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Abstract

Ontologies are explicit specifications of concepts and their relationships. In the context of a semantic web of
independently developed ontologies, overcoming interoperability and heterogeneity issues is of considerable
importance. Many semantic web applications, such as matching of instances in social networks, reasoning
over combined knowledge bases, and knowledge sharing among services, rely on ontology alignment. While
existing research in this area has developed a wide range of different heuristics, in this paper we propose
to look towards cognitive science, specifically analogical reasoning, to support ontology alignment. We in-
vestigate the question whether ontology alignment is rooted in the same cognitive process as analogical
reasoning. We apply the LISA system, a cognitively-based model of human analogical reasoning, to ontol-
ogy alignment and present a comprehensive experimental study to determine its performance on ontology
alignment problems.
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1. Introduction

Ontologies are explicit, formal representations of
concepts and their relationships within a domain
of knowledge (Gruber, 1993). They are used in a
variety of research areas such as knowledge man-
agement (Sure et al., 2002), geographic informa-
tion representation (Kuhn, 2001), medical informa-
tion modeling (Pisanelli et al., 2000), user profile
matching (Raad et al., 2010), and web mining (Au-
faure et al., 2006). Ontologies are important to
achieve interoperability among heterogeneous sys-
tems and are a key enabling technology for the se-
mantic web vision (Berners-Lee et al., 2001). The
distributed and independent nature of the semantic
web makes it likely that multiple parties indepen-
dently develop ontologies that partially overlap in
the knowledge they represent. Ontology alignment
methods attempt to establish correspondences be-
tween concepts of different ontologies.

Existing ontology alignment research has pro-
duced a wide range of methods, which include es-
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timating lexical similarity between concepts (using
syntactic or semantic similarity), identifying struc-
tural similarities between ontologies (using tree-
based or graph-based representations), as well as
relying on human interventions (assigning weights
or confidence scores, setting alignment parameters,
confirming alignment results, etc.) (Lambrix and
Tan, 2006; Hong-Hai and Rahm, 2007; Wei et al.,
2008; Cruz et al., 2009). Further, recent research
has moved to include sets or ensembles of individ-
ual matchers, using heuristics to select, tune, and
order the various matchers, weights, and thresh-
olds within the overall system. Although these
approaches are individually based on well-justified
logical, linguistic and statistical ideas, their diver-
sity suggests a lack of underlying theoretical foun-
dation. We propose that human anological reason-
ing processes can provide such a theoretical foun-
dation.

We argue that in order for an ontology align-
ment method to judged successful, the alignments
it produces should match those generated by hu-
mans. Only then does the alignment method meet
the expectations of its users, and only then will
the system be accepted as successful. This argu-
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ment is reflected by the fact that ontology align-
ment systems are routinely evaluated against ref-
erence alignments created by humans (Evermann,
2008b). While this does not imply that a successful
ontology alignment method must necessarily oper-
ate according to human cognitive principles, it does
suggest that a method that does work according to
such cognitive principles may be more likely to per-
form well.

In this paper, we follow recent calls to bridge the
gap between cognitive science and the semantic web
(Raubal and Adams, 2010; Gentner et al., 2012),
and investigate whether and how existing computa-
tional models of analogical reasoning can be applied
to the ontology alignment problem, a semantic web
use case. While there is a great amount of research
in the area of analogical reasoning and numerous
computational models have been proposed, this pa-
per focuses on the LISA model (Learning and In-
ference with Schemas and Analogies) (Hummel and
Holyoak, 1997), a prominent and empirically well-
validated computational analogical reasoning sys-
tem.

Our approach of applying cognitive science re-
search to semantic web problems is also supported
by recent work on database schema matching, a
problem similar to ontology alignment. That work
has investigated how humans make schema match-
ing decisions (Evermann, 2009, 2008a,b, 2010) with
the aim of applying the discovered principles and
methods to the matching problem. However,
in contrast to the present work, that work was
grounded in theories of meaning rather than cog-
nitive analogical reasoning. More recently, cogni-
tive principles of similarity have been applied to the
schema matching problem (Lukyanenko and Ever-
mann, 2011; Evermann, 2012), but so far only with
a brief demonstration of principles.

