cases that have not been completed when the event
log was collected), may be randomly sampled from the complete event log data, etc.

Event logs are typically generated by process-aware information systems such as ded-
icated workflow-management systems, but many other corporate information systems,
such as Enterprise Resource Planning (ERP) systems, Supply Chain Management (SCM)
systems, Customer Relationship Management (CRM) systems, and other, keep track
of who did what when, which is the basic information in any event log. Additionally,
event logs may be collected from any web-based information system as web-servers
routinely keep log information about user interaction with the web site.

To be usable for process analytics, the event log information from source information
systems must typically be extracted, transformed and then loaded into a format that
is used by process analytics software. This is known as an ETL process: Extraction—
Transformation—Load. ETL processes are required for many analytics applications that
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take their raw data from a variety of sources.

The standardized interchange format for event log data is the XES file format. XES
stands for eXtensible Event Stream and is an XML based format. Another com-
mon format used for event log data are CSV files, where each row typically corre-
sponds to one activity instance (not one event!). Below is an example of an XES
file that uses the standard XES activity lifecycle model, defines three case attributes
("REG_DATE”, ”AMOUNT_REQ”, and “concept:name”) and three event attributes
(time:timestamp”, “lifecycle::transition” and “concept:name” and then contains traces
with their events. The XML code below is an excerpt of an XES file and illustrates how
traces and events are encoded in XML.

<?xml version="1.0" encoding="UTF-8" ?>
<log xes.version="1.0" xes.features="nested-attributes"
openxes.version="1.0RC7"
xmlns="http://www.xes-standard.org/">
<extension name="Lifecycle" prefix="lifecycle"
uri="http://www.xes-standard.org/lifecycle.xesext"/>
<extension name="Organizational" prefix="org"
uri="http://www.xes-standard.org/org.xesext"/>
<extension name="Time" prefix="time"
uri="http://www.xes-standard.org/time.xesext"/>
<extension name="Concept" prefix="concept"
uri="http://www.xes-standard.org/concept .xesext"/>
<global scope="trace">
<date key="REG_DATE" value="1970-01-01T00:00:00.000+01:00"/>
<string key="AMOUNT_REQ" value="UNKNOWN"/>
<string key="concept:name" value="UNKNOWN"/>
</global>
<global scope="event">
<date key="time:timestamp" value="1970-01-01T00:00:00.000+01:00"/>
<string key="lifecycle:transition" value="UNKNOWN"/>
<string key="concept:name" value="UNKNOWN"/>
</global>
<classifier name="Activity classifier"
keys="concept:name lifecycle:transition"/>
<classifier name="Resource classifier"
keys="org:resource"/>
<trace>
<date key="REG_DATE" value="2011-10-01T09:45:37.274+02:00"/>
<string key="concept:name" value="173706"/>
<string key="AMOUNT_REQ" value="18000"/>
<event>
<string key="org:resource" value="112"/>
<string key="lifecycle:transition" value="COMPLETE"/>
<string key="concept:name" value="A_SUBMITTED"/>
<date key="time:timestamp" value="2011-10-01T09:45:37.274+02:00"/>
</event>
<event>
<string key="org:resource" value="112"/>
<string key="lifecycle:transition" value="COMPLETE"/>
<string key="concept:name" value="A_ PARTLYSUBMITTED"/>
<date key="time:timestamp" value="2011-10-01T09:45:37.363+02:00"/>
</event>
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</trace>

</log>

The file below is an excerpt of a CSV file that contains event log information (line
breaks have been added to fit this into the width of the page but are not in the actual
file). Note how ”Start Timestamp” and ”Complete Timestamp” exist for each row. This
means that one row captures two events, the starting and the completion of an activity
instance.

Case ID,Start Timestamp,Complete Timestamp,Activity,Resource,Role
339,2011/02/16 14:31:00.000,2011/02/16 15:23:00.000,

Create Purchase Requisition,Nico Ojenbeer,Requester
339,2011/02/17 09:34:00.000,2011/02/17 09:40:00.000,

Analyze Purchase Requisition,Maris Freeman, Requester Manager
339,2011/02/17 21:29:00.000,2011/02/17 21:52:00.000,

Amend Purchase Requisition,Elvira Lores,Requester
339,2011/02/18 17:24:00.000,2011/02/18 17:30:00.000,

Analyze Purchase Requisition,Heinz Gutschmidt,Requester Manager

8.4 Types and Goals of Process Analytics

The diagram in Figure 8.3 shows four important activities in process analytics. Auto-
mated process discovery discovers a process model from an event log. This is useful
to understand how a process is actually executed. The discovered process can then be
analyzed for weaknesses or compared to a normative process model, e.g. as part of an
audit. Many organizations also do not have well-defined processes, so that automated
discovery is an important first step in understanding their own operations in detail.

Conformance checking compares an event log to a given input process model. It checks
whether the actual operations, as captured in the event log, conform to or comply with
a normative process model, a set of business rules, or a set of process constraints. This
is typically done as part of an audit to demonstrate compliance, for example in the
financial services industry, healthcare, or for quality management certifications.

Performance mining enhances a process model (which could be an automatically dis-
covered one) with information about the duration of activities and waiting times be-
tween activities, as captured in an event log. From there, process analysts can identify
bottlenecks in the process, that is, activities where cases have to wait to be processed,
activities that take a long time, activities with high variability in their processing time,
or similar process problems. Further information can then be collected to identify the
causes of and remedies for these problems.

Finally, variants analysis compares two different event logs of the same or similar pro-
cesses to understand differences in execution. This may be useful when organizations
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Figure 8.3: Overview of Process Analytics with Event Logs

execute the same business processes in different locations, or in different business units.
This could be used to identify best practices for an organization.

In addition to these four, process prediction has become an important aspect of business
process analytics. Process prediction uses an event log to train a statistical model in
order to predict the future course or outcome of a currently running case. Typical
prediction targets are the remaining time to completion of the case, the most likely
next activity, the probability of a negative or positive outcome, the waiting time before
the next activity starts, etc. Process prediction is useful to allow process managers to
proactively intervene in a case before a problem arises, or before a case becomes late or
overdue. Process prediction can also serve to provide information to customers about
the how their case will likely be handled or completed.

Overall, the purposes of process analytics are multiple:
* Discover actual operations
* Check actual process against desired process
¢ Identify operational (performance) problems
» Improve operational processes
» External compliance analysis and reporting
¢ Identify implicit or de-facto organizational groups and relationships

* Support, reinforce, or break organizational relationships
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8.5 Process Analytics Tools

Since the inception of the field of process analytics circa early 2000s, a range of
commercial and open-source tools have been developed to support process analysts.
Among the widely-used commercial tools are Celonis, Signavio, Fluxicon, ARIS and
Apromore.

Celonis Celonis® is a leading process mining software that excels in helping orga-
nizations analyze and optimize their business processes through powerful data visual-
ization and analytics. This tool extracts and leverages data from various IT systems to
provide real-time insights into process performance, identify bottlenecks, and uncover
inefficiencies. Celonis facilitates extensive process discovery, conformance checking,
and predictive modeling, empowering users to drive significant improvements in pro-
cess efficiency and effectiveness. Its capabilities are enhanced by features like machine
learning and automation, making Celonis a pivotal tool for enterprises aiming to exe-
cute large-scale digital transformation strategies and achieve operational excellence.

Signavio Process Manager Signavio* Process Miner, part of the Signavio Busi-
ness Transformation Suite, enables organizations to analyze and optimize business
processes by visualizing actual workflows and identifying deviations from ideal mod-
els. This tool automatically generates process models from data logs, performs con-
formance checks to ensure regulatory compliance, and analyzes process performance
metrics such as duration, frequency, and costs. Its integration with Signavio’s broader
suite allows for a seamless workflow from process discovery through modeling to ex-
ecution, making it a valuable tool for continuous process improvement and alignment
across organizational departments.

Fluxicon Disco Fluxicon Disco’ is a user-friendly process mining software that ex-
cels in providing fast and intuitive insights into business processes. It is designed for
ease-of-use, allowing users to quickly load data and start analyzing with minimal setup.
Disco supports a range of features including automated process discovery, performance
analysis, and bottleneck identification, making it ideal for users seeking immediate and
actionable insights. With its strong focus on visual analytics, Fluxicon Disco offers de-
tailed, interactive process maps and a variety of filters to explore process variations and
issues efficiently. This tool is popular among both academic researchers and industry
professionals for its simplicity and powerful analytical capabilities.

ARIS ARIS Process Mining® is a robust tool designed to help organizations discover,
measure, and analyze their business processes in order to identify inefficiencies and op-
timize performance. It enables users to visualize complex process flows and pinpoint

3https://www.celonis.com/
4https://www.signavio.com/
Shttps://www.fluxicon.com/
Shttps://aris.com/process-mining/
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deviations, bottlenecks, and vulnerabilities by extracting data from IT systems and re-
constructing the actual processes that take place. ARIS offers comprehensive analytics
capabilities, including conformance checking, root cause analysis, and simulation for
predicting process behavior and outcomes. This integration with digital transformation
initiatives makes ARIS an important tool for businesses aiming to achieve operational
excellence and continuous improvement in their processes.

Apromore Apromore’ is a leading cloud-based process mining tool known for its so-
phisticated analytics capabilities and user-friendly interface. It provides advanced pro-
cess mining techniques such as automated process discovery, conformance checking,
and predictive analytics. Apromore is designed to handle large and complex datasets
efficiently, offering deep insights into business processes to help organizations identify
inefficiencies, ensure compliance, and enhance operational performance. Its collabora-
tive features support multi-user environments, making it a good choice for enterprises
aiming to undertake continuous process improvement and drive operational excellence
through detailed data-driven insights.

Among the widely-used open-source tools are ProM (a system for research) and BupaR
(for R) and PM4PY (for Python).

ProM ProMS® is a versatile open-source process mining tool that stands out for its ex-
tensive range of plugins supporting a diverse array of process mining tasks, including
discovery, analysis, and enhancement of business processes. Developed primarily for
academic and research purposes, ProM offers functionalities for detailed process dis-
covery, conformance checking, and social network analysis among others. It is highly
regarded for its flexibility, allowing researchers and professionals to experiment with
new algorithms and techniques through its modular and extensible architecture. ProM’s
ability to handle various types of event logs and its rich collection of tools make it a
good choice for in-depth process mining investigations and experiments.

bupaR bupaR’ is an R-based open-source library specifically designed for process
mining and business process analysis. It offers a comprehensive suite of tools that
enable users to perform detailed process discovery, conformance checking, and perfor-
mance analysis directly within the R programming environment. bupaR leverages the
extensive data manipulation and visualization capabilities of R, allowing users to inte-
grate process analysis with statistical and predictive analytics seamlessly. This makes
it a good choice for statisticians and data scientists looking to conduct in-depth process
analysis, create interactive process visualizations, and derive actionable insights from
process data, all within the familiar and powerful R ecosystem.

PM4Py PM4Py!? is a Python library that offers a comprehensive suite of process
mining tools, making it a powerful resource for performing process discovery, con-

"https://apromore.com/
8https://github.com/promworkbench
https://bupar.net/
0https://processintelligence.solutions/pmdpy
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formance checking, and process enhancement. Tailored for the Python ecosystem,
PM4Py facilitates the analysis of complex process data by integrating seamlessly with
popular data science tools such as pandas and numpy. Its capabilities extend to gener-
ating process models from event logs, analyzing process performance, and providing
insights into workflow efficiencies and bottlenecks. Ideal for both academic research
and practical applications, PM4Py is known in the process mining community for its
accessibility, scalability, and the ease with which users can implement and customize
process mining algorithms.

8.6 Process Mining in Python with PM4Py

This section illustrates process analytics using the PM4Py framework for Python. In
a first step, we import an event log in CSV format into a Pandas data frame''. This
event log is a fictitous log of a purchasing or procurement process. There are no case
or event attributes other than the basic information aboutr activity names, resources,
and timestamps.

import pandas as pd
import pmédpy

# Load the event log and parse date columns

log = pd.read_csv('https://evermann.ca/busi4720/PurchasingExample.csv'|,
parse_dates=['Start Timestamp', 'Complete Timestamp'],
infer_datetime_format=True)

In order for any process analytics tool to work with event log data, it must know which
column in the data set is the case identifier, so that it knows which events belong to
each case. It must also know what the name of the activity of each event is, the correct
timestamp for sequentially ordering events within a case, and the resource that executed
the activity referred to by the event. PM4Py by default uses attribute names similar to
those in the XES file above, although others can be explicitly specified. The following
Python code block defines the expected columns in the data set with the appropriate
names and types.

# Tell PM4PY about which columns represent case ID, activity name,
# and timestamp. Case ID and activity. Names must be string type

log['case:concept:name']=log['Case ID'].astype('string')
log['concept:name']=log['Activity'].astype('string"')
log['time:timestamp']=log['Complete Timestamp']
log['org:resource']=log['Resource']

Reading an XES file into PM4Py is also easy, but because it does not use the Pandas
library, XES files must be on a local filesystem (although they may be compressed). As

IThe event log is originally taken from here: http://files.fluxicon.com//Datasets/
Purchasing-Example.csv
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illustrated above, an XES file contains sufficient meta-data to identify case ID, event
name, timestamp, and resource, so that these need not be specified upon import.

log2 = pmdpy.read_xes ('BPI_Challenge_2012.xes.gz')

Basic Log Information

Basic event log statistics can of course be computed through Pandas data frame opera-
tions as in the first two lines of the following example code block, but PM4Py provides
easy-to-use functions. The following Python code block shows the number of cases,
number of events, the set of all start activities of traces, the set of all end activity of
traces, case durations, and trace and event attributes. The last two are only applicable
to event logs in XES format.

# Number of traces/cases

num_cases = len(log['Case ID'].unique())
# Number of events
num_events = log.shape[0]

pmdpy.get_start_activities (log)
pmé4py.get_end_activities (log)

pmdpy.get_all_case_durations (log)
# Useful only or XES-based event logs

pmdpy.get_event_attributes (log)
pmdpy.get_trace_attributes (log)

Variants

To perform a variant analysis, the log must be separated into sets of traces (”sub-
logs”) for which every trace contains the same sequence of events, called a variant.
The PM4Py function split_by_process_variant () returns an iterator over
the variants and their associated sub-logs, where each variant is the list of activity
names in the order in which they were executed in that variant. Each sub-log can then
be analyzed separately, for example in compliance analysis or performance mining,
allowing deeper insights and also a comparative analysis of processes.

pmdpy.get_variants (log)

# Split the log into sub-logs

for variant, subdf in pmé4py.split_by_process_variant (log) :
print (variant)
print (subdf)
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Process Discovery

The basic output of process discovery is a dependency graph, also called a directly-
follows graph (DFG) or process map. This graph simply shows how often one activity
is directly followed by another activity in the traces of the log. The PM4Py function
discovery_dfg () returns the directly-follows-graph and also the set of start and
end events. This graph can then be visualized using the view_dfg () function, as
shown in Figure 8.4, and saved to a file using the save_vis_dfg () function. This
is illustrated in the following Python code Ibock.

dfg, start, end = pmédpy.discover_dfg(log)
pmépy.view_dfg(dfg, start, end, rankdir='LR'")
pmépy.save_vis_dfg (dfg=dfg,

start_activities=start, end_activities=end,
file_path='dfg.png', rankdir='TB')

To show the usefulness of even this basic process visualization, consider the following
observations. First, the example DFG in Figure 8.4 shows that all 608 traces in the
log start with the same activity (’Create Purchase Requisition”). The activity ”Analyze
Request for Quotation” is carried out 1107 times, suggesting that some cases require
this activity multiple times, as is also evident from the loops between this activity and
the activities ”Amend Request for Quotation Requester” and ” Amend Request for Qua-
tion Requester Manager”. This iteration suggests re-work to fix errors in the original
quotation. Eliminating these errors may improve the overall process performance.

Second, the DFG shows that 131 cases end after the request for quotation is analyzed,
suggesting that these requests are not approved for purchasing. This implies wasted
effort and a process analyst may wish to identify ways to reduce these unsuccessful
purchase requisitions.

Third, note that there are 10 cases where the activity “Release Supplier’s Invoice” is
skipped. This may indicate a potential compliance problem and a process analyst may
wish to identify which cases skipped this activity and why they did so, or were allowed
to do so.

A DFG is not a process model in the sense of the example BPMN model in Figure 8.1,
as it is missing gateways and decisions. A range of algorithms have been developed
over the years to discover BPMN models from event logs. PM4Py provides the Induc-
tive Miner and the Heuristics Net Miner.

The Inductive Miner works by repeatedly “cutting” the DFG for an event log to identify
subsets of activities that represent exclusive choice, parallelism, sequence, or loops.
For example, as Figure 8.5 shows, when there are sets of activities that are not con-
nected by each other, and have distinct pre- and post-sets of activities, then this may
indicate an exclusive choice between these sets. Similarly, a sequence of activities is
characterized by the absence of “backwards” connections in the DFG, and parallelism
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exclusive choice: sequence: loop:

parallel:

Source: Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P. (2013). Discovering Block-Structured Process Models from
Event Logs - A Constructive Approach. In: Colom, JM., Desel, J. (eds) Application and Theory of Petri Nets and Concur-
rency. PETRI NETS 2013. Lecture Notes in Computer Science, vol 7927. Springer, Berlin, Heidelberg.

Figure 8.5: Principles of the Inductive Miner

is indicated by a set of arrows that fully connects two sets of activities with a common
post-set.

PM4Py provides the function discover_bpmn_induct ive which produces a BPMN
model that can be viewed and saved. An example is shown in Figure 8.6.

bpmn_model = pmépy.discover_bpmn_inductive (log, noise_threshold=0.5)

pmdpy.view_bpmn (bpmn_model, rankdir='LR")

pmépy.save_vis_bpmn (bpmn_model, file_path='bpmn.png', rankdir='TB'")

In contrast, the Heuristics Net Miner focuses on frequencies in the DFG to identify
sequences, parallelism, and loops. For example, a sequence between activities ”a” and
”b” by values larger than a threshold for the following proportion where the relation
a > b indicates the number of times b follows a in the DFG. Similar expressions exist
to identify parallelism and loops. The thresholds are configurable; lower thresholds
lead to the inclusion of more detail in the final model.

G b la > bl —|b> al
\Ja>bl+]b>al+1

The PM4Py function discover_petri_net_heuristics provides the Heuris-
tics Net Miner. It returns a Petri net (a type of process model) that can be converted to
a BPMN model for viewing and saving. An example is shown in Figure 8.7.
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petri_net, initial_marking, final_marking = \
pmdpy.discover_petri_net_heuristics(log,
dependency_threshold=0.6,
and_threshold=0.65,
loop_two_threshold=0.4)

pmépy.view_petri_net (petri_net)

bpmn_model2 = pmé4py.convert_to_bpmn (petri_net,
initial_marking, final_ marking)

pmépy.view_bpmn (bpmn_model?2)
pmdpy.save_vis_bpmn (bpmn_model2, 'bpmn2.png', rankdir='TB')

Once a model is automatically discovered from a log, the analyst must assess its quality.
There are four aspects of model quality with respect to an event log:

* Fitness: Can the model generate all traces in log?

* Precision: Does the model only generate traces in log?

* Generalization: Can the model generalize to ’sensible” traces not seen in log?
» Complexity: Is the model too complex to understand?

Quality assessment often focuses mainly on the calculation of fitness and precision,
and two different techniques have been developed for this.

In token-based replay, each trace of an event log is replayed on the discovered process
model using what is known as foken semantics. This discovers missing and surplus
tokens, which represent model activities that cannot be executed, or model activities
that are executed too often. Both cases indicate a mismatch between the model and the
trace. The statistics of interest are the percentage of traces that fit the model perfectly,
and the average fitness of all traces in the log.

Alignment-based fitness uses sequence alignment methods to align the model and each
trace in an event log. It counts the the number of “synchronous moves” where an
activity is both in a trace and the model, the number of “move on log” where an activity
is in a trace but not in the model, and the number of "move on model” where an activity
is in the model but not in the trace. The statistics of interest are also the percentage of
traces that fit the model perfectly, and the average fitness of all traces.

Note that the results of the two types of analysis are not necessarily the same for all
models and for all event logs.

PMA4Py provides functions to compute fitness and precision using both methods. For
this, PM4Py uses the Petri net type of process model. As we noted above, this can be
transformed into a BPMN model for visualization.
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petri_net, initial_marking, final_marking = \
pmdpy.discover_petri_net_inductive(log, noise_threshold=0.5)

fitness_alignments = pmdpy.fitness_alignments (log,
petri_net, initial_marking, final_marking)
print (fitness_alignments)

fitness_tbr = pmdpy.fitness_token_based_replay(log,
petri_net, initial_marking, final_marking)
print (fitness_tbr)

precision_alignments = pmdpy.precision_alignments (log,
petri_net, initial_marking, final_marking)
print (precision_alignments)

precision_tbr = pmdpy.precision_token_based_replay (log,
petri_net, initial_marking, final_marking)
print (precision_tbr)

Log Filtering

Filtering an event log prior to analysis is useful for three reasons. First, it allows the
analyst to focus on a subset of the log information. For example, an analyst may
wish to examine all traces of the order-to-cash process for domestic customers, or for
business customers. Or an analyst may wish to examine only those cases that show
some compliance problem.

Second, filtering allows the analyst to split the event log in order to identify differences
or similarities. For example, filtering the log of the order-to-cash process for domes-
tic customers allows the analyst to identify differences in how domestic and overseas
customer orders are processed.

Third, filtering simplifies automatically discovered models. Many automatic discovery
algorithms produce very complex models when the actual processes are complex or
when there is a large amount of variation or noise in the event log. Noise does not
necessarily mean invalid data, but data that appears infrequently or could be considered
very atypical. Such noise, when included in the event log for process discovery, can
’clutter up” the resulting model, making it difficult or impossible to understand.

PM4Py provides a number of different filters, with a few examples shown in Table 8.1.
Information on other filters can be found on the PM4Py website.
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filter_activities_rework

Keep cases where the specified activ-
ity occurs at least n times

filter_case_size Keep cases having a length between n

filter_case_performance

and m events

Keep cases having a duration between
n and m seconds

filter_directly_follows_relation Keep cases where A is followed im-
mediately by B

filter_end_activities Keep cases that end with the specified
activity

filter_event_attribute_values Keep cases or events in cases that sat-

isfy the specified condition

filter_eventually_follows_relation | Keep cases where A is eventually fol-

filter start_activities

lowed by B
Keep cases that start with the specified
activity

filter_time_range Keep events occurring between two

timestamps

filter_trace_attribute_values Keep cases that satisfy the specified

condition

Table 8.1: Example event log filter functions in PM4Py

Hands-On Exercises — Basic Log Information

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.

1.

2.

What are the different types of activities in the log?

* Use the Pandas unique () function
How often does each activity occur in the log?

e Use the Pandas value_counts () function
Filter the log for complete cases, that is, retain only those cases that end
with activity ’Pay invoice”.

e Use pmépy.filtering.filter_end_activities
Plot the case durations for the complete cases. What do you notice?

e Use pmdpy.stats.get_all_case_durations

¢ Put case durations into a pd.DataFrame

* 1 day = 86400 seconds

e Usepx.histogramorpmdpy.vis.view_case_duration_g
What is the mean case duration?

» Use the Pandas mean () function on the result of the previous ex-

ercise

raph



https://pandas.pydata.org/docs/reference/api/pandas.unique.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.value_counts.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_end_activities.html
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.stats.get_all_case_durations.html
https://plotly.com/python/histograms/
https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.vis.view_case_duration_graph.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html
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Hands-On Exercises for PM4Py — Automatic Process Discovery

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.

1. Using the mean case duration identified in the previous exercise, split the
log on the mean case duration; that is, one sub-log should contain traces
that are shorter than the mean, the other sub-log should contain cases that
take longer than the mean.

e Use pmdpy.filtering.filter_case_performance

2. Discover BPMN models for each partial log and compare them. How do
they differ?

3. Discover a BPMN model from the total log. How does it differ from the
models discovered for the partial logs?

4. Calculate and compare the fitness and precision values of the models
discovered from the partial log and the total log.

Hands-On Exercises for PM4Py — Performance Analysis

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.
1. What is the activity with the longest mean time? Activities taking a long
time may be a bottleneck in the process flow.
e Create a new column as the difference between the *Complete
Timestamp’ and ’start_timestamp’ columns.
e Use the Pandas groupby () and mean () functions to group the
data frame by activity.
2. What is the mean number of activities for each case? Long cases with
many activities may indicate problems or overly complex processes.
* Calculate the number of activities for each case using the Pandas
groupby () and count () functions on the dataframe
3. Which activities are carried out more than once for some case? Repeated
activities may indicate re-work or fixing of mistakes.
 Calculate the number of instances for each case for each activ-
ity using the Pandas groupby () and count () functions on the
dataframe



https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_case_performance.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html
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Hands-On Exercises for PM4Py — Conformance Analysis

The following exercises are designed to be used with the event log in the run-
ning examples above. Tips are provided to guide you and to provide links to
the documentation for important functions to use.

1. Are there cases that contain activity “Pay invoice” but do not contain
activity ”Send invoice”? Non-compliant cases may represent a problem
with controls and compliance.

e Use filter_eventually_follows_relationship

8.7 Performance Mining

Performance mining is that aspect of process analytics that analyzes the temporal per-
formance of a process. Information of interest are the durations of the activities (service
time), the waiting times between activities, and the overall case durations. For each of
those, different summary statistics are useful, such as the mean, median, standard de-
viation, maximum and minimum.

The easiest and most interpretable way to do this in PM4Py is to annotate the DFG with
this information. For example, the following Python code block calculates the median
waiting times between activities and shows them in the DFG. The annotated DFG is
shown in Figure 8.8. Because the example event log did not contain start and end times
for each activity, it is not possible to show the service times on the DFG, that is, the
duration of the activities.

perf_dfg, start_activities, end_activities = \
pmédpy.discover_performance_dfg (log)

pmdpy.view_performance_dfg(perf_dfg,
start_activities, end_activities,
aggregation_measure='median')

pmdpy.save_vis_performance_dfg (perf_dfg,
start_activities, end_activities,
file_path='perfdfg.png', rankdir='TB')

This example shows a few problems with the process. For example, the median wait
time between creating a request for quotation and analyzing it is 6 days. If the request
needs to be amended, it then has to wait another 8 to 10 days to be analyzed again.
These long wait times indicate performance problems in the process. This may stem
from a lack of resources, or insufficient prioritization, or other process issues, that
needs be investigated in detail by the process analyst.

Another useful tool in process performance analysis is the dotted chart. An example
dotted chart is shown in Figure 8.9. The horizontal axis represents the time stamp of
each activity or event, while the vertical axis represents the case ID — each row in the


https://processintelligence.solutions/static/api/2.7.11/generated/pm4py.filtering.filter_eventually_follows_relation.html
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Figure 8.8: DFG annotated with median waiting times
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Figure 8.9: Example of a Dotted Chart

diagram contains the events of one trace. The colors correspond to different types of
activities. The following Python code produces the example in Figure 8.9.

perf_dfg, start_activities, end_activities = \
pmépy.discover_performance_dfg(log)

pmdpy.view_performance_dfg(perf_dfg,
start_activities, end_activities,
aggregation_measure='median')

pm4py.save_vis_performance_dfg(perf_dfg,
start_activities, end_activities,
file_path='perfdfg.png', rankdir='TB')

A dotted chart can be used to show batching of activities, that is, activities in differ-
ent cases that are not spread out in time but are executed at the same time. This may
indicate that some cases have to wait for the next batch to be processed, leading to po-
tential delays. A dotted chart can also show different variants, by visually highlighting
different types of performance. In the example of Figure 8.9, it is clear that many cases
are finished quickly, while others take a long time. In particular, the cases that arrive
early or very late in the log tend to be those that finish quickly.