The remainder of the paper is structured as fol-
lows. Section 2 briefly introduces the cognitive
science research on analogical reasoning systems,
presents LISA, the analogical reasoning systems
adopted in this research, and describes our ap-
proach to ontology alignment with LISA. Section 3
describes our experimental design and results, in-
cluding a comparison with existing ontology align-
ment approaches. Section 4 discusses the contribu-
tions of the study, and suggests several directions
for future research.

2. Analogical Reasoning with LISA

Analogical reasoning is a cognitive process that
is used for learning from prior knowledge. It maps
knowledge from one domain (the base) into another
domain (the target) such that relations that hold
among the base objects also hold among the target
objects (Gentner, 1983). Analogies in human cog-
nition have been shown to follow three main prin-
ciples (Gentner and Forbus, 2011):

1. One-to-one mapping: Humans are shown to
construct and to strongly prefer analogies that
place each concept of the base domain in corre-
spondence with at most one object of the tar-
get domain.

2. Systematicity: Analogies become more useful
when they are able to map objects based on the
objects’ structure rather than based on super-
ficial similarities (Gentner, 1983). For exam-
ple, in the analogy ”an electric battery is like a
reservoir”, there is no resemblance between the
objects’ surface attributes (e.g., shape, size,
color). However, the analogy builds on the fact
that both objects store potential energy, i.e. it
is based on structural similarity with a com-
mon ”higher-order” relation stores energy.

3. Parallel connectivity: This principle states
that if predicates of propositions are mapped to
each other, their constituent objects must also
be placed in correspondence. For example, if
the predicate stores in the proposition stores
(reservoir, energy) is matched to the predi-
cate stores’ in stores’ (electric battery, energy’)
then reservoir must match electric battery and
energy must match energy’.

Analogies are at the core of human cognition
(Gust et al., 2008; Gick and Holyoak, 1980; Gen-
tner and Forbus, 2011) and are a promising field of
research in cognitive science (Forbus et al., 1998).
Reasoning by analogy has received significant at-
tention in cognitive systems research (French, 2002;
Gentner, 2003; Krawczyk et al., 2004; Morrison
et al., 2011). A number of computational mod-
els of analogy-making systems have been proposed,
implemented (Falkenhainer et al., 1989; Goldstone
and Medin, 1994; Gust et al., 2006; Hummel and
Holyoak, 1997) and experimentally evaluated (For-
bus, 2001; Gentner, 2010; Gentner and Forbus,
2011; Loewenstein and Gentner, 2005; Lovett et al.,
2009). While SME (Structure-Mapping-Engine)
(Falkenhainer et al., 1989) and LISA (Learning and
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Inference using Schemas and Analogies) (Hummel
and Holyoak, 1997) have had the greatest success in
accounting for the range of phenomena in analogi-
cal thinking and learning (Gentner, 2010), we focus
on LISA as it does not make the assumption of com-
mon relationships names that SME does. Moreover,
LISA’s architecture is based on cognitively realistic
assumptions about working memory capacity and
recall. Thus, it is likely that LISA more accurately
reflects human processes to generate object and re-
lational mappings (Krawczyk et al., 2004). Hum-
mel and colleagues have explored the performance
of LISA for retrieving and mapping analogs (Hum-
mel and Holyoak, 1997) and for inferring and induc-
ing schemas (Hummel and Holyoak, 2003). LISA
was also successfully applied to modeling the loss
of relational reasoning in populations with forms of
brain damage (Morrison et al., 2004), studying chil-
dren’s development of analogical reasoning (Rich-
land et al., 2006), and comparing the reasoning per-
formance between young and old adults (Viskontas
et al., 2004).

2.1. Symbolic Knowledge Representation

LISA is based on a combination of symbolic and
connectionist architectures. A domain of knowledge
is represented in LISA using units that represent
logical propositions (”P units”, closed atomic for-
mulas or ground atoms in first-order logic). Each
proposition is connected to a set of role units (”R”
units). In first-order logic, these are free variables in
the open formula corresponding to the proposition
(the ”names” of the arguments). Each proposition
is also connected to a set of object units (”O” units).
In first-order logic, these are the ground terms in
the closed atom that are substituted for (bound to)
the free variables in the open atomic formula cor-
responding to the proposition. The ground substi-
tution of each free variable with a ground term is
called a sub-proposition (”SP unit”) in LISA termi-
nology. Table 1 gives a summary and an example
of this terminology.

Additionally, roles and objects in LISA are con-
nected to semantic units. These have no equiva-
lent in the corresponding first-order logic knowl-
edge representation, but are literals that serve to
characterize the roles and objects. For example,
the concept of an academic paper, represented by
the object unit (or ground term) paper, might be
associated with literals such as ”present”, ”confer-
ence”, etc. Similarly, the concept of a subclass, rep-
resented by the role unit (or free variable) SubClass,

might be associated with the literals ”OWL” (indi-
cating that it is part of the Web Ontology Language
OWL), ”sub-ordinate”, ”class” (indicating that it
refers to a class in the ontology). These associated
literals comprise the set of semantic units that are
connected to objects and roles. A graphical repre-
sentation of the complete LISA proposition is given
in Figure 1. The two knowledge domains that are
to be aligned in LISA are called the source ana-
log and the target analog. The semantic units are
shared among the two analogs; objects and roles of
both analogs may be connected to the same set of
semantic units.

2.2. Representing Ontologies in LISA

We assume that the ontologies are represented in
the Web Ontology Language OWL. In encoding an
ontology as a LISA analog, we build on the fact that
LISA propositions are structurally similar to RDF
triples, which have the form ”subject – predicate –
object” and, similar to first-order logic, consist of
a function or relation symbol and two arguments.
Thus, we first transform OWL ontologies to a set
of RDF triples, in the form described in the OWL2
specification1. The top part of Table 2 shows two
OWL class declarations with some annotations and
a subclass axiom. The corresponding RDF triples
are shown in the second part of the table. The bot-
tom part of Table 2 shows the corresponding LISA
analog definition. LISA keywords are highlighted
in bold.

LISA Predicates. Each analog definition consists of
the definition of predicates in the ”Defpreds” sec-
tion with their number of arguments and possibly
an explicit definition of their roles (bottom part
of Table 2). In our application, the set of pred-
icates is fixed to represent OWL class, OWL ob-
ject property, and OWL data property definitions,
as well as OWL subclass axioms. Hence, we define
four binary predicates, Class, IsSubClassOf, Object-
Property and DataProperty. The roles for LISA
predicates can either be defined implicitly or ex-
plicitly. An implicit definition occurs when only
the arity (number of arguments) of each predicate
is indicated, as for the Class, ObjectProperty and
DataProperty predicates in the example in Table 2.
When the roles are defined explicitly, they can be
associated with semantic units, as in the IsSubClas-
sOf example in Table 2.

1http://www.w3.org/TR/owl2-mapping-to-rdf/
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Example First-Order Logic LISA

IsSubclassOf(SubClass/paper, Ground/closed atomic formula Proposition
SuperClass/publication)

IsSubClassOf Function symbol Predicate
SubClass/paper Substitution (variable binding) Sub-Proposition
SuperClass/publication Substitution (variable binding) Sub-Proposition
SubClass Variable Role
Superclass Variable Role
paper Ground term Object
publication Ground term Object

Table 1: Representation of a first-order logic ground atomic formula in LISA terminology. The ”A/a” symbol represents
substitutation of variable A with ground term a.

P:
IsSubclassOf(SubClass/paper, SuperClass/publication)

SP1:
SubClass/paper

SP2:
SuperClass/publication

O1:
   paper   

R1:
SubClass

O2:
publication

R2:
SuperClass

conference     publishpresent            indexed owl class rolesub-ordinate             super-ordinate

Figure 1: Representation of the statement IsSubclassOf(SubClass/paper, SuperClass/publication). Propositions are shown as
ovals (P), sub-propositions as rectangles (SP1, SP2), objects as large circle (O1, O2), roles as triangles (R1, R2), and semantic
units as small circles (e.g. ”conference”). The connections between units indicate the construction of the logic formulas and
are also used for the connectionist-based algorithm to propagate action levels of units. They are undirected.
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OWL
<owl:Class rdf:ID=”paper”>
<rdfs:label>paper</rdfs:label>
<rdfs:comment”>something that is presented at a conference and published. </rdfs:comment>
<rdfs:subClassOf rdf:resource=”publication”/>
</owl:Class>
<owl:Class rdf:ID=”publication”>
<rdfs:label>publication</rdfs:label>
<rdfs:comment”>something that is published and indexed. </rdfs:comment>
</owl:Class>
RDF triples
<paper> <rdf:Type> <owl:Class> .
<paper> <rdf:label> ”paper” .
<paper> <rdfs:comment> ”presented at a conference and published” .
<publication> <rdf:Type> <owl:Class> .
<publication> <rdf:label> ”paper” .
<publication> <rdfs:comment> ”something that is published and indexed” .
<paper> <rdfs:subClassOf> <publication> .
LISA
Analog ExampleAnalog1
Defpreds