A dotted chart can also be useful to examine the case arrival rates. In the example in
Figure 8.9 it is clear that early in time, cases arrive more frequently than later in time
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Figure 8.10: Example of a Performance Spectrum

(the curve is steeper there). This may indicate a shift in the demand for a particular
product or service.

A performance spectrum graph, like the one in Figure 8.10 shows the wating times
between two activities, the one at the top and the one at the bottom. The horizontal
axis represents time. Lines that are slanted or run diagonally at an angle indicate a
long waiting time. A performance spectrum can also show when lines are “bunched
together” or “sparsely distributed”, indicating variations in the rate at which one activ-
ity finishes or the next activity begins. The following Python code block produces the
graph in Figure 8.9.

pmépy.view_performance_spectrum(log,
['Send invoice', 'Pay invoice'])

pmépy.save_vis_performance_spectrum(log,
["Send invoice', 'Pay invoice'],
'perfspectrum.png')

To indicate when a process that delivers a service is in high demand and requires high
capacity, the distribution of events over time should be considered. This can be done
by day-of-the-week, by month-of-the-year, or by week-of-the-year, as the following
PMA4Py functions show. An example of event distribution by week-of-the-year is shown
in Figure 8.11.

pmdpy.view_events_distribution_graph (log, 'days_week'")
pmdpy.view_events_distribution_graph(log, 'days_month")
pmépy.view_events_distribution_graph (log, 'months')
pmdpy.view_events_distribution_graph(log, 'weeks')

The example in Figure 8.11 shows that this process is very busy early in the year, in
approximately the first quarter, but not at all in the last quarter of the year, except for
some activity in the final week of the year. This uneven demand requires adequate
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Figure 8.11: Event distribution over time

capacity planning over of the organization and an organization may decide to identify
ways to smooth out the demand.

Plotting the events over time for the entire log as a probability density shows simi-
lar characteristics. Figure 8.12 plots the frequency (technically, a probability kernel
density) of event occurrence, produced by the following Python code.

pmdpy.view_events_per_time_graph (log)
pmépy.save_vis_events_per_time_graph(log, 'eventspertime.png')
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Figure 8.12: Events per time graph

8.8 Organizational Mining

Organizational mining focuses on the resources and their roles in a process. It uses

the data in an event log to identify how resources and roles work together to execute
process instances.

A simple way to focus on organizational roles or resources is to construct a DFG, but
using the resource or role information for the nodes of the graph, instead of the activity
names. The DFG then expresses how often one resource or role follows another in the
execution of the cases; in other words, how often one resource or role passes work to
another (or to itself). The following Python code block produces the handover-of-work
network shown in Figure 8.13. Notice how the same PM4Py function for the DFG

discovery is used, but a different data frame column is specified for the "activity_key”
parameter.

dfg, start, end

pmépy.discover_dfg(log, activity_key='Role')
pmépy.view_dfg(dfg, start, end, rankdir='LR'")

pmépy.save_vis_dfg (dfg=dfg,
start_activities=start,
end_activities=end,
file_path='handover.png', rankdir='TB'")

A similar analysis can be performed using the PM4Py function
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discover_working_together_network (), asshown in the following Python
code and in Figure 8.14. Note that this graph is normally interactive.

sna_graph = pmdpy.discover_working_ together_network (log,
resource_key="'Role')

pm4py.view_sna (sna_graph, variant_str='pyvis')

pmé4py.view_sna (sna_graph, variant_str='networkx'")
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Figure 8.15: Activity-based resource similarity graph

Yet another analysis focuses on identifying resources that perform the same sets of
activities. This is useful for identifying implicit roles or resources with similar skills.

roles = pmdpy.discover_organizational_roles (log)
print (roles)

Another way to achieve this goal is with the following Python code, which produces the
activity-based resource similarity graph in Figure 8.15. The graph shows four clusters
of resources that are similar to each other within their cluster, i.e. they perform similar
sets of activities in this process.

sna_graph = pmdpy.discover_activity_based_resource_similarity (log)

pmdpy.view_sna (sna_graph, variant_str='networkx')
pmdpy.view_sna (sna_graph, variant_str='pyvis')

pmdpy.save_vis_sna(sna_graph, 'ressimilarity.png',
variant_str="'networkx')

8.9 Review Questions

The following review questions help you evaluate your understanding of this material.

1. What is business process analytics and why is it important in improving opera-
tional efficiencies?
2. Define a business process. What are the typical elements that constitute a busi-
ness process?
. What roles do resources play in a business process? Provide examples.
4. What is the Business Process Modeling Notation (BPMN)? Why is it widely
used?

W
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5.

6.

7.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.
28.

Explain the symbols used in BPMN to represent events, activities, gateways, and
dependencies.

Describe the function of an exclusive gateway in a BPMN diagram. Provide an
example from the given material.

Explain what a parallel gateway is and provide an example of how it is used in
business process modeling.

. What is an inclusive gateway? Give an example of its application in a business

process.

Given a simple process scenario, draw a BPMN diagram using appropriate sym-
bols for events, activities, and gateways.

Define a ”case” in the context of a business process. Provide an example.

What is a "trace”? How does it relate to a case?

Explain the term “event” in process mining. What might an event signify in a
business process event log?

Describe the typical lifecycle of an activity in a business process. Refer to the
XES standard lifecycle model.

What are some possible states and transitions an activity might go through during
its lifecycle?

Differentiate between “event attributes” and “case attributes.” Provide examples
of each.

Why is it important to associate events with resources and timestamps?

Define an “event log.” What kind of information does it typically contain?
What is the XES file format?

How does a CSV file format differ from an XES file when used for storing event
log data?

Explain what is meant by automated process discovery in process analytics. Why
is it considered a crucial initial step for many organizations?

Define conformance checking. What are its typical uses in process analytics?
Discuss how conformance checking can demonstrate compliance with normative
process models or business rules during audits.

Describe what is meant by performance mining in the context of process analyt-
ics.

Identify and explain the types of problems that performance mining can help to
uncover within a process.

What is variants analysis, and why might it be useful for organizations that op-
erate in multiple locations or business units?

Provide examples of insights that can be gained from performing variants analy-
sis on business processes.

Explain the concept of process prediction and its importance in process analytics.
Discuss potential applications and provide examples of process prediction in
managing business processes and customer relations.

The following questions are specific to PM4Py but the main concepts apply to other
process analytics software tools as well.

29.

Describe the role of the following columns in the process analytics context and
why they need to be specified:
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30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
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* Case identifier

* Activity name

* Timestamp

* Resource
How does PM4Py determine which columns represent the case ID, activity name,
timestamp, and resource in the event log data? Include a brief explanation of how
these columns are transformed or defined in the provided Python code.
Compare and contrast the processes of loading event logs from CSV files and
XES files into PM4Py. Discuss the advantages and disadvantages of using each
file format.
What Python code would you use to calculate the number of cases and the num-
ber of events in an event log? Explain what each line of code does.
Describe the purpose of the following PM4Py functions:

* get_start_activities()

* get_end_activities()

* get_all_case_durations()
How does the split_by_process_variant () function in PM4Py work?
Describe what it returns and how these returns can be used in process analysis.
Explain what a directly-follows graph (DFG) is and its importance in process
discovery.
Discuss the observations that can be made from a DFG (e.g., start activities, end
activities, loops, and possible re-work).
Compare the Inductive Miner and Heuristics Net Miner provided by PM4Py in
terms of how they process a DFG to discover BPMN models.
Define the four aspects of model quality in process mining.
Describe how token-based replay and alignment-based fitness methods work to
assess the fitness of a process model.
Explain how precision differs from fitness in the context of process model quality
and why both are important.
Explain the importance of filtering an event log before conducting process anal-
ysis. Include three reasons why filtering might be necessary.
Describe how filtering can help an analyst focus on specific aspects of a process.
Provide examples of different subsets an analyst might focus on within an event
log.
What types of filters might an analyst use to refine an event log before analysis?
Provide examples or scenarios where specific filters would be particularly useful.
Explain what performance mining in process analytics entails and why it is im-
portant.
Discuss the types of information typically analyzed in performance mining, such
as service time, waiting times, and overall case durations. Why are these metrics
important?
Review the purpose of a dotted chart in performance analysis. How does this
visualization help in identifying batching of activities or case arrival rates?
Describe what a performance spectrum graph shows and how it can be used to
identify performance issues between two activities.
How can the distribution of events over time be used to inform capacity planning



8.9. REVIEW QUESTIONS 273

49.

50.

51.

52.

in an organization?

Consider the tools and methods described (DFG, dotted chart, performance spec-
trum, event distribution graphs). Discuss how each can contribute to a compre-
hensive performance analysis of a business process.

Explain the concept of organizational mining and its importance in understand-
ing process execution within an organization.

Describe what a handover-of-work or working-together network is. What does
this type of network reveal about the interactions between roles or resources?
Review the usefulness of analyzing resources that perform similar sets of activi-
ties. How does identifying implicit roles or skills similarity benefit an organiza-
tion?
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Chapter 9

Introduction to Supervised
Machine Learning

Learning Goals

After reading this chapter, you should be able to:

L]

Explain the difference in focus and aims between explanation and prediction.
Explain the decomposition of error into bias, variance, and irreducible error.

Explain the connection between bias, variance, and degrees of freedom or flexi-
bility of a model.

Recognize and mitigate overfitting and underfitting of regression and classifica-
tion models.

Compute a confusion matrix from a trained classifier given a decision criterion.

Calculate precision, recall, specificity, accuracy and related metrics from a con-
fusion matrix.

Summarize the performance of a classifier as a ROC curve and its AUC.

Calculate cross-entropy and KL divergence to evaluate the performance of a
multinomial classifier.

Select and apply appropriate resampling methods to evaluate the prediction error
of a trained model.

275
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Sources and Further Reading

The material in this chapter is based on the following sources. They are freely available.
Consult them for additional information.

Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)

https://www.statlearning.com

Chapters 2, 3,4, 5

The book by James et al. provides an easy introduction to machine learning at the
introductory undergraduate level. It focuses on applications, not mathematics, and
contains many exercises using R. Concepts are well explained and illustrated. There is
a similar book available by the same authors with applications in Python.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of
Statistical Learning. 2nd edition, 12th corrected printing, 2017. (ESL)
https://hastie.su.domains/ElemStatLearn/

Chapters 2, 3,4, 7

The book by Hastie et al. still sets the standard for statistical learning. It is widely
used and cited. It’s treatment is more technical than the previous book and there are
no exercises in R or Python. However, it covers the concepts in more depth (and a few
more formulas). However, it is still very accessible even to an undergraduate audience.

Kevin P. Murphy: Probabilistic Machine Learning — An Introduction. MIT
Press 2022.

https://probml.github.io/pml-book/bookl.html

Chapters 4, 6, 9, 10, 11

Murphy’s book is available under a creative commons license. It is a somewhat more
technical treatment of the material, but with many illustrations and examples. It is quite
comprehensive in its coverage and targeted at the advanced undergraduate or graduate
student.


https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
https://probml.github.io/pml-book/book1.html
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9.1 Introduction

Supervised machine learning is the training or fitting of statistical models for prediction
tasks when the correct target outcome is known. It is called "training” because we train
a statistical model to make predictions for future observations based on past data. It is
also called fitting” because, for parametric models, that is models with parameters, we
adjust the model parameters to ensure the model output is a good fit with the known,
correct target outcome; that is, we fit the model to the data.

Depending on the application area and research discipline, different terminology may
be used. In this chapter, the term inputs is used for variables used to make a prediction,
and the term outputs is used for the predicted variables. Other terms for inputs are
predictors, independent variables, and features although there are fine but important
distinctions that are covered later. Other terms for outputs are targets, responses, and
dependent variables.

Many methods in supervised learning are parametric methods that assume a functional
relationship of the form

y=f(x)+e

where the function f is approximated by a function f that is characterized by a set
of parameters. The values for these parameters are learned or estimated in order to
optimally fit the model to the existing training data. Once the optimal parameters are
estimated, the fitted or trained model can be used to predict the output for new inputs.

On the other hand, non-parametric methods do not assume a functional form. They
can therefore be more flexible.

Depending on the type of output, one distinguishes regression from classification. In
regression analysis, the output is quantitative, typically real-valued. The quality of a
model is measured by the numeric differences between actual and predicted output.
Figure 9.1 shows an example of a regression model that predicts the output "Wage”
from the inputs ”Age”, ”Year”, and "Education Level”. Note that one of the inputs is
quantitative while the other two are categorical (although both ”Year” and "Education
Level” could conceivably be treated also as quantitative in another model).

There are many different regression metrics, some parametric, some non-parametric.
The highlighted entries in the list are covered in this and the following chapter; later
chapters will also cover neural network regression and regression trees.

¢ Parametric Methods
— Linear Regression
— Ridge and Lasso Regression

— Principal components regression
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Figure 9.1: Example regression model

— Non-linear regression
— Neural network regression
* Non-Parametric Methods

— K-Nearest-Neighbours (KNN)

Regression trees

Smoothing splines

Multivariate adaptive regression splines

— Kernel regression

In contrast, the output of classification is categorical or qualitative. The quality of a
model is measured by the proportion of correct classifications (accuracy) and related
metrics. Figure 9.2 shows an example of a classification model where the binary output
”Today’s Direction” (of the stock market) is to be predicted from the inputs Yester-

95 99

day”, ”Two Days Previous”, and “Three Days Previous”. Note that all three inputs are
qualitative, although quantitative inputs can also be used in classification.

There are many different classification methods, most of which are parametric, except
for decision trees and KNN. The highlighted methods are covered in this and the fol-
lowing chapter; decision trees and neural networks are covered in later chapters.

* Decision trees

* Random forests

» Bayesian networks

* Support vector machines
* Neural networks

* Logistic regression
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Figure 9.2: Example classification model

* Naive Bayes

Probit model

» Genetic programming

K-Nearest-Neighbours (KNN)

9.2 Explanation and Prediction

Explanation and prediction both use statistical models. However, they differ in their
goals and methods. Explanation seeks to understand the causal mechanisms in the
world, that is, understand why a particular output is observed for a given input. The
statistical model is intended to represent, or be isomorphic to (have the same form
as), the causal processes. Explanation is often concernced with theory testing. Model
parameters are assumed to represent the strength of a causal effect hypothesized by
some theory. Scientists use a representative sample of observations to infer the value
of a parameter in the larger population in order to support or reject a causal theory.
Explanation aims for relatively simple models, e.g. linear ones, that can be understood
and interpreted by humans. Explanation is retrospective, that is, backward looking.
It uses the observed data in the sample to fit a model, but does not normally collect
additional data to further verify the fit of that model on other data. In other words,
explanation is concerned with most closely fitting a model to a single sample, which is
assumed to be representative of the population. This is called ’bias minimization”, a
term explained in more depth later.

In contrast, prediction is not concerned with causal processes or with models that rep-
resent or are isomorphic to causal relationships in the world. A predictive model that
produces accurate predictions is satisfactory even if it does not represent the true causal
relationship. In other words, prediction is concerned withe association, not with cau-
sation. In contrast to explanation, prediction does not know the concepts of population,
sample, and inference from sample values to population values. Instead, prediction
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Explanation | Prediction

Causation Association
Theory Data
Retrospective | Prospective

Bias Variance

Based on: Shmueli, G. (2010). To Explain or To Predict?. Statistical Science, 25, 289-310.

Table 9.1: Differences between explanation and prediction

uses the term “training data” and requires that the training data be representative of fu-
ture observations for which predictions are to be made, not of some larger population.
In that sense, prediction is prospective, that is, forward looking. Prediction focuses
on individual observations, rather than the fit of the entire model. Moreover, because
the models are not intended to represent causal relationships and theories, they may
be more complex and need not be humanly understandable or interpretable. Instead
of focusing on fitting a statistical model to a single set of observations, as is done in
explanation, prediction recognizes the variability that is introduced by different sets of
training data. This is termed variance, a concept explained in more depth later. Pre-
diction tries to minimize both the bias and the variance in order to learn models that
accurately predict future, yet unseen observations.

Table 9.1 provides a summary of the differences between explanation and prediction.

e N

Hands-On Exercise

For each of the following problems, decide if it is a prediction or infer-
ence/explanation problem:

1. How do real estate prices vary with location and age?
What is the most important predictor of real estate prices?
What is the expected sales price for a house at 310 Elizabeth Ave?
Is the month of the sale an important predictor of real estate prices?
Calculate the difference in expected sales prices for the house at 310
Elizabeth Avenue when sold in August and February
6. When should a house be sold to achieve the best price?

> W[

9.3 Bias and Variance in Regression Analysis

The predictive quality of a regression model is typically evaluated by the mean squared
error (MSE) or the mean absolute error (MAE). The error of the model in predicting
the correct output, that is, the difference between prediction and true output, is often
called the loss function, which is to be minimized for optimal fit. The mean absolute
error is sometimes preferred because it is more robust to the presence of outliers as it
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https://commons.wikimedia.org/wiki/File:Huber_loss.svg

Figure 9.3: Huber loss function versus squared error

does not square the difference between prediction and target; other loss functions are
the mean absolute percentage error or the Huber loss. The Huber loss function, shown
in Figure 9.3, combines a square error for small values with an absolute error for larger
values, making it also robust to outliers.

MSE = (s~ f(2)?

i=1
1 — .
MAE = - Z lys — f(x3)]
i=1
1y — fz)
MAPE = —
. > m |

LHuber =

f(a))? for|y — f(x)| <4
/

y —
y— f(z)] - 16) otherwise

The parameter § for the Huber loss function can be freely chosen.

Importantly, the focus of evaluating the quality of a model should not be on the training
data itself, but on how well it performs on data that were not used for training. For
example, a model is trained on past stock market information, but is used to predict
future stock performance; a model is trained on previous patient information, but is
used to predict future patient outcomes; a model is trained on past real estate prices but
is used to predict future closing prices.


https://commons.wikimedia.org/wiki/File:Huber_loss.svg
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A typical strategy is then to separate test data from the training data in the form of a
holdout sample. The model is fitted to the training data and then evaluated on the test
data.

[ Low error on training data does NOT imply low errors on test data. ]

Consider the regression model shown in Figure 9.4. The left panel shows a set of
observed x and y values generated from the true relationship (black line) by adding
some random error. The left panel also shows three different functions that are fitted
to this data. The diagonal orange line represents a simple linear regression model with
only x and an intercept as predictors, that is, it only has two parameters. The blue and
green lines represent smoothing regression splines with different levels of flexibility.

It is evident that the orange line fits neither the observed data very well, nor is it close
to the true function, the black line. It lacks sufficient flexibility to both approximate the
data and the true model. It has been underfitted.

It is evident from the left panel in Figure 9.4 that the green line fits the observed data
better than the blue line, but it is also clear that the green line does not fit the true
model, represented by the black line, as well as the blue line does. If one were to
generate another sample of observations from the black line by adding random errors,
the green line is unlikely to fit this new sample very well. In other words, the green
line model has been fitted to the particular characteristics, or idiosyncrasies of this one
set of training data: the model has been overfitted.

The right panel of Figure 9.4 shows the training data error (gray line) and the test data
error (red line) for the three models indicated by the coloured squares (and others in
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Figure 9.4: Fit versus flexibility of a model
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Figure 9.5: Fit versus number of parameters of a model

between). The underfitting orange model shows both a large training error as well as a
large test error on a holdout sample. In contrst, the green overfitted model shows a very
small training error but a large test error on the independent test or holdout data set.
The blue model does not show the smallest training error but it does show the smallest
testing error.

While Figure 9.4 has been created with non-parametric smoothing spline models, in
parametric models, such as linear regression and others, the flexibility of the model to
adapt itself to the training data is a function of the number of parameters that can be
freely adjusted. For example, a regression model with only an intercept and the variable
z as predictor will have two parameters: the slope and the intercept and is therefore less
flexible than a model with intercept and predictors z, 2 and 2. Figure 9.5 shows an
example with parametric models. the top-left panel shows a model with predictors
x and z? fitted to a set of training data. The bottom left panel shows a model with
polynomials in z up to degree of 20. As there are only 20 data points, the model
fits the data perfectly, but is unlikely to perform well on new, unseen observations.
The bottom right panel in Figure 9.5 shows the train and test errors for models with
different degrees of polynomials. Figure 9.5 is similar to Figure 9.4 in the essential
characteristics of overfitted models, that is a low training error and a high test error.

Closely related to flexibility is concept of degrees of freedom. In parametric models, the
degrees of freedom are defined as the difference between the number of observations
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and the number of parameters of the model:

DF=n—p

Each parameter to be estimated requires one observation and so “uses up” one degree
of freedom. The model in the bottom left panel of Figure 9.5 has no degrees of freedom
left, it has as many parameters p as observations n.

To better understand the concepts of underfitting and overfitting, it is useful to consider
the MSE regression loss in more detail. This requires the concepts of expected value
and variance of a random variable X from basic statistics.

Expected Value
E[X] = Z XiP; discrete random variable
=1

E[X] = / axp(x)dx continuous random variable

— 00

For uniform distributions or unweighted observations p; = p; Vi,j so that
E[X] =132 a;, i.e. expectation = mean

Variance
Var[X] = E[(X - E[X])’] = E[X?] - B[X)

For zero-centered variables E[X] = 0 so that Var[X] = E[X?]

Equipped with these concepts, one can rewrite the MSE to decompose it into three
parts:

MSE = E[(y — /)7
= Ely* —2yf + f?
= Ely’] - 2E[yf] + E[/*]

Using the definitions for expected value and variance, each of part of the MSE can be
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further rewritten:

E[f*) = E[f*] - E[fI> + EIf?

= Varlf] + E[f]”

E[y’] = E[(f +¢)?]
= E[f?] + 2E[fe] + E[¢?]

=f2+2f 0402 (f is not random and E[e] = 0)
=f?+o°
Elyf] = E[(f + €)f]
= E[ff] + Eef]
= B[ff] + EIE[f]
= B[ff]+0- E[f]
= fE[f]

Putting this all together, we can rewrite the MSE as follows:

MSE = f2 + ¢ — 2fE[f] + Var[f] + E[f]?
= (f = E[f])* + o* + Var|f]
— Bias[f)? + 0 + Var[f]

The bias of an estimated model f expresses how far the expected value of the estimated
model f is away from the true target value f, while the variance of an estimated model
f expresses how much the expected value of the estimated model varies with different
inputs or data sets. The final part of the MSE is the irreducible error o? that represents
the random variations of the data around the true target value f.

An underfitting model will necessarily have a large bias as it is not close to the true
model. This was illustrated by the orange line model in Figure 9.4. As underfitting
models are often models that are too simple, they tend to have small variance, but this
is not necessarily true for all models.

In contrast, overfitting models necessarily have a large variance. Because they are
fitted to the idiosyncratic specific values of the training data, they do not generalize
well to new, unseen test data. New data, even if it is drawn from the same probability
distribution or population, will lead to very different predicted outputs. Thus, a large
variance of a model is manifested by a large test error. A severely overfitted model may
also have a large bias. An example of this is the overfitted green model in Figure 9.4,
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Figure 9.6: Bias and variance trade-off

or the degree 20 polynomial model in Figure 9.5. Neither of these are close to the true
model.

A well-fitting model is one that does not minimize the bias or the variance but finds the
overall optimum by minimizing the joint error. To estimate the variance, it is necessary
to apply the model to independent test data. In other words, a well-fitting model is one
that minimizes the test error. This central idea is known as the bias and variance trade-
off and is illustrated in Figure 9.6. Note that the total error also includes the irreducible
error which cannot be removed but is independent of model complexity.

Returning to the characteristics of explanation and prediction, it is now clear that ex-
planation aims to minimize only the bias by seeking to identify the true model. In
contrast, prediction also includes a reduction of variance and focuses on minimizing
the overall or joint error.

While this section has derived the concepts of bias and variance using regression mod-
els, those concepts also apply to classification models. However, the classification loss
functions do not lend themselves to the easy separation of the error as the MSE loss
function above.

9.4 Model Quality in Classification

In classification models, the primary quality criterion is the error rate, which can be
calculated both for training and for test data as the proportion where the predicted class
7; 1s not the true class y;:


https://commons.wikimedia.org/wiki/File:Bias_and_variance_contributing_to_total_error.svg
https://commons.wikimedia.org/wiki/File:Bias_and_variance_contributing_to_total_error.svg
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n

% ZI(yi # 9i)

i=1

Here, I(-) is the identity function that is 1 if its argument is true, O otherwise.

Classification methods typically produce as output the probability of an observation
belonging to any of k classes. A decision rule is then required to actually classify an
observation based on this probability. A Bayes classifier assigns each observation to
the class j with the highest probability, given its predictor values x:

argmax Pr(Y = j|X = o)
J

Consequently, the error rate can be written as:

1-FE (argmaXPr(Y = jX))

J

The most common type of classification is binary classification, which assigns obser-
vations to one of two classes, e.g. true or false, normal or abnormal, good or bad,
zero or one, etc. Multinomial classification, also called multi-class classification as-
signs observations to one of more than two classes. This section first considers binary
classification before moving to multinomial classification.

A Bayes classifier is an ideal classifier. The Bayes classifier error rate is the irreducible
error and forms the lower bound of practically achievable classification error rates.
The Bayes classifier is an ideal classifier because in practice the probabilities of class
membership, conditional on the observed predictor values, are unknown and must be
estimated from data using a statistical model. However, estimation introduces error.

A simple, non-parametric classifier is the k-Nearest Neighbour (KNN) method. This
classifier identifies a set of k& observations closest to an observation zy whose class is
to be predicted, called the neighbourhood Ny. The class membership probabilities are
then estimated as the proportions of observations in the neighbourhood that belong to
the different classes j:

. 1 .
Pr(Y = j|lX = xo) = K > Ly =)
1€ No

Here, I(-) is the identity function that is 1 if its argument is true, and 0 otherwise.

Figure 9.7 provides an example for & = 3. The left panel in this figure shows points
for which the classes, blue or orange, are known. When predicting the class for a new
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Source: ISLR2 Figure 2.14

Figure 9.7: KNN example for binary classification

KNN: K=1 KNN: K=100

Source: ISLR2 Figure 2.16

Figure 9.8: Decision boundaries of two KNN classifiers

point, marked by the ”x”, the three nearest neighbours are identified. Of these, two
are blue and one is yellow. Thus, the probability of the new point being yellow is
estimated as 1/3 and that of it being blue is estimated as 2/3. The Bayes decision rule
would classify the new point as blue. The right panel shows the result of classifying a
large set of points as blue or yellow. The panel clearly shows the decision boundary of
the classifier that separates the predicted class memberships, represented by the black
line.

When KNN is used for regression, the predicted output value is usually estimated as
the mean output values of the k neighbours in the neighbourhood Nj.