Class 2 ;
IsSubClassOf [ SubClass sub-ordinate role class OWL ] [ SuperClass super-ordinate role class OWL ] ;
ObjectProperty 2 ;

DataProperty 2 ;
end ;
Defobjs

paper conference present publish ;
publication publish indexed ;
rdf:Type instance rdf classes ;

end ;
DefProps

P1 class ( paper, rdf:Type ) ;
P2 class ( publication, rdf:Type ) ;
P3 IsSubClassOf ( paper, publication ) ;

end ;

Table 2: Example OWL statements transformed via RDF triples to LISA format, corresponding to the example in Figure 1.
See (Hummel and Holyoak, 1997) for further details about the LISA specification syntax.
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The Class, ObjectProperty and DataProperty
predicates are defined as binary predicates in the
RDF triples, with the second argument always be-
ing the term ”rdf:Type”. While this may seem un-
necessary, we have found that retaining this encod-
ing actually improves LISA’s performance as it pro-
vides additional structure to connect the different
propositions in LISA’s knowledge representation.

LISA Objects. Next, a LISA analog includes the
definition of the objects with their semantic units
in the ”Defobjs” section (bottom part of Table 2).
If an RDF triple is an OWL named class decla-
ration, i.e. it has a rdf:Type predicate and an
owl:Class object, its subject and object are rep-
resented as LISA objects. In other words, we rep-
resent OWL classes as LISA objects. Specifically,
rdf:Type is a LISA object, and the RDF ID of the
declared class becomes a LISA object. For exam-
ple, the triple <paper> <rdf:Type> <owl:Class>
causes ”rdf:Type” and ”paper” to be declared as
LISA objects.

In a similar way, we generate LISA objects
if the RDF triple has a rdf:Type predicate and
an owl:ObjectProperty or owl:DatatypeProperty ob-
ject. In other words, we also represent OWL prop-
erties as LISA objects.

Intuitively, when OWL classes and OWL proper-
ties are represented as LISA objects, we can then
make statements in LISA about these objects, i.e.
LISA propositions, which represent the statements
in the OWL ontology about the classes and prop-
erties.

LISA Semantic Units. To generate the semantic
units for each LISA object, i.e. literals that char-
acterize each object, we parse labels and comments
of named classes. In the example in Table 2, there
are labels and a comment for the OWL classes pa-
per and publication. While in this case the label is
simply the same literal as the ID of the class, the
comment provides additional characterization. We
remove stopwords and stem the remaining terms of
labels and comments. In this case, the terms ”con-
ference” and ”present” are parsed from the com-
ment for the paper class. These are defined as se-
mantic units for the LISA object paper (Table 2).
We add a fixed set of semantic units for each auto-
matically generated LISA object. For example, we
add the semantic units ”instance”, ”classes”, and
”rdf” for the rdf:Type object because we believe
these are characteristic of that object.

LISA Propositions. Finally, we use the declared
LISA predicates and objects to construct proposi-
tions in LISA, found in the ”DefProps” section in
the bottom part of Table 2. Each proposition is
labelled, e.g. ”P1”. In the example in Table 2, the
proposition P1 expresses the fact that the LISA ob-
ject paper is a class and is related to the rdf:Type
LISA object.