To show how the KNN classifier behaves as a function of different values for k, con-
sider the two panels in Figure 9.8. The left panel shows the classifications and the
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Figure 9.9: KNN error rates and optimal KNN decision boundary

decision boundaries for £ = 1. It also shows the true Bayes boundary as a dashed blue
line. The KNN classifier shows relatively low bias in that it its decision boundary is
somewhat close to the Bayes decision boundary. However, it also shows signs of over-
fitting when the classifier decision boundary adapts to various individual points along
both sides of the true boundary. The right panel shows a KNN classifier for the same
data set with & = 100. It is clear that the classifier decision boundary does not follow
the true decision boundary, that is, the classifier shows high bias. This classifier is un-
derfitted. On the other hand, given that k£ = 100, it is not susceptible to individual data
points or sampling changes for new data (as long as the new data is generated from the
same true model), that is, it shows low variance.

In KNN classification (and also in KNN regression), the model with the lower value of
k is the more flexible model, and is more likely to lead to overfitting. As k increases,
the model becomes less flexible, less likely to overfit, and increasingly more likely
to underfit and have a high bias. The left panel in Figure 9.9 shows the training and
test error rates for the KNN classifier for different values of k. Note the horizontal
axis shows the inverse of k, that is 1/k, larger k are to the left, smaller & are to the
right in this panel. The right panel in Figure 9.9 shows the classifications and decision
boundary for £ = 10, which is close to optimal.
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Hands-On Exercise The table below provides a training data set containing
six observations, three predictors, and one qualitative response variable.

Obs. | X X X Y
Blue
Blue
Blue
Yellow
Yellow

Blue

=R =1L

_O = = O W

—_— N W O Ofw

[N R O R S

Suppose we wish to use this data set to make a prediction for Y when X; =
X9 = X3 = 0 using K-nearest neighbours.

1. Compute the Euclidean distance (’12-norm” or ”Euclidean norm” of the
vector difference) between each observation and the test point. The 12-
norm is the root of the sum of squared differences.

2. What are your predictions for K = 1 and for K = 3? Why?

3. If the Bayes decision boundary is highly non-linear, would you expect
the best value for K to be large or small? Why?

Adapted from ISLR Exercise 2.7

In binary classification, the confusion matrix is a useful tool for summarizing the per-
formance of a classifier. It tabulates the number of positive and negative predictions
that match the true values. The following confusion matrix shows the results of a
hypothetical binary classifier for credit card defaults that assigns classes by highest
probability:

Pr(default=Yes|X = x) > 0.5 (Bayes)

True default status

No Yes Total
Predicted No | 9644 252 9896
default status  Yes 23 81 104

Total | 9667 333 10000

Source: ISLR2 Table 4.4

The overall error rate is 225252 = 0.0275 = 2.75%. However, of the true defaulters,
only 81/333 = 24.3% were correctly predicted. This is called the recall or sensitivity.
It also means that the error rate for the class of true defaulters is a rather high 75.7%.
The overall error rate remains small mainly because there are very few true defaulters,
only 333/10000. Of the non-defaulters, 9644/9667 = 99.8% are correctly predicted.
This is known as the specificity, for an error rate of only 0.02%.

While a Bayes classification rule of choosing the highest probability class is easy to
justify on probabilistic grounds, practical applications often choose a different thresh-
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old. In this fictitious example, credit card defaulters may pose a significant risk so that
it may be worthwhile reducing the error rate for the true defaulters, even at the the
cost of increasing the error rate for the non-defaulters. This is shown in the following
confusion matrix:

Pr(default=Yes|X = z) > 0.2

True default status

No Yes Total
Predicted No 9432 138 9570
default status  Yes 235 195 430

Total | 9667 333 10000

Source: ISLR2 Table 4.5

More of the true defaulters are correctly predicted and the sensitivity has improved to
58.6% while the error rate for true defaulters has been reduced to 51.4%. On the other
hand, the specificity has decreased to 97.6% and the overall error rate has increased to
3.73%.

In general, a confusion matrix shows four different values, the true negatives (TN), true
positives (TP), false negatives (FN) and false positives (FP) as shown in the following
table:

True class

No (-) Yes (+) Total
Predicted No (-) | True Neg. (TN) False Neg. (FN) | N*
class Yes (+) | False Pos. (FP)  True Pos. (TP) P*

Total N P

From these four values, a number of model quality statistics can be computed. Fre-
quently used are the recall, specificity, precision, accruacy, and F1 score, which are
highlighted in the following list:

» Sensitivity, Recall, Hit Rate, True Positive Rate:

TP TP
TPR="p =gpipy ' IV

* Specificity, Selectivity, True Negative Rate:

TN TN
TNR=—=—"——=1-FPR
N TN+ FP
¢ Precision, Positive Predictive Value:
PPV e 1-FDR

“TP+FP
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Negative Predictive Value:

TN

NPV=———-=1—-F
v TN+ FN OR
Miss Rate, False Negative Rate:
FNR = M FN =1-TPR

P  FN+TP

Fall-out, False Positive Rate:

FP FP

FPR="=Fpron 1~ TNE
False Discovery Rate:
FP
FDR= ————==1—- PPV
FP+TP
False Omission Rate:
FN
FOR= ————==1—- NPV
FN+TN

Accuracy (= 1 - Error Rate):

TP+TN TP+ TN

ACC = -
ce P+ N TP+TN+ FP+ FN

F1 Score (harmonic mean of precision and recall):

PPV x TPR 2TP

Fl1=2 -
“PPVLTPR 2TP+FP+FN

False Discovery Rate:

FP
FOR=Fprp =10V
False Omission Rate:
FN
FOR=gNyrn =1 NPV

The above example demonstrated that the true positive rate and the false positive rate
(or the true negative rate and false negative rate) are not independent of each other.
Generally, increasing the true positive rate will also increase the false positive rate, be-
cause one is overall more likely to conclude that an observation is the true class (by
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Figure 9.10: ROC curves of three example classifiers

adjusting the probability threshold). This suggests that a graph of the true positive rate
against the false positive rate as shown in Figure 9.10 can summarize the classifier per-
formance and allows the user to pick a desirable combination of true and false positive
rates. The graph in Figure 9.10 is called a Receiver Operating Characteristics chart,
or ROC chart for short. The terminology stems from early experiments with aircraft
detection through radar during the 2nd world war. As shown in the figure, a random
classifier is characterized by a diagonal line, and good classifiers have curves towards
the upper left. Thus, the classifier shown in the green line dominates the one in the
orange line, and is in turn dominated by the one represented by the blue line. All three
perform better than a random classifier.

Because the ROC curve of a perfect classifier runs though the top-left corner of the
ROC chart, it is natural to define the overall performance of classifier for various com-
binations of true and false positive rate by the area under the curve. This also allows
easy comparisons of classifiers that do not dominate one another, i.e. whose ROC lines
cross each other. The area-under-the-curve, or AUC for short, summarizes the clas-
sifier performance in a single number. For the classifier in Figure 9.11, the AUC is
0.834, indicated by the green and read areas. A random classifier has an AUC of 0.5
and a perfect classifier has an AUC of 1.


https://commons.wikimedia.org/wiki/File:Roc_curve.svg
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Figure 9.11: AUC of an example classifier

Hands-On Exercises

1. Consider the two confusion matrices above.
» Compute precision and recall for the two confusion matrixes above
e Computer accuracy and F1 values for the two confusion matrixes
above
* The two confusion matrixes above characterize two points on the
ROC curve. Plot the two points for this classifier in an ROC
space/diagram. Are they above or below the diagonal?

2. Consider a medical testing scenario where 1000 individuals are tested for
a disease. The results are:

* 100 people actually have the disease, and 900 do not.

* Out of the 100 people with the disease, 90 are correctly identified
as having it, but 10 are not detected.

* Of the 900 people without the disease, 810 are correctly identified
as not having it, but 90 are incorrectly identified as having the dis-
ease.

Calculate the precision, recall, sensitivity, and accuracy of the test.
Tip: Write down the confusion matrix first.
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Hands-On Exercises [cont’d]

3. Given the following results from a machine learning model:
* Precision: 0.75
* Recall: 0.60
e Accuracy: 0.80
Answer the following questions:
(a) What percentage of identified positives are actually positive?
(b) What percentage of actual positives are identified by the model?
(c) What percentage of the total classifications were correct?

4. Consider a binary classification task with the following confusion matrix
at a certain threshold:
» TP: 150, FP: 50
* FN: 30, TN: 200
Discuss how adjusting the classification threshold might affect precision,
recall, and accuracy. What happens if the threshold is increased or de-
creased?

9.5 Multinomial Classification

Multinomial or multi-class classification assigns each observation to one of more than
two classes. In this setting, the confusion matrix becomes larger, as shown in the
following example, where the overall accuracy is calculated as the sum of the diagonal
element divided by the sum of all elements, i.e. sum(diag(.)) / sum(.) = 17/24 = .71.

True class
0 1 2 Prob
. 4 2 0 go=6/24 = .25

Predicted
Class 1 5 2 g1 =8/24 = .33

2 0 8 g2 =10/24 = 42

Prob Po D1 D2
=7/24 =7/24 =10/24

While the concept of a confusion matrix remains applicable, it is not immediately ob-
vious what the true negative, true positive, false negative, and false positive values are.
One way to overcome this is to reduce the classification results to a binomial case by
treating each class in turn as the ”positive class” and all others as "negative”. This is
called “one-versus-rest” (OvR), “one-versus-all” (OvA), or ”one-against-all” (OaA).

In micro-averaging, the TP, TN, FP, and FN values are counted for all classes using
OvR, and then summed. These total TP, TN, FP, and FN values are then used to com-
pute precision, recall and other metrics. This gives equal weight to each instance but
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may overemphasize the classification for a dominant majority class. Importantly, for
micro-averaging, precision equals recall equals accuracy.

In macro-averaging, the TP, TN, FP, and FN values are counted for all classes, but in-
stead of summing these values, precision and recall are calculated for each class. These
precision and recall values are then averaged over all classes, optionally weighting each
class by its true count of instances. Macro-averaging is appropriate when all classes
are equally important. It is also appropriate for an imbalanced data set and ensures that
all classes contribute equally. However, it may mask poor performance of important
minority classes, and it may lower overall performance measures due to low classi-
fier performance on small or unimportant classes that nonetheless contribute equally to
larger or important classes.

e N

Hands-On Exercise

For the multi-class confusion matrix above,
1. Compute precision and recall for each class.
2. Compute the micro-averages of precision and recall and show that they
equal the accuracy.
3. Compute the macro-averages of precision and recall.

\ J

While precision, recall, and accuracy are useful metrics for evaluating a binary or multi-
nomial classifer, they do not lend themselves to be used directly as loss functions in
fitting a model. This is because the assignment of an observation to a class is a func-
tion of the probability of its class membership and the actual class assignment may
depend on the chosen threshold probability or other decision rule. Thus, a desirable
loss function is a function that expresses how close or how different the predicted class
membership probabilities are from the true class membership probabilities.

There are two commonly used metrics that quantify such a difference. Both have their
origin in information theory and the two are closely related to each other. First, the
cross-entropy of two probability distributions p; and g; over the same set of classes i is
defined as:

H(p,q) = — Z pilogg; Cross-entropy

Here, p; is the true probability of belonging to class ¢ whereas g; is the predicted prob-
ability of belonging to class ¢. The cross-entropy captures the similarity or difference
of the two probability distributions.

The second metric is the Kullback-Leibler (KL) divergence. It is effectively the cross-
entroy minus the entropy of the true probability distribution, as the following derivation
shows:
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Drr(PlIQ) =" pilog <Z> Kullback-Leibler (KL) divergence

= Zpi log p; — Zpi log ¢;
i 7

= —H(p,p) + H(p,q)

Hands-On Exercise

1. Consider the two probability distributions P and @ in the following dia-
grams.

Distribution P Distribution Q
Binomial withp=0.4,N=2 Uniform with p=1/3

ik I

https://commons.wikimedia.org/wiki/File:Kullback-Leibler_distributions_example_1.svg
(a) Calculate the cross-entropy of P and Q.
(b) Calculate the entropy of P.
(c) Calculate the KL divergence of P and Q.
Tip: Binomial distribution: Pr(P = k) = grpysp* (1 — p)" ="

0.4
04

0.2
0.2

0.0

2. Calculate the cross-entropy and KL-divergence for the multi-class con-
fusion matrix above.

3. Given two probability distributions P and Q over a discrete set of events,
where P = [0.1,0.4,0.5] and @ = [0.2,0.3,0.5], calculate the cross-
entropy H (P, Q) and the KL-divergence Dx . (P||Q).

4. In a binary classification task, you have the following probability distri-
butions for the actual labels (P) and predicted labels (Q):
e P =[1, 0] (the actual class is positive)
* Q=[0.7, 0.3] (the model predicts a 70% chance of being positive)
Calculate the cross-entropy loss for this scenario.

5. Calculate the KL divergence between the following probability distribu-
tions:
* P=[0.1,0.9]
* Q=[0.5,0.5]
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9.6 Crossvalidation Methods

Recall that the goal in prediction is to have an unbiased assessment of the true classi-
fication or regression error, and to generalize to prediction of future, yet unseen obser-
vations. Finding a suitable prediction model involves two separate steps, that of model
selection, and that of model assessment. Model selection estimates the predictive per-
formance, that is, the error or loss, of different models in order to choose the best one.
After having chosen the final model, its prediction error must again be estimated on
new data. This is to avoid model selection capitalizing on specific idiosyncrasies of the
test data, which may not hold for new, as yet unseen data.

The validation set approach, or "holdout” method, then requires not only a training and
test data set, but a third set, the validation set. The training data is used to train each
of a set of candidate models, the validation data is used to test each candidate model,
and the test data is used to evaluate the finally selected model. Typically, the data set
is randomly split into 50% training data, 25% validation data, and 25% test data, but
other splits are used as well.

One potential problem with this approach is that the validation error can be highly
variable and depends critically on the way the data is split. One random split can show
very different characteristics than another random split. A second potential problem
is that the validation error may overestimate the actual error, because the training set
is small, only half of the full data set. Figure 9.12 illustrates the first problem. A
single split of the data results in the validation error shown in the left panel. However,
repeating the random splitting ten times results in ten different validation errors that
may be very different from each other, as shown in the right panel of that figure.

One way to deal with both problems is to use leave-one-out cross-validation (LOOCYV).
In LOOCY, each observation is designated as test observation in turn, while the remain-
ing n — 1 observations form the training data set. The model is trained on the training
data and tested on the single test observation. This procedure is repeated n times as
each observation becomes the test observation in turn. The cross-validation error is
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ISLR2 Figure 5.2

Figure 9.12: Validation error for different random splits of a data set
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simply the mean of the n training errors:

CcV = % Z:L:l Err;

The advantage to LOOCYV is that it addresses the two potential problems with the hold-
out sample approach. Additionally, it is deterministic as there is no randomness to the
resulting validation error estimate, because there are no random splits of the data set.
Finally, LOOCYV shows less overstimation of the validation error rate than the holdout
approach. However, a significant drawback is that this approach is computationally
expensive, because the model must be fit or trained n times to n different training data
sets.

As a compromise between the holdout sample approach and LOOCY, business analysts
often use k-fold cross-validation. In this approach, the data set is randomly divided
into k sub-samples (“folds”). Each fold is selected as the test data set in turn, with the
remaining k — 1 folds combining to form the training data set. The cross-validation
error is simply the mean of the k cross-validation errors for each of the k test folds.
Typically, k is chosen as 5 or 10.

1 k
CV = z Zi:l Err;

k-fold cross-validation is computationally less expensive and less stable than LOOCYV,
but it is more stable than the holdout sample approach. The k-fold cross-validation
error estimate has a higher bias but lower variance than that of LOOCV. Figure 9.13
illustrates the stability. The left panel shows the LOOCYV error estimate for a regression
number with different degrees of polynomials. The right panel shows ten different runs
each of 10-fold cross-validation (i.e. the model was trained a total of 100 times). The
10-fold cross-validation errors show a much smaller variation than the different holdout
sample errors in Figure 9.12.

One important consideration in splitting the data is preventing information leakage
from training to test or validation data set, in order to ensure that the test and valida-
tion data sets are truly independent of the training data. One way in which information
could be leaked is when selection of input variables or predictors is done based on
characteristics of the entire data set, for example the variance of a variable or the cor-
relation between variables in the entire data set. This selection affects both the training
and the test data, essentially leaking some information from the training data to the test
data, and thereby making the test data set not truly independent. Another way in which
information can leak is by pre-processing variables, like centering around the mean or
scaling them to have unit variance. When this is based on the mean or variance of the
full data set, information from the training set leaks to the test or validation set, making
those data sets not fully independent. As a general rule, any predictor or feature se-
lection and data pre-processing must be done independently for each training set, after
the split or splits (in the case of k-fold CV) have been made.
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Figure 9.13: Cross-validation error with LOOCYV and 10-fold cross-validation

9.7 Review Questions

Supervised and unsupervised learning

1. Explain the difference between supervised and unsupervised learning. Provide
an example for each.
2. Define regression and classification. Discuss one real-life application for each.

Parametric methods

3. What s the difference between a parametric and a non-parametric machine learn-
ing model? Provide examples.

4. What are some of the key metrics used to evaluate the quality of a regression
model versus a classification model? Discuss their relevance in real-world appli-
cations.

Explanation and prediction

5. Define the terms explanation and prediction. How do they differ in their core
objectives when using statistical models?

6. Explain what is meant by the statement that explanatory models are intended to
be isomorphic to causal processes.

7. Discuss why explanation models focus on bias minimization and how this affects
the model design and interpretation.

8. Provide examples where an explanation model would be more suitable than a
prediction model, and vice versa.

9. What are the implications of using a predictive model that does not represent the
true causal relationship but still produces accurate predictions?
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Bias and variance

10. Explain the terms bias and variance in the context of statistical modeling. How
do they relate to the goals of prediction?

11. Explain the bias-variance tradeoff with an example. You may use a simple re-
gression model as a reference.

12. What are overfitting and underfitting in the context of machine learning? How
can each be detected and mitigated?

13. Describe a scenario where a high-bias model would be more appropriate than a
low-bias model.

14. Given the following scenarios, identify whether the model is likely suffering
from high bias, high variance, or is well-balanced:

* A model that performs well on training data but poorly on unseen test data.
* A simple linear regression model that is unable to capture the complexities
of the data, resulting in poor performance on both training and test data.

* A model that performs equally well on training and test data.

15. Describe techniques to reduce bias in a machine learning model.

16. Given a dataset where the relationship between features and target is non-linear
and complex, propose a strategy to improve a model that initially has high bias
(e.g., linear regression).

17. List and explain strategies to reduce variance in a machine learning model.

18. Imagine you have a deep learning model that performs exceptionally well on the
training data but poorly on the validation data. What steps would you take to
address this issue?

Regression evaluation

19. Explain the difference between Mean Squared Error (MSE) and Mean Absolute
Error (MAE). Why is MAE considered more robust to outliers?

20. Describe the Huber loss function and discuss its advantages over MSE and MAE.

21. Discuss the significance of using test data to evaluate the quality of a regres-
sion model. Why is it not advisable to rely solely on training data for model
evaluation?

KNN classification

22. Explain how the KNN algorithm estimates the class of a new observation. In-
clude a discussion on the effect of the choice of k.

23. How does changing the value of k in the KNN classifier affect the bias and
variance of the model?

Binary classification evaluation

24. Define the terms "precision” and “recall”. Provide a scenario where a high recall
is more important than high precision, and vice versa.

25. Describe the following metrics and explain their importance in the evaluation of
classification models:
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* Precision
* Recall (Sensitivity)
* F1 Score
 Specificity
26. Discuss the importance of the ROC curve and AUC in the evaluation of classi-
fication models. How do these metrics help in assessing the performance of a
model?
27. Given a scenario where you are developing a classifier for a medical diagnosis
application, which metric would you prioritize and why?

Multinomial classification evaluation

28. Explain what is meant by multinomial classification. How does it differ from
binary classification?

29. Describe the purpose and structure of a confusion matrix in the context of multi-
nomial classification.

30. How is the overall accuracy calculated using a confusion matrix for multinomial
classification? Explain using an example.

31. Discuss the difference between micro-averaging and macro-averaging in the con-
text of evaluating classification models.

Cross-entropy and KL-divergence

32. Define cross-entropy and explain its significance in machine learning, especially
in classification tasks.
33. Define Kullback-Leibler divergence and explain its relationship with cross-entropy.

Cross-validation

34. Explain the concept of cross-validation and how it helps in model assessment.

35. What is the validation set approach in model evaluation? Describe its potential
drawbacks.

36. How does the validation set approach help mitigate the risk of model overfitting?

37. Describe the leave-one-out cross-validation (LOOCV) method. What are the
benefits and limitations of using LOOCYV for model validation?

38. Compare and contrast LOOCV with the traditional holdout method. In what
scenarios might LOOCYV be particularly beneficial?

39. Explain k-fold cross-validation. How does it differ from LOOCYV in terms of
error estimation?

40. Discuss the impact of the number of folds in k-fold cross-validation on the bias
and variance of the model error estimate.

41. Define information leakage in the context of data splitting for model evaluation.
Why is it important to prevent it?

42. Provide guidelines or methods to prevent information leakage during the prepro-
cessing and feature selection stages of model development.



Chapter 10

Regression and Classification
Models

Learning Goals

After reading this chapter, you should be able to:

Explain the importance of visually assessing data before predictive modelling.

Build a linear regression model, including interaction effects and categorical pre-
dictors, and be able to assess its quality using cross-validation methods.

Explain the goals and the differences between ridge regression, LASSO and
Elasticnet

Build regression models using different penalized linear regressions and evaluate
their quality using cross-validation methods.

Explain logistic regression and the purpose of the link function, including the
concepts of log-odds or logits.

Build a classification model using logistic regression and evaluate its quality
using common metrics such as accuracy, and the ROC and AUC.

Build a classification model using the KNN method and evaluate its quality using
common metrics such as accuracy, and the ROC and AUC.

Sources and Further Reading

The material in this chapter is based on the following sources. They are freely available.
Consult them for additional information.

303
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Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)

https://www.statlearning.com

Chapters 2, 3,4, 5

\. J

The book by James et al. provides an easy introduction to machine learning at the
introductory undergraduate level. It focuses on applications, not mathematics, and
contains many exercises using R. Concepts are well explained and illustrated. There is
a similar book available by the same authors with applications in Python. This book is
a more accessible of the following book.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of Sta-
tistical Learning. 2nd edition, 12th corrected printing, 2017. (ESL)
https://hastie.su.domains/ElemStatLearn/

Chapters 2, 3,4, 7

The book by Hastie et al. still sets the standard for statistical learning. It is widely
used and cited. It’s treatment is more technical than the previous book and there are
no exercises in R or Python. However, it covers the concepts in more depth (and a few
more formulas). However, it is still very accessible even to an undergraduate audience.

Kevin P. Murphy: Probabilistic Machine Learning — An Introduction. MIT
Press 2022.
https://probml.github.io/pml-book/bookl.html

Chapters 4, 6, 9, 10, 11

Murphy’s book is available under a creative-commons license. It is a somewhat more
technical treatment of the material, but with many illustrations and examples. It is quite
comprehensive in its coverage and targeted at the advanced undergraduate or graduate
student.

10.1 Introduction

This chapter is an introduction to supervised machine learning using R and includes
both regression and classification problems. The chapter introduces linear regression
and penalized regression models (ridge regression and LASSO). For classification, it
introduces the methods of logistic regression and k-Nearest-Neighbours, which was al-
ready briefly discussed in the previous chapter. This chapter builds on the introductory
material to supervised learning in the previous chapter.


https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
https://probml.github.io/pml-book/book1.html
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Figure 10.1: A linear regression model

10.2 Linear Regression

Linear regression fits a simple statistical model to a set of input and output variables.
The true model is assumed to take the form:

f(X)=Y =050+ 51X +e

while the fitted, approximate model is:

f(X)=Y =50+ 5X

The values of f (X) = Y are called the fitted values in statistics or the predicted val-
ues in machine learning. The difference in terminology reflects the fact that traditional
statistics looks back at the training data for the output values determined by the model
after it has been fit to the training data, whereas machine learning emphasizes predic-
tion of output values for new inputs.

This equation shows the form of the assumed functional relationship between X and
Y is linear in the parameters 8. In other words, there are no polynomials or other
transformations of 3, such as 37 or log 3;. It is the linearity of the parameters that
makes a regression linear, not the linearity of the predictors. For example, adding a
polynomial term (5 X? to the right-hand side of this regression equation would still
make this a linear regression.

Figure 10.1 shows the fitted regression line expressed by the intercept (Bo) and slope
(B1) parameters. The distance between this line and the data points (coloured red)
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Figure 10.2: The "Datasaurus Dozen” — All datasets have the same correlation between
the two variables

represents the error term € in the regression equation. Importantly, the error is the
vertical differences in the Y direction between fitted regression line and the data point,
not the shortest distance between the regression line and the data point.

The first task in performing a regression analysis is to identify the form of the regression
model or regression equation. While Figure 10.1 fitted a model that is linear in X, it
is clear that this model is not a good fit for small X values, as the corresponding
observations are all below the regression line.

To identify an appropriate functional form, it is insufficient to simply examine summary
statistics like correlations or covariances between variables. Figure 10.2 shows twelve
data sets with the same correlation between the two variables. It is clear that none of
them can be fitted to a simple moodel that is linear in X. While some, like the circle
or the bullseye data set, can be appropriately transformed and fitted to linear regression
models that involve polynomials or other functions of X, it is not clear what functional
form the dinosaur head might take.

It is also insufficient to fit a model that is linear in X and use the fit as indication
for the appropriateness of the model. Consider the data sets shown in Figure 10.3. The
correlations between the two variables are shown above each data set. Visual inspection
is sufficient to show that data sets with the same correlation do not necessarily have the
same regression slope, or should even be fitted to the same linear model.

The objective for estimating the parameters Sy and /51 from the data set is to mini-
mize the residual or error, that is, the difference between f and f. So that positive and
negative differences do not compensate for each other, the difference is either squared
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Figure 10.3: Datasets with the same correlation (as indicated above each dataset) be-
tween two variables do not need to have the same regression slope

or the absolute value is taken. The former is called mean squared error (MSE) while
the latter is called mean absolute error (MAE). In statistics, a closely related concept
is the residual sum of squares (RSS). The MSE is the RSS divided by the number of
observations n, and minimizing one also minimizes the other. While the discussion in
the previous chapter indicated that the MAE is more robust in that outliers, i.e. obser-
vations with large errors, have less influence on the estimated values of the parameters,
it is customary to fit linear regression models using the RSS or the MSE.

RSS =" (Z/z‘ —Bo — Bl$i>2
MSE = lRSS
n

The linear regression model is simple enough that an optimal solution can be derived
analytically. The optimal least-squares estimates are:

Y- D) — 1)
S S P
Bo = 27*319?

where = and y are the sample means.

The parameter value estimates have standard errors associated with them that indicate
the uncertainty of these estimates. This is based on the idea that the training data set is
a small random sample from the overall population, and taking other random samples
may well yield slightly different parameter values.
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Using the standard errors of the estimates, a t statistic can be calculated from the dif-
ference of the estimate of a parameter beta and some value V.

_p-V

t .
SE(B

~—

The statistic ¢ is a random variable whose values are distributed according to a student-
t probability distribution. This allows one to calculate the probability of observing a
value of ¢ or larger under the assumption that B = V, that is, there is no difference
between V' and the estimate of the parameter B . If the calculated probabily is very
small, it is unlikely that this assumption holds and one might conclude that B # V.
This procedure is called the #-fest. In most applications of this test to regression model
parameters, V is set to 0. Because for large sample sizes the student-t distribution
approaches the normal (Gaussian) probability distribution, the probability is sometimes
calculated from this distribution, the statistic is called the z statistic and the test is then
called a z-test.