When encoding a knowledge domain as a LISA
analog, the default type of entity to be bound to a
LISA role is a LISA object. Consider the following
example of a class paper (P1) that has a subclass
journalPaper (P2). The proposition P3 binds the
LISA objects journalPaper and paper to the LISA
roles of the IsSubClassOf predicate:

P1 Class (paper, rdf : Type);

P2 Class (publication, rdf : Type);

P3 IsSubclassOf (paper, publication);

In an alternative encoding, a proposition is
bound to a role in a similar way that ground atomic
formulas can be bound to free variables in predicate
logic. Given the same subclass relation between the
paper class (P1) and the journalPaper class (P2),
the alternative proposition P3’ defined below en-
codes this relation explicitly by binding proposi-
tions P1 and P2 to the two roles of the IsSubClassOf
predicate. We call this ”relational encoding”:

P3’ IsSubClassOf(P2, P1);

We emphasize that the way in which OWL on-
tologies are encoded in LISA analogs is not gov-
erned or constrained by any theoretical or logic-
based principles. This is especially true for the se-
mantic units, which are critical to the alignment
process as they form the connection between the
two LISA analogs. By parsing comments and la-
bels, we have attempted to extract as much infor-
mation from the ontology as possible. For ”meta-
level” objects, i.e. those that represent OWL con-
structs, we have relied on our intuition in creating
characteristic and distinct sets of semantic units.
For example, we believe that the literals ”instance”,
”rdf”, and ”classes” characterize the rdf:Type ob-
ject.

2.3. Connectionist Behaviour — Principles

Structurally, the connections between the units in
LISA merely indicate the construction of the logic
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formulas as described above. However, the connec-
tions between the units are also important for the
connectionist aspect of LISA: Units have an activa-
tion level, they can be activated (”fired”) and the
connections between units serve to ”transmit” acti-
vation or inhibition to connected units (Section 2.4
below). The shared nature of the semantic units
serves to transmit activation or inhibition between
the two analogs.

While the terms ”source analog” and ”target ana-
log” describe the direction in which the analogy is
to be built, i.e. the direction of knowledge transfer,
LISA uses the terms ”driver analog” and ”recipient
analog” to indicate which of the two analogs begins
the activation process. The driver analog is typi-
cally, but not necessarily, the source analog. More-
over, this direction can be changed in the course
of the alignment process. In our application, the
source analog is always the driver.

LISA operates by simulating activation over time
of the units in the two analogs. Intuitively, this
activation is LISA ”paying attention” to those el-
ements and is argued to mirror human attention
mechanisms. The mappings of elements between
the source and target analogs are determined by
temporal co-activation patterns: When the activa-
tion pattern over time of an element of the target
analog is similar to that of an element in the source
analog, LISA creates a weighted mapping connec-
tion between the two elements. The weights in-
crease if the activation levels over time of the source
and target element are similar, and decrease other-
wise. Intuitively, the idea is that if we pay atten-
tion to an element in the source analog, and this
attention ”brings to mind” an element in the tar-
get analog at the same time, then this represents
an analogical mapping.

When a proposition is activated, it activates its
sub-propositions. All units connected to the same
sub-proposition are activated at the same time, and
units of separate sub-proposition are activated at
different times. Consider the timing diagram for
the example in Figure 1 that is shown in Table 3.
When the proposition P is activated, it activates its
two sub-propositions, SP1 and SP2 asynchronously.
When a sub-proposition is activated, it in turn ac-
tivates the object and role units to which it is con-
nected. For example, the activations of O1 and R1
occurs at the same time points as that of SP1. The
object and role units in turn activate the semantic
units they are connected to. Because semantic units
may be connected to multiple object or role units,

Repeat until all P units have been activated:

1. Select a set of P units of the driver analog
(”phase set PS”). Set the input to any SP unit
that is connected to a P unit in the phase set
to 1.

2. Repeatedly update the state of the network in
discrete time units t = 1 . . . 220 × |SP ∈ PS |.
For each step do:

(a) Update modes of all P units in the recip-
ient

(b) Update inputs of all P units in PS and
their connected SP, role and object units

(c) Update the global inhibitor
(d) Update the inputs to all semantic units
(e) Update the input to units in recipient
(f) Update the activation of all units
(g) Create mapping connections

3. Update mapping weights

Table 4: LISA Algorithm from (Hummel and Holyoak, 1997)
(P = Proposition, SP = Sub-proposition)

and because object and role units in turn may be
connected to multiple sub-propositions, a complex
temporal pattern of activation is generated on the
semantic units. The activation then propagates to
the recipient analog.

2.4. Connectionist Behaviour — Algorithm

The input to the algorithm are two analogs that
encode the relevant domain knowledge and that
share some semantic units, as described above. The
output of the algorithm is a set of weighted mapping
connections between units of the source and target
analog (possibly connecting many target units to
each source unit and vice versa) with the weight
normalized to the interval [0, 1] for each mapping
connection. Table 4 shows the main steps of the
LISA algorithm.