Another important statistic in linear regression analysis is the proportion of explained
variance, designated as R2. Tt is defined as:

TS8 TSS

o TSS—RSS | RSS

where T'SS = > .(y; — 9)? is the total sum of squares. An R? value close to 1
indicates that the fitted regression model explains a large proportion of the variability
in the data set, that is, it explains the data well. In contrast, a value close to 0 indicates
that the fitted regression model explains very little of the observed variability, it does
not explain the observed data well. Another important interpretation of the R? is as the
correlation between the true Y and the fitted or predicted values Y.

Adding additional predictors into the linear regression model is straightforward, as is
the inclusion of qualitative or categorical predictors. For example, a model with two
predictors X; and X5 assumes the true form

Y =80+ 51 X1+ B2 Xo+ €

and fits a plane to a set of points in three dimensional (X7, X2, Y) space, as shown in
Figure 10.4.

Qualitative predictors (called factors in statistics) wich multiple, exclusive levels or
categories can be included using dummy variables. A categorical variable that can take
on k values requires k£ — 1 binary dummy variables. For example, a factor = that has
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Source: ISLR2 Figure 3.4

Figure 10.4: Example linear regression with two predictors

four levels ”a”, ”’b”, ’c”, and ”d” might be encoded using three dummy variables as
follows:

1 level 7a”
Ti1 =
0 else
1 level ’b”
Tio =
2 0 else
level 7c”
T;3 =
else

Note that z;; = x;2 = x;3 = 0 represents level ’d”. Such contrasts determine how
factor levels are coded using dummy variables.

Earlier, it was noted that a linear model is linear in its parameters, not necessarily in
its input variables. Hence, it is possible to include transformations of input variables in
a linear regression model, such as polynomials, products, or other functional transfor-
mations like logarithms, square roots, etc. For example, the model

Y = Bo+ 1 X1+ Bo X7 + B3 X2 + B1X1 X0 + €
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Figure 10.5: Example interaction effect in linear regression

is still linear in its parameters ;. This model also shows the difference between input
variables and predictors or features that was alluded to in the previous chater. This
model has two input variables X; and X5 but has four predictors or features, X, X 12
X5, and X; Xo. In statistics terminology, the coefficients of single input variables,
here /31 and (s, are said to represent main effects, while the parameters of products of
two or more input variables, here 84 are said to represent interaction effectsInteraction
effect. Interaction effects can include the product of a numerical variable and a dummy
binary variable. This results in different regression slopes for different categories or
factor levels, as shown in the example in Figure 10.5 where the left panel shows no
interaction effect, that is, the lines are parallel with the same slopes. The right panel
shows an interaction effect where the slopes for different categories are different.

An example of polynomial predictors like X2, X or higher degrees is shown in Fig-
ure 10.6. As the figure shows, and as is true in general, increasing the number of
predictors increases the flexibility of the model to fit the data. This results in smaller
model bias but at the expense of model variance.
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Figure 10.6: Regression example with polynomial predictors

10.3 Linear Regression in R
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Linear regression is part of the basic R system, no libraries need to be installed. The
function 1m () requires a formula representing the regression model and a data frame,

and returns a linear model.

The following example uses the Boston data set that contains housing prices (“me-
dian value”, medv) as well as demographic and socioeconomic information for suburbs
in the city of Boston. The data is available as part of the TSRL2 package'.

First, examine the data, get summary statistics, examine the first few rows of the data
frame, and create scatterplots to identify the form of a linear model:

# Data set from the textbook 'Introduction to
# Statistical Learning with Applications in R'
library (ISLR2)

# Get a description of the data
?Boston

# Get a summary and examine first few rows
summary (Boston)
head (Boston)

# Bivariate scatterplots
plot (Boston)

IThe R code for this example is based on material in Section 3.6 of ISLR2
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The formula interface to 1m () is the easiest to use and resembles the way one would
write the regression equation. The ~ sign separates the output on the left side from the
predictors or features on the right side of the formula. A 1 in the formula represents
the intercept (5 in the formula above). The intercept is normally added automatically
but can be explicitly added or removed (using —1) as needed.

The following R code fits a simple model to predict the median house value, shows
the model summary, produces some plots, and illustrates the use of the predict ()
function to predict values:

# Fit a model with intercept only
fitted.model <- lm(medv ~ 1, data=Boston)
summary (fitted.model)

# Fit a model with predictor lstat
fitted.model <- Im(medv ~ lstat, data=Boston)
summary (fitted.model)

# Plot the data and the regression line
plot (medv ~ lstat, data=Boston)
abline (fitted.model, 1lwd=3, col='red')

# Plot the residuals against predicted values
plot (predict (fitted.model), residuals (fitted.model))

# Predict three new observations of lstat
predict (fitted.model, data.frame(lstat=c(5, 10, 15)),
interval="'confidence')

The following R code fragment adds a second input variable (age) to the model. It also
demonstrates some special notation in the R formula interface, such as the . to include
all main effects, the : to specify interaction effects, and the * to include both main and
interaction effects.

# Add another predictor
fitted.model <- 1lm(medv ~ lstat + age, data=Boston)

# Add all main effects
fitted.model <- Im(medv ~ ., data=Boston)

# Add interaction terms
fitted.model <- Im(medv ~ lstat + age + lstat:age, data=Boston)

# Shorter and equivalent
fitted.model <- 1lm(medv ~ lstatxage, data=Boston)
summary (fitted.model)

The next example adds polynomial terms to the regression. It uses the I (.) function
in R that can also be used with other transformations of the inputs, suchas I (sqgrt (.))
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or I (log(.)).Tomake it easier to include all polynomials up to a particular degree,
one can us the poly (.) function:

# Add a polynomial term; use the I(.) function

# for any data transformations, such as log(),

# or exp() or sqrt() as well as polynomials

fitted.model <- Im(medv ~ lstat + I(lstat”2), data=Boston)
summary (fitted.model)

# Add all polynomial terms up to degree 5

fitted.model <- lm(medv ~ poly(lstat, 5), data=Boston)

# Note the coefficients for the polynomials in the summary
summary (fitted.model)

The use of categorical input variables is illustrated in the following example that uses
the Carseats data, also from the TSLR2 package. The data frame represents sales
data of car seats for different stores and a range of store characteristics in other vari-
ables, many of which are categorical.

The following R code demonstrates functions for dealing with categorical variables,
called “factors” in R. The example then fits a regression model to predict Sales from
the the main effects of all input variables in the data frame.

?Carseats

# Identify factor/categorical variables and their levels:
is.factor (CarseatsS$SShelveloc)

levels (CarseatsS$Shelveloc)

levels (CarseatsSUrban)

levels (CarseatssUs)

# Contrasts show the dummy variables created (columns) and
# the values they take for different factor levels (row)
contrasts (CarseatsS$Shelveloc)

contrasts (CarseatssUs)

# Fit the model
summary (lm(Sales ~ . , data=Carseats))
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Hands-On Exercise

Use the Auto data set from the ISLR2 library with mpg as the target.
1. Perform a linear regression with horsepower as predictor
2. Is there a relationship between the predictor and target? What form and

how strong?

What is the predicted mpg value for a horsepower of 98?

4. Plot the response and predictor. Use the abline () function to add the

regression line

Produce a scatterplot of all variables

6. Perform a linear regression of all main effects (except for the variable
name), then remove non-significant predictors

7. Use the » and : symbols to add interaction effects. Retain only signifi-
cant ones

8. Add transformations of the predictors (using the I (.) function) such as
log(X), VX, X2,

(O8]

9]

Source: ISLR2 Section 3.7

Hands-On Exercise

Use the Carseat s data set from the ISLR2 library with Sales as the target.
1. Perform a linear regression with Price, Urban and US as predictors

Interpret the coefficients. Tip: Some variables are categorical

Remove non-significant predictors

How well do the two models fit the data?

Determine the 95% confidence intervals for the coefficients of each

model.

6. (How) does the importance of predictors change?

> W[

Source: ISLR2 Section 3.7

10.4 Cross-Validation in R

The previous chapter already introduced the concepts of cross-validation. Recall that
the appropriate way to judge the predictive performance of a model is not to evaluate it
on its training data, but to evaluate it on unseen test data. This section illustrates three
different cross-validation approaches in R, beginning with the validation set or holdout
sample approach, which splits the data set randomly into training and test data.

The following example uses the Aut o data set from the ISLR2 package, which con-
tains information on different vehicle models, their fuel economy (“miles per gallon”,
mpg) and vehicle characteristics?.

2The R code for this example is based on material in Section 5.3 of ISLR2
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Randomly splitting the data set is accomplished using the sample () function in R
which returns a boolean vector with values TRUE or FALSE that can be used to select
the appropriate data from the data frame.

To make the example repeatable, the initial seed of the pseudo-random number genera-
tor (RNG) is set to a fixed value with set . seed (). Computers cannot generate truly
random number; they are deterministic machines. The pseudo-random numbers they
generate are computed by a deterministic algorithm, the “random number generator”
(RNG), based on a given start value. With the same start value, the algorithm produces
the same sequence of numbers. A good RNG produces numbers that are effectively
indistinguishable from true trandom numbers.

# Set the seed for the pseudo-random
# number generator (RNG)
set.seed (1)

# Randomly use half the Auto data as training sample
train.idx <- sample (nrow (Auto), nrow (Auto) /2)
train.data <- Auto[train.idx, ]

test.data <- Auto[-train.idx,]

# Fit model to (train model on) a subset
fitted.model <- 1lm(mpg ~ horsepower, data=train.data)

# Calculate the test data MSE by predicting from the test data set
mean ( (test.dataSmpg-predict (fitted.model, test.data)) "2)

# Calculate the training MSE by predicting from the training data set
mean ( (train.data$mpg-predict (fitted.model,train.data)) "2)

# The MSE can also be calculated from the squared residuals
mean (summary (fitted.model) Sresiduals”?2)

The next R code block illustrates Leave-One-Out Cross-Validation (LOOCYV), where
one observation is used as test observation, and the remainder form the training data.
This is repeated so that each observation becomes the test observation in turn. The
errors are then averaged.

While this can be done manually in R using an iteration over the data frame, the library
boot provides easy-to-use cross-validation functions for models fitted using the glm
function (generalized linear models). Note that LOOCYV is just k-fold cross-validation
where k, the number of test data folds, is equal to the number of observations.
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library (boot)

# Fit a model with glm and show its summary
fitted.model <- glm(mpg ~ horsepower, data=Auto)
summary (fitted.model)

# LOOCV is k-fold CV where k equals the number of observations
cv.err <- cv.glm(Auto, fitted.model, K=nrow (Auto))
cv.err$Sdeltall]

The same functions can be used for k-fold CV with a typical value for &:

cv.err <- cv.glm(Auto, glm.fit, K=10)
cv.err$Sdeltall]

Cross-validation is useful for comparing different models, as shown in the following
example that fits linear regression models with different degrees of polynomials to a
data frame and computes their cross-validation errors using a for loop in R:

set.seed (1)

cv.err <- rep(0, 5)

for(i in 1:10) {
fitted.model <- glm(mpg ~ poly (horsepower,i), data=Auto)
cv.err[i] <- cv.glm(Auto, fitted.model, K=10) Sdelta[l]

}

print (cv.err)
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Hands-On Exercise

1. Fit a regression model to the Boston data set with medv as target, and
age, lstat, and ptratio as predictors
2. Using the holdout approach, compute the test error of this model. Per-
form the following steps
(a) Split the data set using 75% for training and 25% for testing
(b) Fit the model to training data
(c) Predict the target for the testing data
(d) Compute the test error
3. Repeat the previous step 3 times, using different splits. How do the re-
sults change?
4. Calculate the mean and the variance of the test errors of the four splits.
5. Include dis as predictor in the model. Does it reduce the test error?
6. Calculate the test error estimate using LOOCV. Compare your result to
the mean that you computed in step 4.
7. Calculate the test error estimate using 4-fold cross-validation. Compare
the estimate to the mean that you computed in step 4

10.5 Shrinkage Methods

Shrinkage methods are so-called because their aim is shrink the magnitude of the re-
gression parameter values Bz This is primarily to avoid overfitting a model to one
specific data set. In other words, they are a kind of regularization. Shrinkage methods
for linear regression model works by penalizing the model for large regression param-
eter values, that is, by performing penalized regression. There are three frequently
used types of penalized regression or linear regression regularization: L1 regulariza-
tion penalizes large absolute parameter values (that is, the L1 norm of the vector of
parameters B), L2 regularization penalizes large squared parameter values (that is, the
L2 norm of the vector of parameters B, and Elastic Net regularization is a combination
of both. L1 regularization is also known as the LASSO (”least absolute shrinkage and
selection operator”’) while L2 regularization is known as ridge regression or Tikhonov
regularization.

10.5.1 Ridge Regression

The loss function or minimization objective of ridge regression is the usual RSS that
now also includes a term that penalizes large values of 5.

p
Minimize RSS+ A 7 = RSS+ ||B|[3

j=1
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Figure 10.7: Bias (black), variance (turquoise), and MSE (pink) in ridge regression

where || - || indicates the L2 vector norm, that is, the sum of squared entries of the
vector [3.

Because the scale, that is, the standard deviation or variance, of different predictors af-
fects the size of their associated § parameter values, all predictors should be rescaled
or standardized to have the same standard deviation prior to performing a ridge re-
gression.

The degree of penalization or the amount of shrinkage is controlled by the parameter
A. Larger values for )\ increase the penalty, thus generally leading to larger model bias
but smaller variance. This effect is shown in Figure 10.7 where the left panel shows
the bias (black line), the variance (turquoise line) and the total MSE (pink line) as a
function of A and the right panel shows the bias, the variance, and the total MSE as
a function of the proportion to which the L2 norm of the f3 is restricted or penalized
compared to the unrestricted estimates, i.e. ||3%|2/|| B||2 where || - ||2 indicates the L2
vector norm, i.e. the sum of the squared elements of the vector.

Figure 10.8 shows this effect for a polynomial of degree 14 that is fitted to data set of 21
observations. The different panels show different degrees of penalization or shrinkage
as indciated by different values of A\. The bottom right panel in Figure 10.8 shows the
MSE on the training data (blue) and test data (red) for multiple values of \. It is clear
that the unpenalized model in panel (a) of Figure 10.8 overfits, while models that are
penalized too heavily underfit and have large bias, such as the model in panel (c) of
Figure 10.8.

10.5.2 LASSO

In contrast to the ridge regression, where the model parameter values are shrunk to-
wards zero, but are never forced to equal zero, the LASSO does just that. In this form
of penalized regression, as the degree of penalty is increased, model parameter values
are set to 0, effectively making the LASSO a model or predictor selection method as
well, that is, it can be used to select only important predictors. This is reflected in
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Figure 10.8: Fitting a degree 14 polynomial with ridge regression

its name: “Least Absolute Shrinkage and Selection Operator”. The advantage over
ridge regression is that this results in more parsminious, that is, smaller, models that
are easier to interpret.

The loss function or minimization objective of the LASSO is the RSS but penalized
for the L1 norm of the vector of parameters 5. As in ridge regression, the amount of
shrinkage is controlled by a parameter .

P
Minimize RSS + )\Z 1Bj| = RSS + A||B||1

Jj=1

where ||||1 indicates the LI vector norm, that is the sum of the absolute values of the
elements of the vector 3.

The model selection property of the LASSO are shown in Figure reffig:lassol. The left
panel shows the value of different model parameters as a function of the penalization
parameter A. As \ increases, fewer and fewer parameters are allowed to retain absolute
values larger than 0. The same is shown in the right panel of Figure 10.9, but now as a
function of the relative size of the restricted L1 norm of 5 compared to the L1 norm of
the unconstrained /.
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Figure 10.9: Preditor selection in the LASSO

Cross—Validation Error

Standardized Coefficients
5
1
/
¥

0.0 02 P.‘a 0.‘(2 0.8 1.0 0.0 02 04 06 08 1.0
|BX11/11B11 18X11/118Il
Source: ISLR2 Figure 6.13

Figure 10.10: Cross-validation error in the LASSO

The LASSO and ridge regression shrinkage or penalty parameter A is typically cho-
sen through cross-validation to minimize the cross-validation or test error. For cross-
validation, a ”grid” or range of possible values of X is defined. A model is fitted for
each value of A and its cross-validation or test error is calculated. The final model
is then fitted using the optimal value of ), that is, the value that results in the lowest
cross-validation or test error.

This is illustrated in Figure 10.10 for a LASSO, where the left panel shows the cross-
validation error as a function of the relative shrinkage. Towards the left of the graph in
that panel, where shrinkage is maximal, the model underfits, resulting in a relative large
error due to a large bias, whereas to the right of the graph, where shrinkage is minimal,
the model overfits, leading to a large cross-validation error due to large variance. The
right panel of Figure 10.10 shows the size of model parameter values; at the optimal
A only two model parameters are different from zero, that is, only two predictors are
selected for the model.
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10.5.3 [Elastic Net

The Elactic Net is a combination of rigde regression and LASSO, controlled by the
parameter .. The Elastic Net penalty is defined as

Al + (1= a)lI8]13)

When a = 0 the Elastic Net reduces to a ridge regression, and for « = 1 the Elastic
Net reduces to the LASSO. The optimal combination of o and A is found through
cross-validation as described above.

10.6 Shrinkage Methods in R

The glmnet library for R implements the Elastic Net which can be used for both
ridge regression and LASSO as well, simply by choosing the appropriate value for the
parameter .

The following R code examples use the Hitters data set containing information on
baseball players. The data set is part of the TSLR2 library. The code examples model
a player’s Salary as the output or prediction target and use a number of other variables
as inputs’.

library (ISLR2)
library (glmnet)

# Remove missing values
Hitters <- na.omit (ISLR2::Hitters)

The glmnet (.) function requires separate x (predicots) and y (target) values, instead
of providing a formula interface like the 1m (.) and glm(.) functions. To create
dummy variables for categorical variables, use the model .mat rix function:

# Create dummy variables for categorical variables

# and remove the intercept (first column) from the model
x <- model.matrix(Salary ~ ., Hitters) [, -1]

y <— HittersS$Salary

To illustrate the concepts of ridge regression, the following R code sets up a grid of 100
different A values, fits ridge regression models to each of them, and shows information
about two models for different A values:

3The R code for this example is based on material in Section 6.5.2 of ISLR2
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grid <- 10”seq(from=10, to=-2, length=100)
print (grid)
ridge.model <- glmnet (x, y, alpha=0, lambda=grid)

# Select the 50th lambda value
ridge.model$lambda[50]

coef (ridge.model) [, 50]

L2.norm = sqgrt (sum(coef (ridge.model) [-1, 50]72))

# Select the 60th lambda value
ridge.model$lambda[60]

coef (ridge.model) [, 60]

L2.norm = sqgrt (sum(coef (ridge.model) [-1, 60]"2))

The optimal value for A is chosen through cross-validation. For this, a holdout test data
set is created to evaluate the final model. The training data set portion is used with
cross-validation, so that the final model evaluation is done on an independent data set
from model selection.

# Randomly split the Hitters data

train.idx <- sample (nrow(Hitters), nrow(Hitters)/2)
X.train <- x[ train.idx,]

x.test <- x[-train.idx,]

y.train <- y[ train.idx]

y.test <- y[-train.idx]

The glmnet library provides the function cv.glmnet as an easy-to-use way to com-
bine Elastic Net model fitting with k-fold cross-validation. The following example uses
5-fold CV on the training portion of the data set:

# 5-fold cross-valiation, use MSE as metric
cv.out <- cv.glmnet (x.train, y.train, alpha=0,
nfolds=5, type.measure='mse')

The next R code block shows the optimal A and plots the MSE for different values
of \. The generated plot is shown in Figure 10.11. It includes the standard errors of
the MSE (as determined by cross-validation) and the number of non-zero coefficients
(indicated above the graph). The left vertical line indicates the optimal A, while the
right vertical line indicates that largest A for which the error is within one standard
error of the minimum error, that is, of the error of the optimal .

print (cv.out)
plot (cv.out)
lambda.opt <- cv.out$lambda.min
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Figure 10.11: Cross-validation MSE in ridge regression

To evaluate the final model, the holdout test data is fitted to a ridge regression model
with the optimal A. Then, the model parameter values of the ridge regression with the
optimal A\ are compared to the parameter values of an unrestricted linear regression
model. Note the use of the type='coefficients’ parameter to predict (.)
that asks for the model parameter values, rather than the predicted target values in the
following R code block.

# Fit test data:

ridge.test <- glmnet (x.test, y.test, alpha=0)

# Show the coefficients at optimal lambda

predict (ridge.test, type='coefficients', s=lambda.opt)
# Compare to unpenalized least-squares fit

coef (Im.fit (x.test, y.test))

Finally, the target values for the holdout test data set are predicted. Note the use of the
type=' response’ parameter to predict (.) that asks for the predicted target
values, rather than the model parameter values, in the following R code block:

predictions <- predict (ridge.test, type='response',
s=lambda.opt, newx=x.test)

# Calculate test MSE to compare to the CV optimal MSE above:

mean ( (predictions - y.test) "2)

Because it uses the same glmnet (.) and cv.glmnet (.) functions, the LASSO
in R is very similar to ridge regression. The following example shows cross-validation
on the training data set to determine the optimal value for \.
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Figure 10.12: Cross-validation MSE in the LASSO

# Set alpha to 1 for lasso

cv.out <- cv.glmnet (x.train, y.train, alpha=1,
nfolds=5, type.measure='mse')

print (cv.out)

plot (cv.out)

lambda.opt <- cv.outS$Slambda.min

The MSE values for different values of A are shown in Figure 10.12. Note that now the
number of non-zero model parameters, indicated above the graph, decreases. At the
optimal \ value, there are only six non-zero parameters, that is, only six predictors are

selected to remain in the model.

Hands-On Exercise

Predict the number of applications received using the other variables in the
College dataset
1. Split the data set into a training and a test set
2. Fit an unpenalized linear model on the training set. Report the test error.
3. Fit a ridge regression model on the training set, with A chosen by cross-
validation. Report the test error.
4. Fit a lasso model on the training set, with A chosen by cross-validation.
Report the test error.
5. Compare and conrast the results
Source: ISLR2, Section 6.6
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Hands-On Exercise

Predict the per-capita crime rate in the Boston data set using the other vari-
ables.
1. Split the data set into a training and a test set
2. Fit an unpenalized linear model on the training set. Report the test error.
3. Fit a ridge regression model on the training set, with A chosen by cross-
validation. Report the test error.
4. Fit a lasso model on the training set, with A chosen by cross-validation.
Report the test error.
5. Compare and conrast the results
Source: ISLR2, Section 6.6

10.7 Classification

In classification, the output or target value is categorical. In particular, in binary clas-
sification, the target may take on one of two values. Classification predicts class mem-
bership for new observations by estimating the probability of membership in each class
for that observation.

10.7.1 Logistic Regression

Linear models, as used in regression, are not suitable for classification without mod-
ification, because probabilities are bounded between O and 1, inclusive, while the re-
gression output can take on any real value. The solution to this problem is to use a link
function that transforms the output of a linear regression model and bounds it between
0 and 1. This is shown in Figure 10.13 where the probability of credit card default are
to be predicted from the credit card balance. The yellow points are the training obser-
vations, classified as either defaulters (0) or non-defaulters (1). The left panel shows
that a linear regression (blue line) yields negative probabilities for small balances, and
will yield probabilities larger than one for very large credit card balances. The right
panel shows the transformed linear regression output, now bounded between 0 and 1,
and interpretable as probabilities from which class membership can be predicted.

There are many transformation or link functions that may be used, but a popular one is
the logistic function, a type of sigmoid function (”s-shaped”) (often the two terms are
equated), defined as follows:
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Figure 10.13: Transforming linear regression output for binary classification
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For the binary case, this leads to binary logistic regression, expressed by the following
equalitites:

=

p(X) = o (Bo + B1X)
eBot+BX

= W (10.1)

p(X) 5 Jrﬁ X ’ ’
= _T 7 ePo 1 Odds (102)

1 —p(X)
X
log (—2X)_) Z g 48X “Log-0dds”, "Logits” (103)
1 —p(X)

Equation 10.1 defines the probability of an observation being true” as just the logistic
transformation of the linear combination of predictors. Dividing and a little algebraic
rearrangement yields equation 10.2 which represents the odds as the exponential of
the linear combination of predictors. Taking the natural logarithm yields equation 10.3
which shows that the linear combination of predictors are equal to the log-odds, also
called logits.

Once estimates of the model parameters 3y and (31 have been calculated, predictions of
the class probability can be made using the logistic link function:


https://commons.wikimedia.org/wiki/File:Logistic-curve.svg
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R R eBOJrBlX
p(X) = X)=———
PX) = ol + ) =~

From there, a threshold value can be used to predict class membership, for example
based on p(X) > 0.5, but other decision rules and threshold values may be used,
depending on the desired proportion or cost of false positives and true positives.

The binary logistic regression can be extended to mutinomial logistic regression, where
there are more than two classes for the output or target. The form of the equations is
similar for K classes, starting from the log-odds. In this derivation, the last class K
plays the role of reference class. As classes are not ordered, this choice is arbitrary.

Pr(Y =kl X =x)
1 = e k< K
(Pr(Y KX —g)) " Ot Pazited Bty k<
Exponentiating and multiplying:

Pr(Y = k|X = z) = Pr(Y = K|X = z)efrotPnot+0uwzr J o [
(10.4)

Because probabilities must sum to 1:

K-1
Pr(Y =K|X =x)=1- ) Pr(Y =1|X =)
=1

Substiting Eq. 10.4 into the right-hand side:

K—-1
— 1= 3 Pr(Y = K|X = g)efottnmitotinz,
=1

Moving Pr(Y = K|X = x) out of the sum, dividing by it, and rearranging:

1

= PI‘(Y = K|X = l‘) = 1 n Zfi}l eﬂ10+511$1+“~+[3[p$p (105)
Substituting Eq. 10.5 into Eq. 10.4:
eProtPrimit+Pr,ap
=PrY =kX=2)= , k< K (10.6)

1+ Z{i}l ePlo TP xit+bi,xp

Equations 10.5 and 10.6 give the class probabilities for the reference class K and for
any other class & < K. They are formally similar to the equations for the binary
logistic regression above; for example, compare equation 10.6 to equation 10.1.
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Figure 10.14: Transforming non-linear decision boundaries using polynomials

Just as polynomials of the input variables may be useful as predictors in linear re-
gression, they also have applications in classification. In particular, they transform
non-linear decision boundaries into linear ones that can be modeled using linear logis-
tic regression. For example, the nonlinear boundary in the left panel of Figure 10.14
can be transformed into a linear boundary by squaring both predictors, as shown in the
right panel of Figure 10.14.

Another example is shown in Figure 10.15 where the linear decision boundary dividing
the top left panel into a blue and red region clearly does not fit the observations, shown
as blue and red points. Fitting logistic regressions with different degrees of polynomials
shows that the decision boundary can be transformed to better fit the observed data. The
bottom right panel in Figure 10.15 shows the the train and test error rate for different
degrees of polynomials.

10.7.2 Logistic Regression in R

The following illustration of logistic regression in R uses the Smarket data set of
the ISLR2 library. The data set contains stock market information and is used in this
example to predict the direction of the movement of the market, either “up” or "down”,
based on previous day’s ("lagged”) data and other variables®.

Logistic regression can be performed using the same glm (.) function as for linear
regression; it is one specific form of the generalized linear model. The family argu-
ment is used to indicate the type of regression and the link function:

4The R code for this example is based on material in Section 4.7.2 of ISLR2
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Figure 10.15: Transforming linear decision boundaries using polynomials

library (ISLR2)
?Smarket

# Contrasts show how factor levels are encoded using dummy variables:
contrasts (Smarket$Direction)

# Fit a logistic regression model
logreg.fitted <-
glm(Direction~Lagl+Lag2+Lag3+Lag4+Lag5+Volume, data=Smarket,
family=binomial (link="logit"'))
summary (logreg.fitted)

The predict (.) function for the fitted model can be used to predict either the logits
or the class probabilities:

# Predict logits for training data
logreg.logits <- predict (logreg.fitted, newdata = Smarket)

# Predict probabilities for training test
logreg.probabilities <- predict (logreg.fitted, newdata = Smarket,
type='response')

A decision rule is necesary to assign observations to classes using the calculated proba-
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bilities. The following example classifies them into the "Up” class, if its class-membership
probability is greater than .5:

# Predict 'up' or 'down' based on probabilities and a threshold
pred.direction <- rep('Down', nrow(Smarket))
pred.direction[logreg.probabilities > .5] <- 'Up'

The confusion matrix can be produced by using the table (.) function on the pre-
dicted class and the observed class. Accuracy is simply the average number of obser-
vations for which predicted class and observed class are identical.

# Compute confusion matrix
logreg.cm <- table(pred.direction, Smarket$Direction)
print (logreg.cm)

# Compute accuracy
mean (pred.direction == Smarket$Direction)

The next R code blocks illustrate the use of a holdout sample or validation set approach
to evaluate the performance of the logistic regression classifier.

Because the data set is a time series, a random split is not appropriate because it would
mean that the training set would contain information later in time that informs the
model parameter estimates which are used to predict earlier observations in the test set.
Instead, time series data must be split non-randomly at some point in time:

train.data <- Smarket [SmarketSYear < 2005, ]
test.data <- Smarket[! (SmarketSYear < 2005),]

Next, the model is fitted to the training data set, class-membership probabilities for
observations in the test data set are then predicted, and the observations are classified
using a decision rule:

logreg.fitted <-
glm(Direction~Lagl+Lag2+Lag3+Lag4+Lag5+Volume, data=train.data,
family=binomial (1link="'logit'))

# Predict probabilities for test data and classify:

logreg.probabilities <- predict (logreg.fitted, newdata = test.data,
type='response')

pred.direction <- rep('Down', nrow(test.data))

pred.direction[logreg.probabilities > .5] <- 'Up'

While the confusion matrix is useful to understand how a classifier behaves, it is only
a first step in evaluating the classifier performance. The ROCR library provides the
performance (.) function to evaluate the predictive performance of a classifier. It
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Figure 10.16: ROC and precision/recall curves for a logistic regression classifier

provides metrics such as accuracy, precision, recall, and can generate ROC curves. The
last two plots generated by the R code block below are shown in Figure 10.16. The left
panel shows the ROC curve, the right panel shows the precision/recall plot. It is clear
from the results that predicting the stock market from the inputs in the given data set
does not work well.

library (ROCR)

# A prediction object contains probabilities and true labels
pred.obj <- prediction(logreg.probabilities, test.dataS$Direction)

# Get some classifier performance metrics, ROCR varies the threshold.
plot (performance (pred.obj, 'acc'))

plot (performance (pred.obj, 'prec'))

plot (performance (pred.obj, 'rec'))

plot (performance (pred.obj, 'f'))

# ROC curve: True positive rate versus false positive rate
plot (performance (pred.obj, 'tpr', 'fpr'), colorize=T)
abline (0, 1)

# Precision/Recall plot

plot (performance (pred.obj, 'prec', 'rec'), colorize=T)

# Calculate the AUC

performance (pred.obj, 'auc')@y.values[[1]]

10.7.3 Naive Bayes Classifier

The naive Bayes classifier is based on Bayes’ theorem of conditional probabilities. The
probability that an observation described by a vector of inputs X is a member of class
c can be described as the probability of observing inputs X given that the class is c,
multiplied by the unconditional probability of an observation being in class ¢, divided
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by the unconditional observation of observing inputs X. Formally:

XY =¢)p(Y =¢)
p(X)

Pr(y = ¢|x) = 2

The overall probability of observing vector X is the sum of the probabilities of observ-
ing X in each class [, multiplied by the probability of an observation being member of
class I:

_ XY =¢)p(Y =¢)
S pX[Y =) p(Y =1)

(10.7)

The naive Bayes assumption is that within each class ¢, the D different input features
that make up X are independently distributed of each other. With this assumption, one
can write:

p(X|Y =¢) =p(z1]Y = ¢) x p(z2]Y =¢) x --- x p(zp|Y = ¢)

D
= ety =) (108)
d=1

Substituting Equation 10.8 into Equation 10.7 yields the posterior probability of class
membership:

[Ty p(zalY =) p(Y =)
(

(Y = ¢|X) =
! (S8 T plaaly =) oY =1

The probabilities in the product of Equation 10.8 can be trivially estimated from the
data, simply as the proportion of each x, for each class c. However, the assumption of
independence is violated when features are correlated. In other words, the naive Bayes
classifier can be expected to perform best for independent features.

10.7.4 Naive Bayes Classifier in R

The e1071 library for R provides the naiveBayes (.) function that implements
the naive Bayes classifier. The following illustration uses the same Smarket data
from the TSLR2 library that was used in the above example on logistic regression’:

3The R code for this example is based on material in Section 4.7.5 of ISLR2
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library (el071)

library (ISLR2)

train.data <- Smarket [SmarketS$SYear < 2005, ]
test.data <- Smarket|[! (SmarketS$SYear < 2005),]

# Fit using same syntax as glm

nb.fitted <- naiveBayes (Direction ~ Lagl + Lag2, data=train.data)

# Output contains prior and conditional probabilities (and their SD)
print (nb.fitted)

A predict (.) method is available to predict class membership, given a fitted naive
Bayes classifier and a data set of observations. A confusion matrix can be constructed
by comparing predicted classes to observed classes. The following R code predicts
class memberships and computes the confusion matrix for the test data.

nb.predictions <- predict (nb.fitted, test.data)
nb.cm <- table(nb.predictions, test.dataS$Direction)
print (nb.cm)

Evaluating the classifier is similar to evaluating the logistic regression classifier and
again uses the ROCR library. The ROC curve created by the following R code block is
shown in Figure 10.17. Comparing this ROC curve to the one in Figure 10.16 shows
that the naive Bayes classifier performs slightly better than the logistic regression clas-
sifier.

library (ROCR)

# Predict probabilities (for use with ROCR)

nb.probabilities <- predict (nb.fitted, test.data, type='raw')
# Create an ROCR prediction object

nb.pred.obj <- prediction(nb.probabilities[, 'Up'], test.dataSDirection)

# Generate an ROC plot

plot (performance (nb.pred.obj, 'tpr', 'fpr'), colorize=T)
abline (0, 1)

# Compute the AUC value

performance (nb.pred.obj, 'auc')@y.values[[1]

10.7.5 KNN Classification

K-Nearest Neighbour classification is a non-parametric classification technique. It
identifies the k nearest neighbours of a new observation, typically using the Euclidean
distance or the L2-norm of the vector differences. It then estimates the class member-
ship probabilities as the class membership proportions among the k nearest neighbours
of the new observations. Details can be found in the previous chapter.



334 CHAPTER 10. REGRESSION AND CLASSIFICATION MODELS

0.8

True positive rate

0.4
0.5

0.2

0.0
|
i
0.48

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 10.17: ROC curve of a naive Bayes classifier

One important requirement in KNN classification is scaling of inputs to have similar
standard deviations or variance to avoid the distance metric being dominated by the
input on the largest scale. For example, if one input ranges between 1 and 10 million,
while another input ranges between 1 and 10, the first input is clearly most important
in determining the distance between two observations.

10.7.6 KNN Classification in R

The class library for R provides the knn (.) function, as illustrated in the following
example R code block that uses the same Smarket stock market data set as the above
examples for logistic regression and naive Bayes®.

library (class)

library (ISLR2)

train.data <- Smarket[SmarketSYear < 2005,]
test.data <- Smarket[! (SmarketS$SYear < 2005), ]

# Split the data into test and train sets

train.x <- cbind(train.dataSLagl, train.dataS$Lag2)
test.x <- cbind(test.dataSLagl, test.dataSLag2)
train.y <- train.dataS$Direction

test.y <- test.dataS$Direction

Next, the knn (.) function is used to make predictions for the test data set, given
the training data inputs and training data outputs. The knn (.) function uses the
Euclidean distance metric. The following R code example considers £k = 3 near-

The R code for this example is based on material in Section 4.7.6 of ISLR2
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est neighbours and returns the class membership probabilities in addition to the class
memberships of the test data set observations:

knn.pred <- knn(train.x, test.x, train.y, k=3, prob=T)

A confusion matrix can be computed using the table (.) function and the accu-
racy is calculated as the mean number (proportion) of observations for which the knn
prediction is the same as the observed class membership.

# Confusion matrix
table (knn.pred, test.y)
# Accuracy

mean (knn.pred == test.y)

The class membership probabilities returned in the knn (. ) function result are those of
the majority class, in this example the class "Down”. Because this is a binary classifi-
cation, the class membership probabilities for the Up” class can be trivially calculated,
as shown in the following R code block:

knn.probs <- attributes (knn.pred) Sprob

# Compute class probabilities of the minority class:
knn.class.probs <- knn.probs
knn.class.probs[knn.pred=='Down'] <- 1l-knn.probs[knn.pred=='Down']

With the class membership probabilities for both classes, the ROCR library functions
can be used to evaluate the classifier by plotting the ROC curve and computing the
AUC. The ROC curve produced by the R code block below is shown in Figure 10.18.

knn.pred.obj <- prediction(knn.class.probs, test.dataS$Direction)
plot (performance (knn.pred.obj, 'tpr', 'fpr'), colorize=T)

abline (0, 1)

performance (knn.pred.obj, 'auc')@y.values[[1]
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Figure 10.18: ROC curve of a k-NN classifier

Hands-On Exercise

Use the Week 1y data set in the ISLR2 package.
1.

2.
3.

4.
5.
6.

Source: ISLR2 Section 4.8

Use the full data set to perform a logisttic regression with Direction
as target. Which predictors are statistically significant?

Compute the confusion matrix and accuracy.

Use the 1990 to 2008 data for a training set and the 2009/2010 for a test
set. Fit a logistic regression model with Lag?2 as the only predictor.
Repeat (3) using Naive Bayes

Repeat (3) using KNN with K =1

Which model provides the best results on this data?
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Hands-On Exercise

Use the Aut o data set in the ISLR2 package.

Source: ISLR2 Section 4.8

1. Create a binary variable, mpgO1 that contains a 1 if mpg is above its
median, 0 otherwise. Tip: Use the median () function. Add the new
variable to the data frame.

2. Split the data set into training and test set

3. Perform a logistic regression on the training data to predict mpg01 from
the other features. What is the test error of this model?

4. Repeat (3) using Naive Bayes

5. Repeat (3) using KNN with different values of K. What value of K
performs best?

Hands-On Exercise

Using the Boston data set in the TSLR2 library, fit classification models to
predict whether a given census tract has a crime rate above or below the median.

Source: ISLR2 Section 4.8

1. Create a new binary variable crime01 that is 1 is crime is above its
median, and 0 otherwise. Combine this variable with the data frame. Tip:
Use the median () function for this.

2. Split your data set into a training and test data set

Fit logistic regression, Naive Bayes, and KNN (with different K)

4. Describe your findings in terms of prediction error, precision, recall, F1
and AUC

&9

10.8 Review Questions

Linear Regression

1.

2.

Explain the primary objective of linear regression and how it is implemented in
a statistical model.

Discuss the importance of visual inspection of data before choosing a regression
model.

. Define fitted values or predicted values in the context of linear regression. How

are they computed?

. Discuss why a model with a term like 3, X2 is still considered a linear regression

model.

How does the residual sum of squares (RSS) relate to mean squared error (MSE)
in linear regression analysis?

Explain the importance and use of the standard errors of the estimates in linear
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regression.
7. Describe what a t-fest in regression analysis involves, and how it is used to test
hypotheses about model parameters.
8. What does the R? statistic tell us about a linear regression model? What are its
limitations?
9. Explain the term interaction effects using an example, and describe how they can
be identified in a regression model.
10. What role do dummy variables play when incorporating categorical predictors
into a regression model? Give an example.
11. How can the inclusion of more predictors into a linear regression model affect
the model’s bias and variance?

Random Numbers

12. Define a pseudo-random number generator (RNG). How does it differ from a
true random number generator?

13. Discuss the role of the seed in the generation of pseudo-random numbers. What
happens if the seed is not set before generating random numbers in a program?

14. Describe a scenario where using the same seed value might be advantageous in
computational analyses.

Shrinkage Methods

15. Explain what is meant by “shrinkage methods” in the context of regression anal-
ysis. Why is it necessary to shrink the magnitude of regression coefficients?

16. What is the difference between L1 and L2 regularization? Provide examples
where each might be preferable.

17. Explain the rationale behind using ridge regression and LASSO as alternatives
to standard linear regression. What problem do they address?

18. Discuss why it is important to standardize predictors before applying ridge re-
gression. What could happen if the predictors are on different scales?

19. Explain the concept of the LASSO as a form of penalized regression. How does
it differ from ridge regression in terms of the impact on model parameters?

20. Discuss the method of selecting the penalty parameter A in shrinkage methods
like ridge regression and LASSO.

21. Discuss how the bias-variance trade-off is managed in ridge regression through
the adjustment of \. What are the signs that ) is set too high or too low?

22. Explain how the Elastic Net method balances the properties of L1 and L2 penal-
ties. What role does the parameter « play in this balance?

Logistic regression

23. Explain the concept of the sigmoid or logistic function as a solution for bounding
the output of a regression model between 0 and 1.

24. What is a link function in logistic regression? Describe its purpose and how it
modifies the output of a linear model.
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27.

28.

29.
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Define the logistic function and explain how it is used in logistic regression to
estimate probabilities.

In logistic regression, what does the logit (or log-odds) function represent? How
does it relate to the probabilities of class memberships?

Discuss the significance of the threshold value in logistic regression. How is it
used to determine class membership?

Explain the concept of multinomial logistic regression and how it extends the
binary logistic regression model to multiple classes.

Discuss how incorporating polynomial terms of input variables into a logistic
regression model can help in transforming non-linear decision boundaries into
linear ones.

Naive Bayes classification

30.

31.

32.

33.

34.

What is Bayes’ theorem and how is it applied in the naive Bayes classifier to
compute class probabilities?

Explain how the probability p(X|Y = c¢) is calculated under the naive Bayes
assumption.

Discuss the implications of the independence assumption among features in the
naive Bayes classifier. What are the potential limitations of this assumption in
real-world scenarios?

Explain the role of prior probabilities p(Y = c) in the naive Bayes classifier.
How do these influence the final classification?

What is the effect of having highly correlated features on the performance of the
naive Bayes classifier?

KNN classification

35

36

37.

38.

39.

40.

. Define K-Nearest Neighbor (KNN) classification. Why is it classified as a non-
parametric technique?

. Explain the concept of "nearest neighbors" in the context of KNN. What metrics

can be used to determine proximity in feature space?

Discuss the role of the number & in KNN classification. How does the choice of

k influence the classifier’s performance?

Describe how KNN estimates the class membership probabilities for a new ob-

servation.

Discuss the impact of feature scaling on the performance of KNN classification.

Why is it important to scale features?

Discuss the trade-offs between choosing a larger versus smaller value of k in

KNN classification.
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Chapter 11

Introduction to Unsupervised
Machine Learning

Learning Goals

After reading this chapter, you should be able to:

L]

Explain the aims principal components analysis, the importance of scaling data
before the analysis, the concept of a principal component and how to choose an
appropriate number of components.

Carry out a principal component analysis and justify the number of components
retained.

Explain the process of k-means clustering, including the importance of the dis-
tance function and of scaling data before clustering.

Carry out a k-means clustering and evaluate its quality.

Explain hierarchical clustering, and the distance and linkage functions involved
in clustering.

Choose an appropriate clustering solution from a dendrogram.

Carry out a hierarchical clustering and evaluate its quality.

Sources and Further Reading

The material in this chapter is based on the following sources. They are freely available.
Consult them for additional information.

341
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Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)

https://www.statlearning.com

Chapter 12

\. J

The book by James et al. provides an easy introduction to machine learning at the
introductory undergraduate level. It focuses on applications, not mathematics, and
contains many exercises using R. Concepts are well explained and illustrated. There is
a similar book available by the same authors with applications in Python. This book is
a more accessible of the following book.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of Sta-
tistical Learning. 2nd edition, 12th corrected printing, 2017. (ESL)
https://hastie.su.domains/ElemStatLearn/

Chapter 14

The book by Hastie et al. still sets the standard for statistical learning. It is widely
used and cited. It’s treatment is more technical than the previous book and there are
no exercises in R or Python. However, it covers the concepts in more depth (and a few
more formulas). However, it is still very accessible even to an undergraduate audience.

Kevin P. Murphy: Probabilistic Machine Learning — An Introduction. MIT
Press 2022.
https://probml.github.io/pml-book/bookl.html

Chapters 20, 21

Murphy’s book is available under a creative-commons license. It is a somewhat more
technical treatment of the material, but with many illustrations and examples. It is quite
comprehensive in its coverage and targeted at the advanced undergraduate or graduate
student.

11.1 Introduction

In unsupervised machine learning, there are no known correct outputs that can be used
to train or fit statistical models. In that sense, there are no X and Y variables, but only
the X variables. Unsupervised machine learning focuses on identifying patterns in the
data, often in order to simplify the data. The two unsupervised methods considered
here, principal components analysis (PCA) and cluster analysis or clustering, both do
this. For example, PCA “summarizes” multiple variables or “dimensions” into fewer
variables, the principal components, while cluster analysis finds similarities in the data


https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
https://probml.github.io/pml-book/book1.html
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and groups or clusters observations into fewer clusters than observations. The principal
components and the clusters can be viewed as simpliciations or summaries of the data.

11.2 Principal Components Analysis

The aim of principal component analysis (PCA) is to create linear combinations of the
input variables, the principal components (PC), that satisfy two conditions:

1. They are maximally variable, that is, their variance is maximal, and
2. They are orthogonal, that is, independent, of each other.

There are as many principal components as there are input variables. Generally, only
a few of the principal components, the ones with the greatest variance, are retained
for further analysis. It is not uncommon to reduce hundreds of variables to five or ten
principal components for further analysis.

These principal components are considered summaries of the original data and can be
used, for example, instead of the original input variables in a regression or classifica-
tion model. This makes the model smaller and therefore easier to understand, interpret,
and verify. Using fewer inputs for a regression or classification can also serve as a
regularization method, that is, a way to make the model less susceptible to overfitting.
This is because models with fewer inputs generally have fewer parameters, all other
things being equal. Additionally, the principal components are useful for data visual-
ization. It is much easier to show a 2D or 3D summary of the data when the data has
been summarized in two or three principal components, rather than visually depicting
dozens or hundreds of variables.

Figure 11.1 shows an example visualization of a scatterplot of data on two variables
and the two principal components. Technically, the two arrows shown are the eigen-
vectors of the covariance matrix of the data, scaled in length by the square root of the
corresponding eigenvalue and then shifted to the mean of the data, details that will
become clear below.

We first introduce an iterative method of computing principal components. Recall that
principal components are linear combinations of the original input variables. Hence,
the first principal component (PC) for 1 < ¢ < n data values and p variables is defined
as:

Zi1 = W11%41 + W21Xi2 + - - + Wp1ZTip
Or, simpler, in matrix form:

Zl = le

The weight vector or loading vector wi = (wi1,...,Wp1) s a p x 1 column vector
that is scaled to unit length, that is, ||w1 ||2 = 1. X is a n x p data matrix and Z; is the
first principal component of size n x 1.
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12

10+

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg

Figure 11.1: Scatterplot with Principal Components

Assuming zero-centered variables, the variance of Z; and the optimization criterion
can be expressed as follows:

2
n n

p
maximize » 2 = | Y wjiai (Variance of ;) (11.1)
wj1 X
Jj=1

i=1 i=1

Subject to:

p
Z wjzl =1 (Scaling constraint)
j=1

Or, simpler, in matrix form:

maximize Z7 Z; = wl Xy Xw; (Variance of Z;) (11.2)
w1


https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
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Subject to:

[lwill2 =1 (Scaling constraint)

To derive the second PC, subtract the first PC from the data:

T
Xnew — X — Xwjw;

Then, repeat the maximization with the residual data Xy, that is the "left over” por-
tion of the data.

This procedure can be repeated until as many principal components k are calculated as
there are original data variables p. Because each iteration reduces the remaining data,
the residual, by subtracting a component with maximum variance, the variance of the
residual data shrinks. Hence, the variance of each successive principal component and
therefore the proportion of the initial overall variance accounted for by each successive
principal component shrinks. In other words, each successive component explains a
decreasing proportion of the total original variance in the data.

There are two important considerations when working with PCA. First, the input data
variables should be scaled to have equal or unit standard deviation, so that the measure-
ment scale of different variables does not influence the outcome of the PCA. Second,
the signs of the principal components can be “flipped” arbitrarily. This can be seen in
Figure 11.1, where one can easily imagine the two arrows pointing in opposite direc-
tion, and still providing the same good summary of the original data.

Variables in the data set should be scaled to identical standard deviations prior
to PCA.

To give an applied example, consider four input variables extracted from a data set
of police arrest data in the US for violent crimes in each of the 50 states of the US.
While four principal components can be computed, the four input variables can be
summarized pretty well by just the first two principal components that together explain
more than 80% of the total variance. Figure 11.2 shows a plot of the data along the first
two components which form the horizontal and vertical axis. This is known as a biplot.
Overlayed are the four original variables. Table 11.1 shows the component loadings,
that is the ¢ in the above formulas, for the first two principal components.

Interpretation of the principal components, which is important in explanation but less
so in prediction, focuses on the loadings. For example, looking at the columns of
the loadings in Table 11.1 shows that the first PC has high loadings on the variables
“Murder”, ”Assault”, and “Rape”, and a much smaller loading on UrbanPop”. This
suggests that PC1 expresses the overall prevalance of violent crime, as a summary of
those three variables. In contrast, the second PC has a high loading on ”UrbanPop”, but
amuch lower (absolute) loading on the other three variables, indicating that it expresses
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Figure 11.2: US arrests data example — Biplot with data plotted on first two principal
components with original variables

primarily the one variable "UrbanPop”. This interpretation is supported by Figure 11.2,
which examines the rows of Table 11.1, plotting each variable as a two-component
vector in the space spanned by PC1 and PC2 (recall that the principal components are
by definition orthogonal). Here, the row vector for the variable ”UrbanPop” is visually
distinct and separate from the row vectors for the other three variables.

While the iterative description of principal components above illustrates the properties
of the components in terms of their variance, actual PCA is done by means of eigen-

PCl1 PC2
Murder 536 | -0.418
Assault 583 | -0.188
UrbanPop | .278 | 0.873
Rape 543 | 0.167

Source: ISLR2 Table 12.1

Table 11.1: US arrest data example — first two principal component loadings
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decomposition. 1t turns out that the solution to the maximization problem in Equa-
tions 11.1 and 11.2 are the principal components of the data correlation matrix. Each
principal component is an eigenvector of the data correlation matrix such that:

VIIXTXV =v-icv =A
where V' is the matrix whose columns are the eigenvectors, C' is the data correlation
matrix, and A is a diagonal matrix of eigenvalues.

The proportion of variance explained fj, by each PC k is proportional to the corre-
sponding eigenvalue )y, that is, the k-th entry of A:

A
fk:pik

=1

The cumulative proportion of variance F}, explained by the first k£ PC is then:

k
Zj:l Aj
p )‘j

Jj=1

F, =

There are different criteria for selecting the number of principal components to retain
for further analyses:

* There may be a theoretical reason, especially in an explanation context, to retain
a specific number of principal components

» The analyst retains those principal components that have an intuitive and relevant
interpretation, as in the above example.

* The analyst retains those principal components whose eigenvalue A > 1

* The analyst retains principal components until the cumulative proportion of vari-
ance explained by the components surpasses a given threshold, e.g. 80%. For
example, the right panel in Figure 11.3 shows a plot of the cumulative variance
explained. The first two principal components are necessary to explain 80% or
more of the total variance in the original data.

* When used in subsequent regression or classification models, cross-validation
may be used to identify the optimal K that shows the lowest test error.

e The analyst examines the “scree plot”, that is, the plot of the eigenvalues or
proportion of variance explained by each component. Oftentimes, there will be
a clear point of inflection in this plot, indicating a useful cutoff. The left panel
in Figure 11.3 shows such a scree plot. The proportion of variance explained
diminishes for each additional principal component.

In practice, the number of principal components to retain is often subjective, and ana-
lysts use a combination of considerations and criteria to make their decision.
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Figure 11.3: US arrests data example — Scree plot and cumulative variance explained

11.3 Principal Components Analysis in R

The USArrests in the ISLR2 library contains data on the arrests (per 100,000 res-
idents) for various violent crimes as well as the percentage of urban population in the
50 states of the US!. First, examine the data and the correlation between variables. In
the correlation matrix, one can already see that ”UrbanPop” is not highly correlated
with the other three variables, an indication that it will not load on the same principal
component as those.

library (ISLR2)
?USArrests
summary (USArrests)
cor (USArrests)

The prcomp () function in R performs a PCA and can optionally scale and center the
data before doing so:

# PCA using prcomp ()
# Scaling is generally a good idea
pca.result <- prcomp (USArrests, scale=TRUE)

# Print the component loadings
pca.result$rotation

The results can be plotted in a biplot, similar to the one in Figure 11.2, using the
biplot () function for the prcomp result object. By default, that function uses

The R code for this example is based on material in Section 12.5 of ISLR2



11.3. PRINCIPAL COMPONENTS ANALYSIS IN R 349

the first two principal components, but others can be specified using the choices
argument. Note that the signs of the principal components may be arbitrarily flipped.

# Biplot for components 1 and 2

biplot (pca.result, choices=1:2, scale=0)

The explained variance can be computed from the result and plotted in a scree plot
similar to the one in the left panel of Figure 11.3.

# Explained variance for each component
pca.result$sdev”?2

# Scree plot (both points and lines)
plot (pca.result$sdev”2, type='b', col='blue')

Recall that the proportion of variance explained is the proportion of the variance of a
principal component out of the total variance explained by all principal components.
The R function cumsum () can be used to conveniently calculate the cumulative value
of this. The following code block computes a cumulative plot similar to the right panel
in Figure 11.3.

# Proportion of variance explained
pve <- pca.result$sdev”2 / sum(pca.resultSsdev”2)

# Cumulative sum of variance explained
plot (cumsum(pve), type='b', col="'blue')

Using the eigen (.) function for eigenvalue decomposion shows that the principal
component loadings correspond to the eigenvectors and the explained variance corre-

sponds to the eigenvalues,

# Eigen—decomposition of correlation matrix
e <- eigen(cor (USArrests))

# Compare values and vectors to prcomp
eSvalues

eSvectors

3
]
0]
[}
=
i
o+
[}

The component scores themselves are also available in the prcomp result for use in
further analysis such as regression or classification:

# Print the component scores themselves
# For further use in regression, etc.
head (pca.results$x)
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Hands-On Exercise

The Boston dataset in the ISLR2 library describes house prices in the differ-
ent suburbs of Boston. Use PCA to reduce the number of dimensions for this
dataset:
1. Use the prcomp function to perform a PCA on the centered and stan-
dardized data. Limit yourself to quantitative inputs.
2. Produce a biplot of the first two components
3. Provide the proportion of variance explained by each component
4. How many components would you retain? Why? How much of the total
variance would this explain?
5. Based on the loadings, can you ascribe meaning to the components?
What do they represent?