Step 1. Any number of propositions can be selected
into the phase set. In our application, we typically
select one, two, or three propositions in different or-
ders into the phase set. In the experimental study
described in Section 3, this is controlled by the
experimental design factors ”Ordering” and ”Up-
dates”, where the latter controls how many proposi-
tions are activated (i.e. are in the phase set) before
mapping weights are updated in step 3.
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Time →
P IsSubclassOf(SubClass/paper, SuperClass/publication) x x x x x x x

SP1 SubClass/paper x x x x
O1 paper x x x x
R1 Subclass x x x x
SP2 Superclass/publication x x x
O2 publication x x x
R2 Superclass x x x

publish x x x x x x x
conference x x x x

present x x x x
indexed x x x x

. . . . . .
owl x x x x x x x

Table 3: Activation of units in the example in Figure 1 against time.

Step 2a. P units operate in either parent, child or
neutral mode. Initially, P units in the driver analog
are in neutral mode, except those selected into the
phase set in step 1, which are in parent mode. In
parent mode, P units pass activation input down-
wards to their SP units. In neutral mode, P units
pass activation input both upwards and downwards.
In child mode, P units pass activation input up-
wards to the SP units they are part of (recall that
propositions can take the place of objects in sub-
propositions). P units in the receiver analog up-
date their mode on the basis of their inputs from
SP units above (SP ↑) and below (SP ↓), and also on
the basis of their inputs from P units in the driver
that are either in parent mode (P parent) or child
mode (P child) to which they may be connected via
mapping connections:

m =



Parent if SP ↑ − SP ↓

+P parent − P child > θ

Child if SP ↑ − SP ↓

+P parent − P child < −θ
Neutral otherwise

Step 2b. Each SP unit consists of an excitor with
activation e and an inhibitor with activation I.
In the driver, SP excitors receive excitatory input
from P units above (p), inhibitory input from other
driver analog SP excitors (

∑
j ej) with a sensitivity

s that decays with each simulated time slice, and
inhibitory input from their own inhibitor (I). The
net input to an SP excitor is

n = 1 + p−
s
∑

j ej

1 + NSP
− I

where NSP is the number of SPs in the driver with
activation > 0.2.

An SP inhibitor receives input only from the cor-
responding excitor and changes its activation ac-
cording to

∆I =


γs I ≤ ΘL, e > ΘI

γf I > ΘL, e > ΘI

−δs I ≥ ΘU , e ≤ ΘI

−γf I < ΘU , e ≤ ΘI

where γ are growth rates, Θ are lower and upper
thresholds, and δ is a decay rate.

P units in parent mode receive input from the
excitors of the SP units below with net input n =∑

j ej , where ej is the activation of the excitors of
SP unit j. P units in child mode, role or object units
receive input from the excitor and the inhibitor of
the SP above with net input n =

∑
j(ej−Ij), where

Ij is the activation of the inhibitor of SP unit j.

Step 2c. The global inhibitor is set to Γ = 10 if all
SP excitors in the driver analog have an activation
below the threshold ΘG.

Step 2d. Semantic units receive weighted input
from role and object units in both the driver and
receiver analog, with the net input computed as∑

j ajwij , where wij are the connection weights of
semantic unit i to role or object unit j, and aj serves
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to normalize activation to between 0 and 1. Input
from the receiver analog occurs only after each SP
in the driver has been activated at least once.

Step 2e. Units in the recipient analog receive five
inputs:

• within-proposition excitatory input P ,

• within-class inhibitory input C (i.e. SP-to-SP,
object-to-object, etc.),

• out-of-proposition inhibitory input O (i.e. P
units inhibit SP units of other P units, and SP
units inhibit role and object units of other SP
units),

• both excitatory and inhibitory input M via the
cross-analog mapping relationships, and

• inhibitory input from the global inhibitor πΓ
(Step 2c).

The net input n is computed as

n = P − C − πO +M − πΓ

For P units, the within proposition excitatory in-
put P is a function of the activation of the excitors
of the SP units above and below the P units:

P = (1− π)
∑
j

ej + π
∑
k

ek

When P is in parent mode, π = 0, otherwise π = 1,
j are SP units below and k are SP units above.