Hands-On Exercise

The Harmann74 . cor dataset in the datasets library contains the results
of 24 psychological tests given to 145 school children. Use PCA to reduce the
number of dimensions for this dataset:
1. Use the prcomp function to perform a PCA on the centered and stan-
dardized data. Limit yourself to quantitative inputs.
2. Produce a biplot of the first two components
3. Provide the proportion of variance explained by each component
4. How many components would you retain? Why? How much of the total
variance would this explain?
5. Based on the loadings, can you ascribe meaning to the components?
What do they represent?

Hands-On Exercise

The Hitters dataset in the TSLR2 library contains the salary of 322 baseball
players and season statistics. Use salary as the target variable and all other
numerical variables as predictors.
1. Use PCA to reduce the number of dimensions for the predictors. Limit
yourself to quantitative inputs.
2. Retain the first principal component.
3. Estimate and cross-validate a regression model using the first PC as pre-
dictor. What is the training and validation error?
4. Repeat steps (1) to (3), retaining 2, 3, ..., all components
5. Plot the training and validation error agains the number of components.
Describe and discuss your results.
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11.4 Clustering

Whereas PCA tried to simplify a data set by column” through the identification of
variables that can be summarized by principal components, cluster analysis tries to
simply a data set "by row” through the identification of observations that are similar
and can be represented as a group, that is, a cluster. The aim is to form homogenous
subgroups of observations and to discover “’structure” in the data.

There are a many different types of clustering. This chapter focuses on two simple
and easy-to-understand methods. The k-means clustering algorithm is an example of
centroid-based clustering, a method that assigns observations to clusters based on their
distance from the cluster center ("centroid”), while agglomerative clustering is a form
of hierarchical clustering which iteratively merges observations together to form larger
and larger clusters.

11.4.1 K-Means Clustering

In k-means clustering, the number of clusters K is assumed given, determined by the
analysts knowledge of the data or the requirements of the analysis. The aim of k-means
clustering is to minimize the within-cluster variation W (C;) in each cluster C;:

This within-cluster variation is defined as the squared Euclidean distance between ev-
ery pair of observations in the cluster (Equation 11.3) or between every observation
and the cluster centroid of the cluster it is assigned to, that is, its corresponding cluster
mean fi (Equation 11.4).

1 P
W(Ck):m D> (@i —wiry)? (11.3)

i,i’€Cy j=1

p

i€Cy j=1

Here, 4,7’ range over observations within cluster C}, j ranges over the p different
variables that make up an observation, and [iyj is the mean of variable j for cluster k.

This definition of distance means that k-means cluster analysis is only applica-
ble to quantitative variables.

When variables are measured on different scales, e.g. one variables in the range of [0, 1]
while another is measured between [0, 1000000] it is important to standardize or scale
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Figure 11.4: K-means iterative cluster assignment example

the variables to have similar standard deviations (typically, unit standard deviation,
i.e. 1). Otherwise, the Euclidean distance between observations is dominated by the
variable with the largest range.

Variables in the data set should be scaled to identical standard deviations prior
to k-means clustering.

K-means clustering uses an iterative algorithm, beginning with the random assignment
of each observation ¢ to one of the k clusters. From these cluster assignments, the clus-
ter means (centroids) can be computed (fi; in Equation 11.4). Next, each observation
is assigned to that cluster whose centroid is closest. The last two steps are repeated
until the cluster assignments no longer change.

This process is illustrated in Figure 11.4. The top left panel shows observations on
two variables. The panel labeled ”Step 17 shows the initial random assignment of each
observation to one of three clusters, indicated by the color. The top right panel, labelled
“Iteration 1, Step 2a” shows the cluster means or centroids computed based on this
assignment as large coloured circles. As one might imagine, random assignment leads
to cluster means that are very similar. The bottom left panel, "Iteration 1, Step 2b”
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Figure 11.5: K-means clustering solutions from different initial cluster assignments

shows the cluster assignment of the observations based on the new cluster means. Each
observation is assigned to that cluster whose mean is closest. The bottom middle panel,
“Tteration 2, Step 2a” shows the new cluster means based on the new cluster assignment
of observations. The bottom right panel shows the final, stable cluster assignment.
Repeated calculation of cluster means and assigning observations to clusters does not
change cluster membership for any observation. Note that the cluster membership in
this final panel is slightly different than the one in the bottom middle panel, indicating
at least one more iteration between the two panels.

It should be clear from this description that the random initial cluster assignment has a
significant impact on the final result. As the number of observations grow, the random
effects generally diminish, but different random initial cluster assignments may yield
different final clustering solutions.

The k-means algorithm should be run multiple times and the optimal solution,
that is, the one with the lowest within-cluster variability, should be chosen for
further analysis.

This effect is shown in Figure 11.5. The data from the previous example was clustered
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six different times with different random initial cluster assignments. Each final solu-
tion is different, and may also have a different within-cluster variability as shown at
the top of each panel. Note that some solutions are identical but permute the cluster
assignments/colours. For example, the top middle and top right panels in Figure 11.5
are identical and also identical with the bottom left and bottom middle solution, except
for the permutation of cluster assignments, indicated by the colours.

11.4.2 K-Means Clustering in R

To illustrate k-means clustering in R, consider the following simulated example, which
uses the kmeans () function?. Data is simulated as 50 observations on two normally
distributed variables. One half of the data is shifted by +3 on the first variables and
by —4 on the second variable. With a standard deviation of 1, this constitutes a large
separation and should lead to clearly identifiable clusters.

# Set RNG seed for replicability

set.seed(2)

# Create a 50 x 2 matrix of random variables

# Normally distributed, with 0 mean and SD=1

X <- matrix(rnorm(n=50+2, mean=0, sd=1), ncol=2)

# Clearly separate the first 25 points by shifting their coordinates
x[1:25, 1] <- x[1:25, 1] + 3

x[1:25, 2] <= x[1:25, 2] — 4

Next, the data is clustered using the kmeans () function into 2 clusters, 20 times with
different random initial cluster assignments:

# Cluster into 2 clusters, performing 20 random starting assignments
km.result <- kmeans(x, 2, nstart=20)

The result object km. result contains the cluster means, the cluster assignments for
each observation and the sum-of-squares (distances) within each cluster and between
clusters. Recall that the optimization objective is to minimize the within-cluster varia-
tion.

# Results show cluster means, cluster assignments,

# and sums of squares (distances) within and between

print (km.result)

# Those values are also available as components in the result object
names (km.result)

print (km.resultScenters)

print (km.resultSwithinss)

# etc.

2The R code for this example is based on material in Section 12.5 of ISLR2
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K-Means Clustering Results with K=2
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Figure 11.6: Result of k-means clustering on simulated data

Finally, it is easy to create colour-coded plot of the data (the following R code block
adds 1 to every cluster number to avoid plotting black points). This generates a plot as
shown in Figure 11.6, clearly indicating the well-separated clusters.

# Plot the color-coded points

plot (x, col=(km.resultScluster+l),
main = 'K-Means Clustering Results with K=2',
xlab = ''", ylab='"', pch=20, cex=2)

Hands-On Exercise

The Boston dataset in the TSLR2 library describes house prices in the dif-
ferent suburbs of Boston. Use K-Means Clustering to identify sets of similar
suburbs using only the numerical variables in the data set.

1. Use the kmeans function to perform a cluster analysis, using multiple
starting assignments. Limit yourself to quantitative inputs but do not
scale the variables.

2. Use different numbers of clusters k£ and identify which value of k gives
you the best results. Define what you mean by “best” and justify your
choice.

3. Scale the data so that each variable has the same variance or standard
deviation, but do not change the variable means.

4. Repeat the cluster analysis with the best value of k£ and compare results.
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Hands-On Exercise

The Hitters dataset in the ISLR2 library contains the salary of 322 baseball
players and season statistics. Use K-Means Clustering to identify sets of similar
players, using only the numerical variables in the data set.

1. Use the kmeans function to perform a cluster analysis, using multiple
starting assignments. Limit yourself to quantitative inputs but do not
scale the variable.

2. Use different numbers of clusters £ and identify which value of k gives
you the best results. Define what you mean by “best” and justify your
choice.

3. Scale the data so that each variable has the same variance or standard
deviation, but do not change the variable means.

4. Repeat the cluster analysis with the best value of k£ and compare results.

11.4.3 Hierarchical Clustering

Hierarchical clustering is either agglomerative, that is, it constructs clusters ’bottom-
up” by joining observations or small clusters to larger clusters, or it may be divisive,
that is, in ’top-down” fashion, starting from the whole set of observations, it iteratively
divides the set into clusters. This section examines the use of agglomerative clustering,
which is widely used because of its intuitive process and its flexibility.

Agglomerative clustering begins with n observations and a distance (or, alternatively, a
similarity metric, which is just the inverse of distance — a large distance means a small
similarity). The process is then as follows:

1. Treat each observation as its own cluster

2. Repeat the following steps n — 2 times:
(a) Calculate distances between all pairs of clusters
(b) Identify the pair of clusters that are least distant from each other
(c) “Fuse” or merge these two clusters

The process is usually visualized with a dendrogram, which literally means "tree graph”,
such as the one shown in the left panel of in Figure 11.7. A dendrogram is read bottom-
up, showing which clusters are merged in which order. The vertical axis shows the
distance between clusters as they are merged. Consider the observations on two vari-
ables shown in the right panel of Figure 11.7. In the example, clusters 5 and 7 are
merged first, from a distance of ~ 0.3. This distance is the smallest distance between
all clusters, indicated as the lowest merging point in the dendrogram in the left panel
of Figure 11.7. Cluster 5 is just observation 5, and cluster 7 is just observation 7. The
two together form a new cluster. Next, clusters 1 and 6 are merged, from a distance of
~ 0.4, the second lowest merging point in the dendrogram. Then, cluster 8 (which is
observation 8) is added to the cluster consisting of observations 5 and 7, at a distance
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Figure 11.7: Example dendrogram and data for agglomerative clustering

of =~ 0.8. After this, observation 4 is added to the cluster consisting of observations 1
and 6, etc. The final two clusters are at a distance of ~ 3 when they are merged into a
single cluster.

The follwing key decisions need to be made by the analyst for agglomerative clustering:
* How to measure similarity or distance between observations?
* How to measure distance between clusters ("linkage’)?
* How many clusters should there be?

Table 11.2 shows a set of common distance metrics or vector norms that are frequently
used in agglomerative clustering. Figure 11.8 is a visualization of the intuition behind
some of these distance metrics. For example, the Chebyshev distance allows diagonal
“moves” to count as a single step with a distance of 1, wheres the taxicab metric counts
a ’move” in each direction as a single step, so that diagonal "moves” have a distance of
2. In principle, any of these distance metrics could also be used in k-means clustering,
but this is rarely done.

Because the distance function is heavily influenced by the measurement scale of the
variables, when these are not equal, it is possible for one variable to dominate others,
simply because it is measured on a different scale. As with PCA and k-means cluster-
ing, it is therefore important to scale the variables in the data set to identical standard
deviation (typically, unit standard deviation, i.e. 1).

Variables in the data set should be scaled to identical standard deviations prior
to hierarchical clustering.

Table 11.3 shows a set of the most commonly used linkage functions, that is, functions
that express the distance between two clusters G and H. The single linkage is based on
the minimum distance of any pair of observations where one observation is in cluster
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Table 11.2: Common distance metrics or “norms” in clustering
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Figure 11.8: Different distance metrics and their intuition

( and the other in cluster H. In other words, the distance of two clusters is the distance
between the two closest observations from each cluster. In contrast, complete linkage
uses the maximum; the distance between clusters is the maximal distance between any
of their member observations. Finally, average linkage uses the mean distance between
all pairs of observations. There are many other, less commonly used linkage functions
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Table 11.3: Commonly used linkage functions in hierarchical clustering

Average Linkage Complete Linkage Single Linkage

Source: ISLR2 Figure 12.14

Figure 11.9: The effect of different linkage functions in agglomerative clustering

available?.

The linkage function has a significant effect on the process of clustering a set of ob-
servations. Consider the three examples shown in the different panels of Figure 11.9.
Merging two observations into a cluster is always done at the same distance, as this
is determined purely by the distance metric, not the linkage function. However, the
decision which clusters (of multiple observations) to combine is heavily influenced by
the linkage function as can be seen in the very different dendrograms in Figure 11.9.

The final question concerns the choice of the number of clusters. The answer to this
question may be driven by theory (typically in explanatory applications), by require-
ments of the subsequent data analysis or the subsequent use of the resulting clusters,
or by examining the distances at which clusters are merged, that is, the height in the
dendrogram. Choosing a number of clusters is called “cutting the dendrogram™ at a
specific point. Consider the example in Figure 11.10. The left panel shows the so-
lution of the agglomerative clustering. In the end, a single cluster containing all the

3https://en.wikipedia.org/wiki/Hierarchical_clustering


https://en.wikipedia.org/wiki/Hierarchical_clustering

360CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING
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Source: ISLR2 Figure 12.11

Figure 11.10: Cutting a dendrogram to determine the number of clusters

observations remains, with the last two clusters merged at a distance of ~ 10.5. The
middle and right panel show two different ”cuts” of the dendrogram, one resulting in
two clusters and the other resulting in three clusters. The cuts may be determined by
a desired number of clusters, by considerations of distance, or both. It should be clear
that lowering the “cut” height further beyond what is shown in the right panel, that
is reducing the distance between clusters, would result in many small clusters with a
much smaller distance between them.

11.4.4 Hierarchical Clustering in R

This example uses the same simulated data as the example for k-means clustering®.
First, generate 50 observations on two variables from a normal distribution. One half
of the observations are shifted on both variables to provide a known cluster structure.

# Set RNG seed for replicability

set.seed(2)

# Create a 50 x 2 matrix of random variables

# Normally distributed, with 0 mean and SD=1

X <- matrix (rnorm(n=50+«2, mean=0, sd=1), ncol=2)

# Clearly separate the first 25 points by shifting their coordinates
x[1:25, 1] <- x[1:25, 1] + 3

x[1:25, 2] <- x[1:25, 2] - 4

The dist () function is used to calculate differences between the observations. The
names for the method argument to dist () are the same as in Table 11.2. Addition-
ally, the ' maximum’ distance in R uses the greatest distance among all the variables

4The R code for this example is based on material in Section 12.5 of ISLR2
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Figure 11.11: Dendrogram of three clustering solutions for simulated data

of the two observations.

# The dist () function calculated distances

# according to a variety of metrics/norms
euclid.dist <- dist (x, method='euclidean')
pnorm.dist <- dist (x, method='minkowski', p=3)
manh.dist <- dist (x, method='manhattan')
max.dist <- dist (x, method="'maximum')

The hclust () function performs the hierarchical agglomerative clustering. The
method argument specifies the type of linkage, according to Table 11.3. The hclust ()
function can use a few additional linkages not listed in that table, see the documentation
(?hclust) for details.

# Use the hclust () function with a distance metric
hc.complete <- hclust (euclid.dist, method='complete')
hc.single <- hclust (euclid.dist, method='single')
hc.average <- hclust (euclid.dist, method='average')

The dendrograms for the three different clustering solutions can be plotted to produce
Figure 11.11.

# Plot the dendrograms in a single plot
par (mfrow = c(1, 3))
plot (hc.complete , col='red',

main = "Complete Linkage", xlab = "", sub = "", cex = .9)
plot (hc.average , col='blue',

main = "Average Linkage", xlab = "", sub = "", cex = .9)
plot (hc.single , col='green',

main = "Single Linkage", xlab = "", sub = "", cex = .9)

The complete linkage and average linkage solutions are visually quite similar, but upon
careful examination of which observations and clusters are merged in which order,
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they are actually very different from each other. The single linkage solution is visually
very different from the others. Note the “height” of the dendrogram on the vertical
axis. Because the single linkage focuses on the minimal distance between a pair of
observations from each cluster, the heights in this dendrogram are the smallest among
the three dendrograms. Because the average linkage focuses on the mean of distances
of pairs of observations of two clusters, its height values are generally larger, but still
smaller than the range of heights for the complete linkage solution, which focuses on
the maximum distance between pairs of observations from two clusters.

Finally, cutting the dendrogram is done with the cutree () function by specifying
either the number of clusters k or the height h at which the dendrogram is to be cut.
The function returns a vector with the cluster membership for each observation.

# Cut by number of groups/clusters
cutree (hc.complete, k=4)

# Cut by height (distance)

cutree (hc.complete, h=6)

Hands-On Exercise

The Boston dataset in the ISLR2 library describes house prices in the differ-
ent suburbs of Boston. Use Hierarchical Clustering to identify sets of similar
suburbs using only the numerical variables in the data set.

1. Use the hclust function to perform a cluster analysis, exploring differ-
ent distance metrics and linkage functions. Limit yourself to quantitative
inputs.

2. Examine the dendrograms and identify which combination of distance
metric and linkage function gives you the “best” solution. Define best”
and justify your decision.

How many clusters k& would you choose?
4. Using this value for k, perform a k-means Clustering and compare the
results. Remember that k-means clustering uses the Euclidean distance.

(O8]
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Hands-On Exercise

The Hitters dataset in the ISLR2 library contains the salary of 322 baseball
players and season statistics. Use Hierarchical Clustering to identify sets of
similar players, using only the numerical variables in the data set.

1. Use the hclust function to perform a cluster analysis, exploring differ-
ent distance metrics and linkage functions. Limit yourself to quantitative
inputs and make sure you scale the data.

2. Examine the dendrograms and identify which combination of distance

metric and linkage function gives you the “best” solution. Define “’best”

and justify your decision.

How many clusters k£ would you choose?

4. Using this value for k, perform a k-means clustering and compare the
results. Remember that k-means clustering uses the Euclidean distance.

&9

Hands-On Exercise

The Auto dataset in the ISLR2 library contains information on 392 vehicles.
Use Hierarchical Clustering to identify sets of similar vehicles, using only the
numerical variables in the data set.

1. Use the hclust function to perform a cluster analysis, exploring differ-
ent distance metrics and linkage functions. Limit yourself to quantitative
inputs.

2. Examine the dendrograms and identify which combination of distance

metric and linkage function gives you the “best” solution. Define “’best”

and justify your decision.

How many clusters k£ would you choose?

4. Using this value for k, perform a k-means Clustering and compare the
results. Remember that k-means clustering uses the Euclidean distance.

&9

11.5 Review Questions

Principal Components Analysis

1.

2.

Explain how unsupervised machine learning differs from supervised machine
learning in terms of data requirements and outcomes.

What are the main goals of Principal Component Analysis (PCA) in data analy-
sis?

. Explain the concept of "variance" in the context of PCA. Why is maximizing

variance an important objective?
How can PCA be used to simplify a complex dataset? Give an example based on
a hypothetical dataset.

. How can PCA contribute to improving the interpretability of complex models?



364CHAPTER 11. INTRODUCTION TO UNSUPERVISED MACHINE LEARNING

10.

11.

12.

13.

. Describe the process of calculating the first principal component in PCA. What
role do the loading vectors play? What optimization problem does PCA solve?

. How does one interpret the loadings of a principal component and what do they
signify about the variables involved?

. Discuss the importance of scaling input variables before performing PCA. What
could potentially happen if the variables are not scaled?

. Describe the relationship between eigenvalues and the variance explained by the

principal components. How does one interpret these eigenvalues in practical

terms?

Provide several criteria that could be used to decide how many principal compo-

nents to retain in an analysis.

Discuss the relevance of the ”scree plot” in determining the number of principal

components to retain. What does an inflection point in the scree plot typically

indicate?

Explain how the biplot can be used to visualize both the principal components

and the original variables. What insights can one gain from such a visualization?

Explain how PCA can be used as a feature extraction technique in machine learn-

ing models.

K-Means Clustering

14

15

16.

17.
18.

19.

20.

21.

22.

23.

24.

. Define clustering in the context of unsupervised machine learning and explain
its main purpose.

. Compare and contrast the goals of principal component analysis (PCA) and clus-

tering.

What are centroid-based clustering and hierarchical clustering? Provide exam-

ples of each.

Describe the k-means clustering algorithm. What objective does it aim to achieve?

Explain the concept of within-cluster variation in the context of k-means cluster-

ing.

What are the implications of variable scales on the performance of the k-means

clustering algorithm? Why might scaling be necessary?

[lustrate the iterative process of the k-means clustering algorithm. What happens

in each step?

Explain why the initial random assignment of observations to clusters can affect

the final clustering solution in k-means.

Discuss the importance of running the k-means algorithm multiple times. How

does this practice influence the reliability of the clustering results?

What are the computational complexities of k-means and hierarchical clustering?

How do these affect their scalability to large datasets?

Discuss the limitations of k-means clustering and possible scenarios where it

might not perform well.

Hierarchical Clustering

25

. Describe a scenario in which hierarchical clustering would be more beneficial
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26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
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than k-means clustering. Consider aspects such as data structure and analysis
goals.

Describe hierarchical clustering and differentiate between agglomerative and di-
visive clustering.

Explain the initial steps in an agglomerative clustering process. How does it
begin, and what happens in the initial stages?

Define a dendrogram and explain how it is used in hierarchical clustering.
Discuss the significance of distance measures in hierarchical clustering. How do
they affect the clustering process?

How might the concept of distance be adapted when clustering categorical data
using hierarchical methods?

What are the different types of linkage methods in hierarchical clustering? De-
scribe at least three and explain how they influence the clustering results.
Provide an overview of common distance metrics used in agglomerative cluster-
ing. How might the choice of distance metric influence the outcome of cluster-
ing?

Explain the process of creating a dendrogram and interpreting its structure in the
context of hierarchical clustering.

Explore the relationship between the number of observations and the interpretabil-
ity of the dendrogram in hierarchical clustering. How does increasing the number
of observations affect the clarity and usefulness of the dendrogram?

Explain the concept of “cutting the tree” in hierarchical clustering. How does
this process determine the number of clusters?

Discuss how the choice of linkage method might impact the sensitivity of hier-
archical clustering to outliers and noise in the dataset.

How does the analyst decide on the number of clusters in hierarchical clustering?
What factors might influence this decision?

Consider the distance metrics shown in Table 11.2. Which metric would be most
appropriate for clustering data with extreme outliers and why?

Explain why it might be necessary to standardize variables before performing
hierarchical clustering.

Evaluate the computational complexity of hierarchical clustering. How does this
complexity influence the scalability of the method to large datasets?
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Chapter 12

Time Series Analysis

Learning Goals

After reading this chapter, you should be able to:

Explain different statistical models for time series data and create time series for
each model.

Perform basic operations on time series data.
Perform time series smoothing using different smoothing methods.

Understand the importance of stationarity for time series analysis and how to
assess time series data for stationarity.

Address non-stationary time series data using differencing and detrending.

Explain the different components of an ARIMA model and fit an ARIMA model
to time series data and evaluate its fit.

Use the ACF and PACEF to select the appropriate ARIMA model.

Explain GARCH models and fit a GARCH model to time series data.

Sources and Further Reading

The material in this chapter is based on the following sources. Consult them for addi-
tional information and details.

367
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Robert H. Shumway and David S. Stoffer (2017) Time Series Analysis and Its
Applications, 4th Edition. Springer.

https://www.stat.pitt.edu/stoffer/tsad/

The book by Shumway and Stoffer provides a very comprehensive but also somewhat
technical introduction to the subject of time series analysis. The authors have also
published the astsa library for R to accompany their book. This library provides a
number of data sets and functions for time series analysis.

Rob J. Hyndman and George Athanasopoulos (2018) Forecasting: Principles
and Practice, 2nd edition. OTexts.

https://otexts.com/fpp2/

The book by Hyndman and Athanasopoulos is somewhat less technical in nature than
the book by Shumway and Stoffer and also provides R code. The coverage of the two
books also differs somewhat, but it this more accessible than Shumway and Stoffer for
undergraduate students.

In addition to these books, there are a number of very useful tutorials available on the
internet that can augment or summarize the material in the books. They are less focused
on theory and more focused on actually performing time series analysis.

e https://github.com/nickpoison/tsa4

* https://a-little-book-of-r-for-time-series.
readthedocs.io/en/latest/src/timeseries.html

* https://rc2e.com/timeseriesanalysis

e https://atsa-es.github.io/atsa-labs/chap-tslab.
html

12.1 Introduction

This section provides an introduction to time series analysis. Time series analysis is
a complex topic with a multitude of different methods and techniques and this section
can provide only a glimpse at the basic ideas and concepts.

Time series analysis is a set of statistical techniques that involve analyzing time-ordered
data points or observations to extract meaningful statistics and other characteristics.
This type of analysis is important across various fields such as economics, where it
may be used to model unemployment rates, finance, where it may be used to model
stock prices, social science, where it may be used to model high school graduation
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rates, natural sciences, where it may be used to model weather and climate trends,
ecology, where it could be used to model animal population numbers, or epidemiology
where it may be used to model the spread of epidemics. Understanding trends, cycles,
and patterns over time can lead to useful insights and informed decision-making. Fig-
ure 12.1 shows an example of a basic time series of the quarterly earnings per share of
a company.

At its core, a time series is a sequence of data points recorded at successive time inter-
vals. The data is typically collected at uniform intervals — be it hourly, daily, monthly,
or yearly. Time series analysis helps in understanding the inherent structure and func-
tions that generate the series. It aims to model the underlying context of the data,
whether to understand the past behavior or to forecast future values.

The analysis of time series can be divided broadly into two types: descriptive and infer-
ential. Descriptive analysis focuses on visualizing and summarizing the main features
of the data, such as trends (long-term direction), seasonality (regular pattern of fluc-
tuation within a year), and irregular components (unpredictable, random fluctuations).
Inferential analysis, on the other hand, involves using models to predict future values
based on known past values, testing hypotheses, and deriving estimates of population
parameters.

In time series analysis, two fundamental approaches to examining data are the time-
domain and the frequency-domain approaches. The time-domain approach analyzes
data as it evolves over time, focusing on the relationship between current and past val-
ues to predict future values. This approach is primarily concerned with understanding
and modeling the temporal sequence directly in the time dimension. This approach
is particularly useful for forecasting, where understanding how values are correlated
through time is essential. It provides direct and often simple models that are inter-
pretable in terms of the original time series data.

The frequency-domain approach, on the other hand, analyzes data based on the rate at
which the data’s features repeat over time. This approach transforms the time series
data into the frequency domain using mathematical transformations (the most common
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Figure 12.1: Example of time series data
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being the Fourier Transform). It decomposes the time series into a combination of
sinusoid functions with different frequencies and amplitudes. The frequency-domain
approach is useful for identifying hidden periodicities or cyclical behaviors in the data,
which may not be apparent in the time domain.

12.2 Time Series Statistical Models

Time series statistical models are essential tools used to analyze and forecast time-
dependent data. Four common models are the moving average (MA) model, the au-
toregressive (AR) model, the random walk with drift, and the signal in noise model.
Each model has different characteristics and applications, suited to different types of
time series data.

Moving Average Model

The Moving Average model is a fundamental time series model that expresses the cur-
rent value of the time series as a function of past errors or deviations, with the as-
sumption that these errors are white noise, that is, random. An example model is given

by:

1
vy = g(wtq + wy + Weyr)

where w; are the white noise error terms. In this example, all white noise terms are
weighted equally by 1/3.

MA models are particularly useful in smoothing out noise and forecasting when the
series exhibits a random behavior with no trend or seasonality.

The following R code block uses the £i1ter function to generate the example model.
The filter operates on the white noise, extending to both sides of the current time
step, and creates a weighted sum of the closest three value in w, specified by the
mode='convolution’ argument. The resulting plots are shown in Figure 12.2.

Random numbers as errors

<- rnorm(500,0,1)

Moving average

<- filter(w, sides=2, filter=c(1/3,1/3,1/3), method='convolution')
Plot timeseries

par (mfrow=c(2,1)

# The astsa library contains the tsplot function

library (astsa)

tsplot (w, main="white noise", col=3, gg=T)

tsplot (v, ylim=c(-3,3), main="moving average", col=4, gg=T)

H* < W =T K%




12.2. TIME SERIES STATISTICAL MODELS

—2-

-3-

-1-

-2-

-3-

white noise

100 200 300 400
Time

moving average

100 200 300 400
Time

371

500

500

Figure 12.2: Example white noise time series and its moving average

Autoregressive Model

The Autoregressive (AR) model is based on the concept that current values of a series
can be forecasted from previous values. An example model is:

where w; is white noise.

Tt = Tt—1 — 0.91'25_2 + wy

AR models are widely used in economic and financial time series where data points are
influenced significantly by their previous values.

The following R code uses the £i1ter function in “recursive” mode with parameters
1 and - . 9 to create the time series corresponding to the example model'. The resulting
plot is shown in Figure 12.3.

# Random numbers (errors)

w <— rnorm(550,0,1)

# remove first 50 values for startup

The R code for this and following examples are based on material Shumway & Stoffer
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autoregression

Time

Figure 12.3: Example autoregressive time series

x <— filter(w, filter=c(l,-.9), method="recursive") [-(1:50)]
tsplot (x, main="autoregression", col=4, gg=T)

Random Walk with Drift

A random walk with drift adds a constant to the standard random walk, allowing the
series to drift upwards or downwards over time. An example model is given by:

Ty =0+ T4 +wy

t
=0t+ Y w,
j=1

where 0 represents the drift (constant term), and w; is the noise component.

This model is commonly applied in financial markets to model stock prices or other
investments, reflecting that prices are serially correlated and can trend over time.

The following R code block uses the the cumsum () function to calculate the cumu-
lative sum. The resulting time series are shown in Figure 12.4 and show the random
walk and the drift component that is added to it.
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Figure 12.4: Example random walk with drift time series

# Create random walk (white noise) model and then add drift
w <— rnorm(200)

x <— cumsum (w)

drift <- .2

w.drift <- w + drift;

x.drift <- cumsum(w.drift)

# Plot the two resulting series

tsplot (x.drift, ylim=c(-10,55), main="random walk",ylab='"',col=3,gg=T)
abline (a=0, b=drift, lty=2, col=3)

lines (x, col=4)

abline (h=0, col=4, 1lty=2)

Signal in Noise Model

The Signal in noise model views the time series as a combination of a true signal
and random noise. An example model with a sinusoidal signal characterized by its
amplitude, frequency and phase shift is:

xy = Acos(2mwt + @)

for example,

A=2 amplitude
w=1/50 frequency
¢ = .6m phase shift

This model is fundamental in signal processing and is used to understand underlying
trends in the presence of noisy observations. Techniques like filtering and smoothing
are often applied to extract the signal from x;.



374 CHAPTER 12. TIME SERIES ANALYSIS

Signal

cs
°

Time
Signal and N(0,1) noise

cs+w
o

l‘) 11.30 21.10 31.10 4!‘)0 5!‘)0
Time
Signal and N(0,25) noise

cs+5*w

Time

Figure 12.5: Example signal in noise time series

The following R code block creates a sinusoidal signal and overlays it with different
amounts of white (Gaussian) noise. The resulting time series are shown in Figure 12.5.

# Create signal

cs = 2%cos (2xpi*1:500/50 + .6xpi)

w = rnorm(500,0,1)

# Overlay with gaussian noise and plot

par (mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)

tsplot (cs, main='Signal', col=2, gg=T)

tsplot (cs+w, main='Signal and N(0,1) noise', col=3, gg=T)
tsplot (cs+5+w, main='Signal and N(0,25) noise', col=4, gg=T)

12.3 Basic Time Series Operations in R

A time series can be constructed from an ordinary data set using the ts () function
in R and supplying a start time stamp and a sampling frequency. For example, the
following R code creates a time series of montly observations, beginning in January
2020 with the values 1 through 24. R will try to sensibly interpret the start and
frequency arguments: Frequencies of 4 are interpreted as quarters of the year, 7 is
interpreted as days of a week, 12 is interpreted as months of the year.
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# Creating a time series object with monthly data
ts_data <- ts(l1:24, frequency = 12, start = c(2020, 1)

To see the first and last last observations of a time series, use the head () and tail ()
functions:

head (ts_data)
tail (ts_data)

Missing values in a time series cannot be imputed in the usual manner because the
observations are not independent of each other. Two simple ways of filling in” missing
data are either to simply carry the last observation forward, which assumes there are
negligible changes in the value over time, or to interpolate the missing values. In linear
interpolation, a line is imagined between the last observation before a series of missing
values and the first observation after such a series of missing values. Missing values
are then assumed to be on that line. This assumes that the time series is approximately
linear, at least for short gaps.

The zoo library for R contains the functions na.locf () and na.approx () that
implement these methods of handling missing values. Missing values at the beginning
or end of a time series can be removed with the na.trim () function. The following
R code block illustrates the use of all three functions:

# Introduce NA values into the time series
ts_datal[c(5, 10, 15)] <- NA

# Using na.trim to remove leading/trailing NA values

trimmed_ts <- na.trim(ts_data)

# Using na.locf (Last Observation Carried Forward) to handle NA valueq
locf_ts <- na.locf (ts_data)

# Using na.approx to interpolate NA values

approx_ts <- na.approx(ts_data)

Two time series can be combined using the ts.intersect () or ts.union ()
functions. The former function combines the series only for overlapping, that is, inter-
secting, times, possibly cutting off the head or tail of one or the other series. The latter
function retains all dates of both series and ”’pads” the head or tail of one or the other
series with "NA” values.
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# Creating another time series
ts_data2 <- ts(c(l1:24), frequency = 12, start = c(2020, 7)

# Using ts.intersect to determine intersection of two time series
intersect_ts <- ts.intersect (ts_data, ts_data2)

# Using ts.union to determin union of two time series

union_ts <- ts.union(ts_data, ts_data2)

An important operation in time series analysis is to ’lag” a time series, that is, to shift
it forwards or backwards in time. R provides the 1ag () function for this purpose.
A positive argument shifts the time series backwards by the specified number of time
periods, while a negative argument shifts it forward:

# Positive k shifts backwards in time
lag_ts <- lag(ts_data, 2)
# Negative k shifts forwards in time
lag_ts <- lag(ts_data, 3)

12.4 Smoothing a Time Series

Time series smoothing is a technique used to remove noise and reveal signals or under-
lying trends in the data. Four commonly used methods for time series smoothing are
moving average, kernel smoothing, lowess regression, and smoothing splines.

Moving Average Smoothing

Moving average smoothing is one of the simplest and most widely used methods for
smoothing time series data. It involves calculating the weighted mean of the consecu-
tive data points within a specified window that moves along with the data:

k k
my = E ajxry_; where g aj =1
j=—k j=—k

where a are the weights that sum to one. A simple filter uses uniform weights, but
other shapes are possible.

This model can be implemented using the £ilter function in R. The filter in the
example below is two-sided and is centered on the current time stamp, that is, it uses
data before and after the current time point. When the sides=1 argument is used,
the filter is over past values only. The £i1lter argument specifies the weights for the
moving average. The results for an example time series are shown in Figure 12.6.
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Figure 12.6: Moving average smoothing
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# Use the soi dataset from the astsa library as an example
library (astsa)

?soi

# Apply moving average filter

f=1/12 % ¢(0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5)
filter(soi, sides=2, filter=f, method='convolution')

Kernel Smoothing or Kernel Regression

Instead of a filter with simple weights as in moving average smoothing, kernel smooth-
ing uses a weighted average of neighbouring points where the weights are determined
by a function known as the kernel. A common choice is a Gaussian kernel that uses
the normal distribution density function, which produces a weighted average with a
bell-shaped curve of weights around each data point. The weights for averaging the

time series values are determined as follows:

where K is the Gaussian kernel:

K(z) =

Here, b is the "bandwidth” of the kernel, that determines the shape of the kernel func-

tion, that is, how “wide” or ”broad” it is.

The smoothed time series s; is then given by:
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Figure 12.7: Kernel density smoothing with different kernel bandwidths

The R function ksmooth () with the normal kernel argument provides exponential
smoothing. The bandwidth parameter determines the “width” of the kernel by spec-
ifying the distance from the quartiles to the mean of the normal distribution function.
Example smoothing results for various bandwidth values are shown in Figure 12.7.

# Apply gaussian kernel smoothing
ksmooth (time (soi), soi, kernel='normal', bandwidth=1)

Lowess Regression

Lowess Regression (locally weighted scatterplot smoothing) combines a multiple re-
gression model with a k-nearest-neighbour-based model. Each point on the smoothed
time series is estimated by a weighted least squares regression over a local neighbour-
hood of f observations that are closest in time to the target point. The weights decrease
with distance from the target observation, thereby providing robustness against outliers
and yielding a smooth curve that closely follows the data.

The R function 1owess () uses the f parameter for specifying the proportion of ob-
servations used for the regressions. An example result is shown in Figure 12.8.

# Apply lowess smoothing
lowess (soi, f=0.1)
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Figure 12.8: Lowess regression smoothing example

Smoothing Splines

Smoothing splines are a method that fits a smooth, flexible “’spline” function to the
data. Smoothing splines balance the fit of the spline to the data against the smoothness
of the spline curve and are essentially penalized polynomial regression models that fit
the model:

my = Bo + Bit + Bat® + Bst?

by minimizing the loss function

Zn:(xt —my)? + /\/ (Cign)z dt

t=1

The smooth.spline () function uses cubic splines, that is polynomials of degree
3. The smoothing parameter spar controls the regression penalty A in the equation
above and thereby the degree of smoothing. The result for this example is shown in
Figure 12.9.

# Apply smoothing splines
smooth.spline (time (soi), soi, spar=0.5)
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Figure 12.9: Smoothing spline example

Hands-On Exercise

1. Generate 100 observations from the autoregression model z; =
—.97;_9 + wy with o2 =1

(a) Smooth the time series using a moving average filter v; = (z; +
Xy—1+x4_o+x4_3)/4, plot z; as a line and superimpose v;. Com-
ment on the behaviour of x; and how applying the moving average
filter changes that behavior

(b) Smooth the time series using kernel smoothing, produce plots as
above, and experiment with different kernel bandwidths. Comment
on the behvaiour of the smoothed series.

(c) Smooth the time series using Lowess, produce plots as above, and
experiment with different values for the fraction of observations to
include in each regression. How does the smoothed series change
as you vary that fraction?

(d) Smooth the time series using smoothing splines, produce plots
as above, and experiment with different values for the smooth-
ing parameter that controls the regression penalty. How does the
smoothed series change as you vary that parameter?

2. Generate 100 observations from the sinusoidal series x; = cos(2mt/4)
and add N(0,1) noise. Repeat the four smoothing exercises. Compare
and contrast the results of these exercises. Which smoothing is more
appropriate for which type of time series data?

12.5 Time Series Regression

Time series regression refers to using time series data in ordinary least squares regres-
sion. The focus is not necessarily on modeling data series over time or describing the
future values of a time series as a function of earlier values, although lagged time series
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Figure 12.10: Three time series

can certainly be used in time series regression. Instead, time series regression predicts
the value of one time series from one or more other time series.

Consider an epidemiological example with three weekly time series, one express-
ing cardiovascular mortality ("cmort”, the likelihood of dying of heart attack), an-
other describing ambient temperature (“tempr”) and a third one describing air pollution
(part”). Figure 12.10 shows these three time series superimposed in one graph. Visual
inspection of the graph suggests that mortality may be correlated with temperature and
air pollution.

Time series regression uses ordinary least squares (OLS) regression models where each
series is a predictor variable. It essentially neglects the time aspect of the time series
data. The following R code block shows examples of time series regression to predict
or explain mortality. Note the use of the t ime () function extract the timestamps from
the time series data.

# Use data from the astsa library

library (astsa)

# Plot the three time series

ts.plot (cmort, tempr, part, col=2:4)

# Center the temperature variable

temp = tempr - mean (tempr)

# Square the temperature variable

temp.2 = temp”2

# Fit different linear models and provide summaries

summary (1lm(cmort ~ time (cmort)))

summary (lm(cmort ~ time (cmort) + temp))

summary (lm(cmort ~ time (cmort) + temp + temp.2))
summary (lm(cmort ~ time (cmort) + temp + temp.2 + part))

Time series regression can also use lagged time series data, that is, data of the same
series that is shifted backward in time. This is somewhat similar to the autoregressive
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models defined below. The following R code block lags the temeratur by two weeks
and by four weeks. It then uses ts.intersect () to combine the time series in a
data frame for the times where they intersect. The data frame is then be used in an OLS
regression; different models could be fitted to identify the best explanation of mortality.

# Lag the temperature
temp.l.2 = lag(temp, 2)
temp.1l.4 = lag(temp, 4)
# Intersect all time series to omit leading/trailing NA
temp.df <- ts.intersect (cmort, time (cmort), part,

temp, temp.2, temp.l.2, temp.l.4, dframe=TRUE)
# Fit the linear model including lagged temperature
summary (lm(cmort ~ time.cmort. + temp + temp.2 +

temp.l.2 + temp.l.4 + part, data=temp.df))

12.6 Stationarity

The concept of stationarity is central to time series analysis. Stationarity means that
the statistical characteristics of a time series do not change over time. That is, its mean,
variance, and autocorrelation (the correlation of a time series with a lagged copy of
itself) remain constant over time. Understanding and ensuring stationarity in a time
series is important for the effective application of many statistical forecasting methods
and models.

Stationary data with a constant mean and variance is more predictable and therefore
easier to model. Changes in mean and variance can lead to forecasts that are biased or
that degrade in accuracy over time. Stationarity ensures that the properties of the series
used to generate forecasts will be similar in the future, which is crucial for planning
and decision-making. If a time series is non-stationary, the behavior of the data could
change over time, leading to models that are invalid or inaccurate when applied to
future data points.

Statistical inference in time series analysis relies heavily on the assumption of sta-
tionarity. Many time series statistical models, including linear regression and ARMA
models, are based on the assumption of stationarity. These models provide meaningful
and reliable results only if the stationarity assumption is satisfied.

Strict stationarity is defined as the requirement that the probabilistic behaviour of every
set of values of the series

{ze, 22, 2k}
is identical to that of the set of values shifted by time h:

{$t1+h7 Tt24hy - - - 71'tk+h}
That is,

Pr{zy <eci,...,om < i} = Pr{zpqin < e, @pogn < i}
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Because strong stationarity is hard to test, a more commonly used and practical form
of stationarity is weak stationarity, which requires only that the the mean, variance,
and the autocovariance (the covariance of the series with a lagged version itself) are
constant over time. Most statistical tests and models assume weak stationarity. In
summary, a weakly stationary time series is a finite variance process such that:

1. The mean and variance are constant and do not depend on time: p; =y, 0y = o

2. The autocovariance ~y depends on s and ¢ only through their difference h =
|s —¢].

Let s = t + h, then under the assumption of weak stationarity:

v(s,t) = y(t + h,t) (because of condition 2)
= cov(Tith, Tt) (because of condition 1)
= cov(xp, o) = y(h) (autocovariance for lag h)
and
p(h) =~(h)/~(0) (autocorrelation for lag h)

The autocovariance and autocorrelations are measures of dependence of the time se-
ries on lagged versions of itself. For a weakly stationary time series, the theoretical
autocovariance for a lag h is defined as the covariance between two points ¢, ¢ + h on
time series x

v(h) = cov(z, z4n) = El(@ — p1)(@e4n — p)]

Note that this definition implies weak stationarity because a constant term for the mean
L is used in the expectation on the right-hand side.

A large autocovariance indicates a ”smooth” time series, as each future value is strongly
dependent on the previous value(s). In contrast, a small autocovariance indicates the
”choppy” time series, as there is less dependence on prior values and values of the time
series are less constrained and allowed to vary more.

The sample autocovariance that can be estimated from a finite sample for lag h is
defined as

500 = 23 - 2) e - 2)

The autocorrelation function (ACF) for lag h is defined as usual as the autocovariance
divided by the root of the product of the variances of the two time series:
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V(t+h,t) (h)

= (weak stationarity)

pu(h) = VYt Fht+ )yt ()

Note that this assumes weak stationarity. The time series properties at any time ¢ are
the same as at time 0 so that the above equation can be reduced to the right-most term.

Similar to the sample autocovariance, the sample ACF for lag h is defined as

pa(h) =

(weak stationarity)

7(h)
(

,3/
y(h)4(0)  4(0)
where the last step again assumes weak stationarity.

To test whether the ACF of any sequence for lag h is statistically different from 0,
note that the large-sample distribution of p,(h) is normal with mean 0 and standard
deviation

op, = 1/Vn

if the generating processes is independent white noise. Hence, the approximate 95%
confidence interval on the ACF is

12
——+

"t
If the sample ACF of n values of a time series for a given lag exceeds the lower or

upper bounds of the confidence interval, the ACF is statistically significantly different
from 0, and the time series is unlikely to be white noise.

The following R code block illustrates the autocorrelation function using the standard
cor () function to compute the correlations at different lags and the acf1l () func-
tion of the astsa library that will automatically lag the time series and output and
optionally plot the ACF values at different lags, creating a plot as in Figure 12.11.

library (astsa)

# Create Gaussian white noise

t <- ts(rnorm(500)

# The hard way:

cor (ts.intersect (t, lag(t,1l), dframe=T))
cor (ts.intersect (t, lag(t,2), dframe=T))
# etc.

# The easy way:

# Without plot

acf <- acfl(t, plot=FALSE)

# With plot

acfl(t, gg=T, col=7, 1lwd=3)
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Figure 12.11: ACF of Gaussian white noise

The following example in R uses the soi data set and the 1agl.plot () from the
astsa library to provide also a graphical display of the autocorrelations at various
lags, as shown in Figure 12.12.

library (astsa)

# Compute and plot the ACF for different lags

acfl(soi, gg=T, co=3, lwd=2)

# Scatterplot of original versus or lags up to 6, with ACF values
lagl.plot (soi, max.lag = 6, gg=T, col=4, 1lwl=3)

The partial autocorrelation function (PACF) of a time series is a measure of the corre-
lation between observations at two points in time, accounting for the correlations of the
observations at all shorter intervals. Essentially, it reflects the direct effect of past data
points on the future data point, after removing the effects of intermediate data points.
PACEF can be thought of as the correlation between a variable and its lag h that is not
explained by correlations at all lower-order lags. It is formally defined as the correla-
tion between 245, and z; with the linear dependence of {¢41,...,Ztyn—1} on each
removed:

b = {pu) A h=

COrr (T pp — Tiph, Te — L) h>2

The following R code block illustrates the use of the partial autocorrelation function
of a time series, first using the standard cor () function for a lag of 3 and then the
acfl () function of the astsa library that automatically computes the PACF for
different lags.



386 CHAPTER 12. TIME SERIES ANALYSIS

S0i(t-5) S0i(t-6)

Figure 12.12: Autocorrelations at six different lags

t <- ts(rnorm(500))

# The hard way

# Shift the series to create lagged versions
tl <- lag(t, 1)

t2 <- lag(t, 2)

t3 <- lag(t, 3)

data <- ts.intersect(t, tl, t2, t3, dframe=T)

# Using linear models to adjust for intervening lags
model_lagl <- Im(t ~ tl + t2, data)

model_lag2 <- 1lm(tl ~ t2, data)

# Residuals for lag 3

residuals_lagl <- residuals (model_lagl)
residuals_lag2 <- residuals(model_lag2)

final model <- 1lm(residuals_lagl ~ residuals_lag2)

# Correlation between residuals and lag 3 data
pacf_lag3 <- cor(residuals(final _model), data$t3)

# The easy way
acfl(t, plot=F, pacf=T)
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12.7 Dealing with Non-Stationarity

When a time series is non-stationary, it can often be transformed into a stationary se-
ries through techniques such as logarithmic or square root transformations, detrending,
and differencing. These transformations can stabilize the mean and reduce variance
dependency over time.

Transformations

Popular time series transformations are the log transformation, the square root trans-
formation and the Box-Cox power transformation, defined as follows:

Y = logy Log transformation
Yt = /Tt Square root transformation
A—1)/A A
= {(xt )/ 7 Box-Cox power transformation
log x4 =

Detrending

Detrending a time series involves removing the trend component from the data, thereby
isolating the non-trend components such as seasonality and irregular fluctuations. This
is particularly useful in time series analysis because many statistical methods assume
stationarity (constant mean and variance), and a trend violates these assumptions.

A common detrending method is to fit a regression model to the trend component
and then subtract the fitted values, that is, the trend, from the original series. Linear
regression is widely used for linear trends, but polynomial or more complex models
can be fitted depending on the nature of the trend.

For example, assume that

Ty =t + Yt

where 1, is the trend and y, a stationary series. Then detrending comprises the follow-
ing two steps:

1. Estimate trend, e.g. with a linear model such as p; = By + S1t
2. Work with residuals, e.g. §; = 4 — iy = T4 — /3’0 — Blt

The following R code block shows how to detrend a time series using linear regression,
producing the graphs shown in Figure 12.13.
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Figure 12.13: Time series and detrended time series

# Simulate a time series with a linear trend
t <- ts(1:100 + rnorm(100) = 10)

# Fit a linear model to the time series

trend_model <- Im(t ~ time(t))

# Calculate detrended series by subtracting the estimated trend
detrended_series <- residuals (trend_model)

# Plot original and detrended

par (mfrow=c(2,1)

tsplot (t, type="1", main="original",col=3,gg=T)

tsplot (detrended_series, type="1", main="detrend",col=2,gg=T)

Differencing

Differencing involves computing the differences between consecutive observations in
the original time series. The primary goal of differencing is to remove trends and
seasonality in order to stabilize the mean of the time series by reducing changes in the

level of a time series over time. Assume again that

Ty = Ht + Yt

where y; is the trend and y, a stationary series. Differencing models the trend stochas-

tically as a random walk with drift:
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Figure 12.14: Original, first and second differences of a simulated time series

Mt =0+ prg—1 + wy

where w; is white noise. Differencing then yields

T — Te—1 = (e +Ye) — (pe—1 + Yi—1)
=0+ we+ Yy — Y1

which is stationary.

As seen above, the first difference can remove a linear trend. However, sometimes
the first difference is not enough to achieve stationarity. In such cases, the second
difference can be used to remove a quadratic trend and higher-order differences can be
computed if the series still shows non-stationary behavior after the second differencing.

The following R code shows the effect of differencing on a simulated time series. Dif-
ferencing uses the diff () function. The resulting plots are shown in Figure 12.14.
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# Simulating a time series with trend
t <- ts(cumsum(rnorm(100))) # Cumulative sum of normal deviations

par (mfrow=c(3,1)

tsplot (t, type="1", main="original", col=3,gg=T)

# First differencing

tsplot (diff (t, differences = 1), type="1",
main="first difference", col=4,gg=T)

# Second differencing

tsplot (diff (t, differences = 2), type="1",
main="second difference", col=5,g9g=T)

To see illustrate the effects of detrending and differencing on the ACF for a real time se-
ries, consider the chicken price data set chicken in the astsa library. Figure 12.15
shows the ACF for the original, the detrended, and the differenced series (first and
second differences). While the original time series is clearly non-stationary with large
ACF values (top left panel), the detrended series improves this somewhat, but still
shows large ACF (top right panel). First differencing reduces the ACF values and
shows a cyclical trend with a cycle of 6 months, with significant ACF values (bottom
left panel). The second difference in the bottom right panel of Figure 12.15 still shows
significant ACF values at the 6 month and 12 month lags but non-significant ACF for
most other lags.

acfl (chicken, max.lag=48, main="original", col=1, gg=T)
acfl (resid(fit), max.lag=48, main="detrend", col=2, gg=T)
acfl (diff (chicken), max.lag=48, main="first diff", col=3, gg=T)
acfl (diff (chicken, differences=2), max.lag=48,
main="sec diff", col=4, gg=T)

Hands-On Exercises

1. Extend the mortality, temperature and pollution/particulate model by
adding another component to the regression that accounts to the par-
ticulate four weeks prior; that is, add the lagged pressure P;,_4 to the
regression.

2. Draw a scatterplot matrix of of mortality M, temperate T}, pressure
P, and lagged pressure P;_4, then calculate the pairwise correlations
between them. Compare the relationship between M; and P; versus M,
and P;_4

Source: Shumway & Stoffer, Chapter 2
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Figure 12.15: ACF for detrended and differenced time series

Hands-On Exercises

1. Detrend the soi time series data by fitting a regression of \S; on time ¢.
Is there a significant trend in the surface pressure?

2. Use two different smoothing techniques to estimate the trend in the
global temperature series gtemp_both in the astsa library.

Source: Shumway & Stoffer, Chapter 2

Hands-On Exercise

Consider the two weekly time series 0il and gas in the astsa library. The
oil series is in dollars per barrel, while the gas series in in cents per gallon.
1. Plot the data on the same graph. Do you believe the series are stationary?
2. Apply the transformation y, = V log z; to the data for both series
3. Plot the transformed series on the same graph, and calculate the ACFs
for both series
4. Plot the CCF of the transformed series and comment.

Source: Shumway & Stoffer, Chapter 2
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12.8 ARIMA Models

ARIMA models, which stands for Autoregressive Integrated Moving Average, are a
type of statistical models for analyzing and forecasting time series data. ARIMA is
particularly suited to time series data that show non-stationarities, such as trends and
seasonal patterns, and it has become a standard tool in econometrics, finance, and other
fields.

ARIMA models can be divided into the following model classes:
* AR: pure AutoRegressive models
* MA: pure Moving average models
* ARMA: model with AutoRegressive and Moving-Average terms

* ARIMA: AutoRegressive Integrated Moving-Average models (involves differ-
encing for non-stationary time series with trend)

To simplify working with ARIMA models, the difference operator V is defined as:

V.I?t =Tt — Tt—1

Building on this definition, the Backshift operator or Lag Operator B is defined as:

Bxy =241
B* Ty = Ty—k
Vz, = (1 - B)xy
V2z, = (1 — B)%xz,
= (1-2B+B?)z,
=z — 2041 + Ty_2
vi=(1-B)

An autoregressive model of order p, denoted by AR(p), models the current value of
a time series as a linear combination of previous values. The number of lagged ob-
servations used in the model is denoted by the order p. The AR model captures the
regression of the time series on its previous values, which indicates persistence, or
memory, within the series. It is defined as:

Tp = P1T4—1 + Qa2 + -+ + PpTi_p + Wy
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Figure 12.16: Simulated (blue) and theoretical (red) ACF of an AR(2) model

where w; is white noise and the ¢; are model parametersz.

The autoregressive operator ¢(B) is defined using the backshift operator as:

$(B)=1—¢1B —¢sB* —--- — ¢,B”

=|1-> ¢;B

j=1
so that the AR(p) model becomes:

¢(B)$t = Wy
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The theoretical ACF of a given AR(p) model can be calculated analytically. In R, the
ARMAacft () function can be used for this by spacifying the autoregressive coefficients
¢. The following R code block simulates 200 observations of an AR(2) time series and
plots the simulated (blue) versus theoretical (red) ACF values, shown in Figure 12.16.
The theoretical values can be used to determine whether a specific time series conforms
to a particular AR(p) model. The ACF of an AR(p) model is characterized by a slow

decline of its values past a lag of p, as shown in Figure 12.16.

# Theoretical ACF of an AR (2) model

ARMAacf (ar=c (1.5, -.75), lag.max=10)

# Simulate an ARIMA (2,0,0) model with those AR coefficients
t.ar = arima.sim(list (ar=c (1.5, -.75)), n=200)

# Compute and plot the ACF of the simulated series

acfl(t.ar, max.lag=25, gg=T, lwd=2, col=4)

# Add the theoretical values for comparison

lines (ARMAacf (ar=c(1.5, -.75), lag.max=26)[-1], lwd=2, col=2)

A moving average model or order ¢, denoted by MA(q), models the current value of
the series as a linear combination of past forecast errors, which are computed as differ-
ences between past values and their respective forecasts. The parameter g specifies the

21n contrast to an “ordinary” regression model, the z; are random effects, not fixed, because each x; has
an associated error term w;. This means that AR or ARIMA models in general are not estimated using OLS
because the OLS assumptions are not met. Instead, AR and ARIMA models are estimated using maximum-

likelihood or other methods.
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number of lagged forecast errors in the prediction equation. The MA model is usefule
for capturing “shock errors” in the model, providing a way to allow the model to adapt
to sudden changes in the series. It is defined as:

Ty = Wy + Orwi—1 + Oowi_o + -+ + Oqwi—q

where w; are Gaussian errors and 6; are model parameters.

The moving average operator §(B) is defined using the backshift operator as:

0(B) =1+ 61B+06:B>+ -+ 0,B°

q
14> 6,8
j=1

so that the MA(q) model becomes:
Tt 239(13)U&

The theoretical ACF of a given MA(q) model can be calculated analytically. In R, the
ARMAacft () function can be used for this, by specifying the moving average coef-
ficients #. Similar to the previous example, the following R code simulates 200 ob-
servations of an MA(2) model and plots the simulated (blue) versus theoretical (red)
ACEF values, shown in Figure 12.17. In contrast to an AR(2) model, the ACF does not
gradually diminish, but becomes 0 after lag q. The simulated values in Figure 12.17
confirm this as they are largely stastistically non-significant past a lag of 2.

# Theoretical ACF of an MA(2) model

ARMAacf (ma=c(1.5, -.75), lag.max=10)

# Simulate an ARIMA (0,0,2) model with those MA coefficients
t.ma = arima.sim(list (ma=c (1.5, —-.75)), n=200)

# Compute and plot the ACF of the simulated series

acfl(t.ma, gg=T, lwd=2, col=4)

# Add the theoretical values for comparison

lines (ARMAacf (ma=c (1.5, -.75), lag.max=26)[-1], lwd=2, col=2)

An autoregressive moving-average model of order (p, q), denoted by ARMA(p,q), com-
bines both autoregressive and moving-average terms in the same model:

Tr=a+ $r13-1+ o+ Gprip +wp + w1 + -+ Ogwiyg
Using the AR and MA operators defined above, this model can be written as:

¢(B)ai = 0(B)w;
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Series: t.ma

Figure 12.17: Simulated (blue) and theoretical (red) ACF of an MA(2) model

It turns out that every ARMA model has an equivalent MA only model. However, this
equivalent MA model in theory has an inifinite number of MA terms. In practice, a
reasonable approximation can be achieved by retaining a limited number of MA terms.

Moreover, many ARMA models (the class of invertible ones) have an equivalent AR
models. Again, this equivalent model has an infinite number of AR terms and again, in
practice, reasonable approximations can be achieved by retaining a limited number of
AR terms.

Equivalent models can be found using the ARMAt oMA () and ARMAtoAR () func-
tions in the ast sa library, which return the MA and AR coefficients of the equivalent
models, as shows in the following R code example:

library (astsa)

# MA coefficients of equivalent MA models
ARMAtoMA (ar = c (1.5, -.75), lag.max=10)
ARMAtoMA (ar = c(-.5), ma = c(-.9), lag.max=10)
# AR coefficients of equivalent AR models
ARMAtoOAR (ma c(l.5, -.75), lag.max=10)
ARMAtoOAR (ar c(-.5), ma = c(-.9), lag.max=10)

As shown in Figures 12.16 and 12.17, the ACF of AR and MA models behave dif-
ferently. Similarly, the PACF behaves differently for the two types of models. Fig-
ure 12.18 shows the ACF and the PACF for an AR(2) model. While the ACF dimin-
ishes gradually, the PACF is zero immediately after lag 2. These properties of the ACF
and PACF can be used to select a suitable statistical model to fit a given time series, as
shown in Table 12.1. When a AR gradually diminishes and the PACF cuts off suddenly
after a lag p, this is an indication that an AR(p) model is suitable. Conversely, when
the ACF cuts off suddenly after lag ¢ and the PACF diminishes gradually, this is an in-
dication for an MA(q) model. When neither ACF nor PACF cut off suddenly, a mixed
ARMA(p, q) model should be fitted.

A full autoregressive integrated moving average ARIMA(p, d, q) model adds a differ-
encing term to the ARMA(p,q) model to achieve weak stationarity of the time series.
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Figure 12.18: ACF and PACF of an AR(2) model

AR(p) MA(q) ARMA (p. )
ACF Tails off Cuts off after laq ¢ Tails off
PACF | Cuts off after lag p Tails off Tails off

Source: Shumway&Stoffer, Table 3.1

Table 12.1: Properties of the ACF and PACF for AR and MA models

The AR operator can be factorized by (1 — B), so that:

¢(B)

1- i ¢; B
j=1

p'—d

1-> ¢8| (1-B)
j=1

With p = p’ — d, the ARIMA(p,d,q) model is then:

P q
1= 6B | (1=B)'wy = |1+ > 0;B | wy
j=1 j=1
This can be generalized to:

P q
1= 6,87 | (1 =B)'wy =0+ [ 1+ 0,87 | w,
j=1 =1

12.9 Fitting an ARIMA Model

Fitting an ARIMA model to time series data involves the following steps, from initial

data analysis and transformation to final model selection:
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1. Plot the data

Possibly transform the data

Assess stationarity

Possibly difference the data

Identify the dependence orders (p, q) of the model

Estimate parameters

A

Model diagnostics
8. Model selection

Plotting the data is useful as an initial visual assessment of stationarity, trends, or sea-
sonality. A number of transformations have been discussed earlier that may be useful
to “stabilize” a time series. If the series after transformation is still not stationary,
differencing can remove trends and seasonal components. Determining the order of
differencing needed to achieve stationarity is often done by trial and error, reassess-
ing stationarity after each difference. A slow decay in the sample ACF p(h) typically
indicates a need for differencing. However, over-differencing can introduce depen-
dence where non actually exists. Typically, differencing should be done in small steps,
beginning with a first difference, and then repeatedly checked with the ACF.

Identifying the initial ARMA order p and ¢ should be done based on the ACF and
PACF functions, using Table 12.1 as a basis. Often, multiple model may need to be
tried, altering the AR and MA orders p and ¢ in small steps.

The following R code example uses a quarterly time series of the US gross national
product (gnp) from the astsa library as an example. The acf2 () function of the
astsa library produces simultaneous plots of ACF and PACF for ease-of-use. The
time series is then log-transformed and differenced once. The results are shown in
Figure 12.19.

# Plot data

plot (gnp)

# Plot ACF

acf2 (gnp, 50)

# Log transform, and first order differencing
gnpgr = diff (log(gnp))

# Plot transformed and differenced data

plot (gnpgr)

# Plot ACF of transformed and differenced data
acf2 (gnpgr, 24)

Note how the ACF of the original series diminishes very gradually, indicating the need
for differencing. The sample ACF of the transformed and differenced series shows a
gradual decline after a lag of 2, while the sample PACF of the transformed and dif-
ferenced series cuts off to non-significance after a lag of 1. Together, this indicates
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Figure 12.19: ACF and PACF of the original time series (top) and of the log-
transformed and differenced series (bottom)

that the time series may be appropriately modeled using an AR(1) model or an MA(2)
model. Converting the AR(1) model to an equivalent MA model shows that the two
initial models are approximately equivalent. Note that the following R code block uses
the sarima () function from the astsa library because this function also produces
the diagnostic plots shown in Figures 12.20 and 12.21. This function can fit ARIMA
models, as in the following example, but can also fit seasonal ARIMA, or SARIMA,
models.

# Fit an AR (1) model

sarima (gnpgr, 1, 0, 0)

# Fit an MA (2) model

sarima (gnpgr, 0, 0, 2)

# Models are roughly equivalent
ARMAtoMA (ar=0.35, ma=0, 10)

ARIMA model diagnostics focus on the residuals of the fitted model and typically
assess the following criteria:

* Standardized residuals should be Gaussian (u = 0, sd = 1)

¢ Residuals should not be autocorrelated
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Figure 12.20: Diagnostics for an AR(1) model fitted to the GNP time series

* Residual ACF should be Gaussian with 4 = 0 and sd = 1/y/n

¢ Ljung-Box statistic ) of the error ACF p,, for different maximum lags H should
be larger than the 1 — o quantile of the X%prf o distribution (i.e. the test statistic
is not statistically signifantly different from 0)

T

52 (h)
Q=n(n+2)Y
he1 T

>

The diagnostic plots in Figure 12.20 and 12.21 shows the residuals in the top panels.
There are no visible trends or regularities and a few large outliers, but these can be
expected from a Gaussian distribution. The ACF of the residuals in the middle left
panel show that they are not autocorrelated and the QQ plot of residuals shows some
deviations from a linear diagonal in the bottom and top portions, indicating that the
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Figure 12.21: Diagnostics for an MA(2) model fitted to the GNP time series

model over- and under-estimates extreme values. The bottom panel in each figure
shows the probability values (p-values) for the Ljung Box statistics and the 1 — «
dashed horizontal line. For both models, the p-values of the Ljung Box statistic are
above the horizontal line, that is, they are not significantly different. In summary, both
models show good fit to the data.

Because fitting a model typically uses maximum-likelihood estimation (MLE), the
model choice is often based on information criteria that are based on the log-likelihood
L of the model. Because more complex models naturally achieve a better fit to the
training data, that is, they have a smaller bias, the log-likelihood is adjusted (penal-
ized) for model complexity, that is, the number of parameters &, and is also adjusted
for sample size n. All information-theoretic criteria express a relative quality of fit with
smaller values being better. There are no absolute cut-off values that would indicate a
well-fitting model.
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AIC = —2log L + 2k Akaike Information Criterion
2%(k+1)
n—k—1
BIC = -2 10g L+k logn Bayesian Information Criterion

AlCc = AIC +

Akaike Information Criterion, corrected

The R output of the sarima () function shows very similar model fit values:

> sarima (gnpgr, 1, 0, 0)

AIC = -6.44694 AICc = -6.446693 BIC = -6.400958

> sarima (gnpgr, 0, 0, 2)

AIC = -6.450133 AICc = —-6.449637 BIC = —-6.388823

Once the analyst has selected the final model and is satisfied that it fits well, future
values of the time series can be forecasted from the fitted model. An important property
of ARIMA predictions is that they quickly settle to the mean, with a constant prediction
error, reflecting the stationarity of the differenced and transformed time series.

The following R code example shows forecasting from using the sarima. for ()
function in the astsa library. The results are shown visually in Figure 12.22, where
the prediction error is indicated by the gray shading.

’forecasts <- sarima.for (gnpgr, n.ahead=10, p=1,d=0,9g=0)

12.10 GARCH Models

General Autoregressive Conditional Heteroscedasticity (GARCH) models are a family
of time series models that are used to estimate the volatility and conditional variance of
time series data, particularly of financial time series that exhibit time-varying volatility
and volatility clustering. GARCH models are fundamental in the field of financial
econometrics for modeling financial time series data.

GARCH models predict the current variance (that is, the volatility or variability, not the
actual values) as a function of past squared “innovations” (which represent unexpected
shocks or news in the data) and past conditional variances. In other words, the variance
at any time depends on the information available up to the previous period. GARCH
models are particularly effective at modeling volatility clustering, a phenomenon com-
mon in financial time series where high-volatility events tend to cluster together.
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Figure 12.22: Forecasting from an ARIMA(1,0,0) model with estimated prediction
errors

GARCH models are extensively used in risk management, asset pricing, and financial
forecasting. They help in estimating the volatility of asset returns for pricing deriva-
tives, calculating the value at risk for risk management, or forecasting volatility for
portfolio optimization.

An ARCH model considers a series of “returns”’, which are defined as deviations from
the prior value:

Tt — Tg—1
ry=—- (’Return”)
Tt-1

The series of returns is modelled as the product of a stochastic component ¢; and a
time-dependent standard deviation o

Tt = Ot€t

The ARCH model considers the time-dependent variance o7 at time ¢ as a function of
the previous returns. For example, in the ARCH(1) model the variance o2 at time ¢
depends on the immediately prior squared return:

2 2
oy = o+ ori_q

where ¢; is Gaussian.
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Figure 12.23: Squared residuals after fitting an AR(1)+ARCH(1) model to the US GNP
time series data

The general ARCH(q) model of order q is defined as follows. Again, the variance
depends on the prior squared returns:

2 _ 2 2 2
oy =agt+aqri_g +ari_o+ ...+ agri_g

q
2
ag + E QT
=1

ARCH models can be combined with ARIMA models so that the ARCH model de-
scribes the error term. A simple example is an AR(1) model with ARCH(1) error
terms:

2
Tt = Qo+ P174—1 + orer  where o = g + ;4

As an example, consider the US gross national product quarterly time series from the
astsa library. An initial AR(1) model shows that the squared residuals have some de-
pendence. This dependence can be accounted for by explicitly modeling the residuals
as ARCH(1). The £Garch library for R provides the garchFit () function to these
kinds of models. The squared residuals of the final model are shown in Figure 12.23.
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library (astsa)

# Fit an AR(1) model to the differenced, log-transformed series
u = sarima(diff (log(gnp)), 1, 0, 0)

# Examine the squared residuals

acf2 (resid (uSfit) ~2, 20)

library (fGarch)

# Fit an AR(1) + ARCH(1) model to the differenced, log-transformed
# series and show the summary
summary (garchFit (~arma (1, 0) +garch(1,0), diff(log(gnp))))

An extension to ARCH is to model the variance not only as a function of previous
returns, but also as a function of the p prior variances. In other words, the variance is
modelled as an autoregressive model in addition to the ARCH(q) terms. This leads to
a Generalized ARCH model, that is, a GARCH(p, q) model:

2 2 2
Oy =w+airi_q + -+ gy,

+ Broi 4+ Boi,

q p
_ 2 2
=w+ E a;rij + E Bioi—;
Jj=1 Jj=1

The following R example models the Dow Jones Industrial Average stock market time
series values (data set djiar in library ast sa) using an AR(1)+GARCH(1,1) model.
Parameter estimates are shown below. Various diagnostic plots are available using the
plot () function for the resulting garchFit object and are shown in Figure 12.24.

library (zoo)

library (fGarch)

# Log transform

djiar = diff(log(djiaSClose)) [~1]
# Fit an AR(1) + GARCH(1,1) model
djia.g <- garchFit (~arma(l,0)+garch(l,1), data=djiar)
# Show summary information
summary (djia.q)

# Different plots available

par (mfrow=c (5, 2)

plot (djia.g, which=1:10)
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Figure 12.24: Diagnostic plots for a GARCH model
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Estimate
mu 8.585e-04
arl -5.532e-02
omega 1.610e-06
alphal 1.244e-01
betal 8.700e-01
shape 5.979e+00
Log Likelihood:

8249.619

normalized:

Std. Error t value Pr(>|t])
1.470e-04 5.842 5.16e-09 x*x*
2.023e-02 -2.735 0.006238 xx
4.459e-07 3.611 0.000305 x*x*
1.660e-02 7.496 6.55e-14 xxx*
1.526e-02 57.022 < 2e-16 x*x*
7.917e-01 7.551 4.31le-14 x*x*

3.27756

Appendix — Basic Time Series Functions in R

base or stats

filter
lag

diff
plot.ts
ts.plot
lag.plot
act

cct

time
cycle
frequency

ts.intersect

ts.union

Filters time series, through moving averages or autoregression

Creates a lagged version of a time series by shifting the time-
base back

Creates lagged differences

Plot a time series

Plot multiple time series

Scatterplot of lagged values

ACEF and plot

CCF and plot

Creates the vector or times at which a time series was sampled
Gives the positions in the cycle of each observation

Number of samples per unit time

Bind time series together that have a common frequency. Re-
strict to time covered by all series

Bind time series together that have a common frequency. Pad
with NA if necessary

ar Fit an autoregressive model
arima Fit an ARIMA model
astsa
tsplot Plot a time series
acfl ACEF and plot
ccf2 CCF and plot
sarima Fit seasonal ARIMA models (and nice diagnostic plots)
lagl.plot Scatterplot of lagged values
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12.11 Review Questions

Introduction

1.

2.

What is time series analysis and why is it important in various fields such as
economics, finance, and natural sciences?

What are some essential preprocessing steps required before performing time
series analysis?

. Compare and contrast the time-domain approach and the frequency-domain ap-

proach in time series analysis. Which approach is particularly useful for fore-
casting and why?

Time Series Statistical Models

4.

10.

11.

Explain the Moving Average (MA) model and describe how it uses past error
terms to forecast future values. What are the assumptions about these error
terms?

. Discuss how the Moving Average (MA) model can be utilized to detect underly-

ing patterns in a time series that exhibits random fluctuations. What limitations
does this model have in handling trend and seasonality?

. Explain the implications of choosing different window sizes (the number of

terms included) in the Moving Average model. How does it affect the forecasts
and smoothing?

. Describe how the Autoregressive (AR) model differs from the MA model and

provide an example of its application in economic or financial time series.

. In the context of the AR model equation x; = z;_; — 0.92;_5 + w,, analyze the

impact of changing the coefficient —0.9 to values closer to 0 or 1.

. What is a Random Walk with Drift? Describe how it models time series data and

give an example of its application in financial markets.

Critique the usefulness of the Signal in Noise model in various fields such as
economics, engineering, and environmental science. How might the assumptions
of this model limit its application?

Critically evaluate the effectiveness of each model (MA, AR, Random Walk with
Drift, Signal in Noise) in handling different types of time series data.

Smoothing a Time Series

12.

13.

14.

15.

Explain the purpose of smoothing in time series analysis. What are the general
goals of this technique?

Describe the moving average smoothing method. How does this method use
weights to smooth data, and what are the effects of changing these weights?
Discuss how the moving average method helps in reducing the impact of random
fluctuations in the data. What challenges might arise when using this method on
time series with trends or seasonality?

Explain what kernel smoothing is and how it uses a Gaussian kernel to weigh
data points. How does the choice of bandwidth affect the smoothing?
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16.

17.

18.

19.
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Detail the Lowess regression method. How does this method determine the
weights for smoothing and how do these weights contribute to the robustness
against outliers?

Explain the role of the parameter f in the lowess () function in R. How does
changing the value of £ affect the results of the Lowess smoothing?

Define smoothing splines and describe how they fit a spline function to the data.
What does the regularization term in the loss function achieve?

Compare and contrast the advantages and potential drawbacks of using moving
average, kernel smoothing, Lowess regression, and smoothing splines. When
might one method be preferred over the others based on the characteristics of the
time series data?

Time Series Regression

20.

21.

22.

Define time series regression and explain how it differs from other types of time
series analysis such as autoregressive models.

Describe the significance of including time as a variable in the regression models.
What does this imply about the data and its relationship over time?

Discuss the use of lagged variables in time series regression. What are the bene-
fits of including lagged terms?

Stationarity

23.

24.

25.

26.

27.

28.

29.

30.

31.

Explain the difference between strict and weak stationarity. Why is weak sta-
tionarity more commonly used in statistical analysis of time series?

Elaborate on the impact of non-stationarity on the predictive performance of time
series models. How does failing to account for stationarity potentially mislead
forecasting?

Critique the assumption of constant variance in the definition of weak stationar-
ity. How might changes in variance over time affect the validity of time series
models?

Explain how the concept of weak stationarity might still inadequately describe
the nature of certain financial time series. What alternative forms of stationarity
might be considered?

Discuss how the mean, variance, and autocovariance function must behave for a
time series to be considered weakly stationary.

Define autocovariance and autocorrelation. How are these metrics useful in ana-
lyzing the properties of a time series?

Analyze the implications of having a high autocorrelation at large lags for a
given time series. What might this indicate about the underlying data generation
process?

What does it indicate if the ACF values are outside the 95% confidence interval?
How does this help in determining whether a time series is white noise?
Describe how you would assess the stationarity of a time series using graphical
methods in R. What plots would you use and what features would you look for?
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Dealing with Non-Stationarity

32.

33.

34,

35.

36.

37.

Discuss how the Box-Cox transformation generalizes other forms of transforma-
tions like logarithmic and square root transformations. What is the significance
of the parameter A in this transformation?

Explain the statistical reasoning behind using logarithmic transformations for
time series data. What types of data characteristics make this transformation
particularly effective?

Explain the process of detrending a time series. Why is it necessary, and how
does it differ from differencing?

Describe the impact of detrending and differencing on the forecasting accuracy
of a time series model. How might these preprocessing steps improve or impair
the model’s performance?

Provide a detailed explanation of the first and second differences of a time series.
Under what circumstances might second differencing be necessary?

Explain how the autocorrelation function (ACF) can be used to verify the effec-
tiveness of detrending and differencing interventions on a time series.

ARIMA Models

38.

39.

40.

41.

42.

43.

44.

45.

46.

Define an ARIMA model and explain the components of its notation: ARIMA(p,
d, q).

Describe a moving average model of order ¢, MA(q). How does it model the
current value of the series?

Describe the structure of an autoregressive model of order p, AR(p). What does
it mean for the model to have “memory” or persistence”?

Discuss the role of the differencing operator V in making a time series stationary.
How does this relate to the integrated component of an ARIMA model?
Explain the purpose of the backshift or lag operator B in the context of ARIMA
models. Provide an example of how it is used to define the differencing of a
series.

Explain how the autoregressive operator ¢(B) is used to form the equation of an
AR(p) model.

Explain the significance of the moving average operator #(B) in an MA(q)
model.

Describe the combined model ARMA(p, q) and how it integrates features of both
AR and MA models.

Explain how the properties of the ACF and PACF can help in selecting an appro-
priate ARIMA model for a time series. Provide examples of what the ACF and
PACF might look like for different models.

Fitting an ARIMA Model

47.

48.

Detail how the orders of the AR and MA components (p and q) are identified
using the ACF and PACF plots.

Explain the importance of model diagnostics in the ARIMA modeling process.
What are some key diagnostic checks that should be performed?
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49

50.

51.
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. Explain how information criteria such as AIC, AICc, and BIC are used to com-
pare the fit of different ARIMA models. What does each criterion take into
account?

Detail the process and importance of conducting model diagnostics after fitting
an ARIMA model. What specific plots and statistics are typically used?

Discuss the implications of the Ljung-Box test results when diagnosing the fit of
an ARIMA model. What does a significant result suggest about the residuals?

General Autoregressive Conditional Heteroscedasticity (GARCH) Models
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54.

55.

56.

57.

58.

. Define an ARCH and a GARCH model and explain their importance in financial
econometrics.

. Discuss how a GARCH models can account for volatility clustering in financial

time series.

Describe the basic structure of an ARCH(1) model and how it models the vari-

ance of a time series.

Explain how an AR(1) model with ARCH(1) error terms is constructed. Include

a description of how each component contributes to modeling the time series.

Explain the extension from an ARCH model to a GARCH model. What addi-

tional features does a GARCH model incorporate?

Describe how to interpret the output of a fitted GARCH model, including param-

eter estimates and their significance.

Discuss the significance of the parameters o and 3 in a GARCH(1,1) model.

What does each parameter represent, and how do they affect the model’s behav-

ior?



Chapter 13

Introduction to Neural
Networks and Deep Learning

Learning Goals

After reading this chapter, you should be able to:

Explain the basic components of neural network, the importance of the activation
function, and the behaviour of common activation functions.

Explain gradient descent optimization and different methods to adjust the step
sizes for parameter updates.

Explain the problems of vanishing and exploding gradients and identify ways to
address them.

Explain the purpose of dropout in neural networks.
Build basic neural network regression and classification models with a widely-
used neural network software package, train the models, and evaluate the quality

of the fitted model.

Encode categorical data in ways appropriate for neural network input.

Sources and Further Reading

The material in this chapter is based on the following sources.
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Gareth James, Daniel Witten, Trevor Hastie and Robert Tibshirani: An Intro-
duction to Statistical Learning with Applications in R. 2nd edition, corrected
printing, June 2023. (ISLR2)

https://www.statlearning.com

Chapter 10

\. J

While the James et al. book is otherwise very comprehensive, it only provides a single
chapter on neural networks. The benefit here is that neural networks are discussed in
context, as just one other regression or classification method. The downside is that it
does not dive sufficiently deep into neural network architectures and fitting of neural
network models that is at the heart of modern machine learning applications.

Kevin P. Murphy: Probabilistic Machine Learning — An Introduction. MIT
Press 2022.

https://probml.github.io/pml-book/bookl.html

Chapter 13, 14, 15

\. J

The book by Murphy is freely available under a Creative Commons license and pro-
vides three chapters on neural networks, one for structured data, one for images, and
one for sequences. It provides significant depth on convolutional and recurrent net-
work architectures, fitting the models, and problems the data analyst may encounter.
However, it tends to focus on the mathematical background, rather than application or
implementation.

[ Tensorflow Guides: https://www.tensorflow.org/guide ]

This section uses the Tensorflow programming framework for implementing neural
network machine learning applications. The Tensorflow website has a multitude of
introductory and advanced guides and tutorial that cover all aspects of machine learning
with neural networks and are all very accessible to the beginner. While they focus
heavily on implementation aspects, they provide significant coverage of the concepts
as well.

[ Tensorflow Playground: https://playground.tensorflow.org ]

The Tensorflow Playground, shown in Figure 13.1, is a very visual and interactive
introduction to how neural networks function. It allows playful exploration of a number
of features with a small simulated neural network.


https://www.statlearning.com
https://probml.github.io/pml-book/book1.html
https://www.tensorflow.org/guide
https://playground.tensorflow.org
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Figure 13.1: Tensorflow Playground

13.1 Introduction

Artificial Neural Networks ("ANN”) are a type of non-linear statistical model for re-
gression and classification. Their original motivation is the architecture of biological
brains whose elementary unit is the neuron. Figure 13.2 shows an image of a biological
neuron and its connections. Biological neurons in a brain are connected to many other
neurons via axons that connect to other neurons at their synapses. Neurons receive
electro-chemical inputs from other neurons through their axons. Once a certain thresh-
old of input is reached, neurons themselves generate an electro-chemical potential that
is transmitted to other neurons via their synapses. However, while this is the ori