The within class input C for a P unit i is defined
as

Ci =

∑
j 6=i ajm(i, j)

1 + n

where aj is the activation of other P units, n is
the number of P units that are activated above a
certain threshold ΘI ; m(i, j) = 1 if i is in neutral
mode or if i and j are in the same mode, and is 0
otherwise.

The out-of-proposition inhibition is defined as the
sum of the activation aj of P units j that are neither
below or above it:

Oi =
∑
j

aj

Finally, the input Mi from mapping relationships
for a P unit i is defined as

Mi =
∑
j

m(i, j)aj(3wij −max(wi.)−max(w.j))

where aj is the activation of P unit j in the target
analog, wij is the mapping weight between node i
and node j in the target analog and wi., and w.j

are means over j and i respectively.
For SP units, the terms for the net input are

defined as above for P units, except for the within-
proposition input P , which is defined as

P = p+ r + o+ c

where p is the activation of the P unit above if that
unit is in parent mode and 0 otherwise, r is the
activation of the predicate unit below, o is the ac-
tivation of the object unit below (if there is one,
otherwise it is 0), c is the activation of any P unit
serving as child (if there is one, otherwise it is 0).

For the role and object units, the terms for the
net input are defined as above for P units, except
for the within-proposition input P , which is defined
as:

Pi =

∑n
j=1 ajwij

1 + n
+

∑m
k=1 ak

1 +m

Here, j are the semantic units to which i is con-
nected and aj their activation; k are the SP units
above this role or object unit and ak their activa-
tion; wij are the connection weights.

Step 2f. At the end of each iteration and after
computation of all excitatory and inhibitory in-
put, all units update their activation according to
∆a = γn(1−a)−δa where γ is a growth rate and δ
is a decay rate; n is the net input (excitatory minus
inhibitory).

Step 2g. When the activation of a unit in the recip-
ient analog first exceeds 0.5, mapping connections
are created between it and units of the same type
in the driver analog. These connections and their
weights are important for the subsequent iteration.

Step 3. Each mapping weight wij is updated, tak-
ing into account competing mapping hypotheses
and ensuring a 1:1 mapping constraint.
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2.5. Connectionist Behavior — Worked Example

We present a brief example of the algorithm using
the single analog shown in Figure 1 and Table 2.
Given the iterative nature of the algorithm and its
complexity, we can only show a few steps.

In step 1, proposition P1 is selected into the
phase set and activated. This sets the inputs to
SP1 and SP2 to 1 (step 1). The following steps are
repeated 220× 2 = 440 times.

In step 2a, the P units in a recipient analog are
not yet connected to any P units in the driver, so
P parent and P child are 0, as is the input from SP
units above or below (SP ↑, SP ↓).

In step 2b, the excitor for SP1 receives excitatory
input receive excitatory p = 1 from its P unit. The
other excitors are not yet active in this iteration, so
that ej = 0, and neither is the inhibitor active yet,
so that I = 0. Thus, n = 2 for the excitor of SP1 in
this iteration. Note that the excitor is not actually
updated until the end of the iteration (step 2f), so
ej = 0. The change to the inhibitor ∆I is set using
the growth and decay rates according to the formula
specified in step 2b. Since I = 0 < ΘL and ej = 0 >
ΘI in this iteration (assuming typical thresholds ΘI

and ΘL), the inhibitor is set to grow according to a
growth rate γ. Also as part of step 2b, the P1 unit,
which is in parent mode, receives input from the
excitors of SP1 and SP2, but this net input is still
n = 0 as the excitors are not actually updated until
the end of the iteration (step 2f). There are no P
units in child mode. However, role and object units
connected to SP1 and SP2 receive net input n = 0
in this iteration. Again, this is because neither the
excitor nor inhibitor actually update until the next
iteration.

In step 2c, the global inhibitor is not activated,
as the excitors in the driver have only just become
active.

In step 2d, the semantic units receive activation
from the role and object units. The initial weights
are set to 1. There is not yet any input to the
semantic units from the receiver analog.

In step 2e, the units in a receiver analog are ac-
tivated according to the description above. The P
units in the receiver do not yet receive any within-
proposition activation, as the excitors of their SP
units are not yet active. They do not yet receive
any within-class input or out-of-proposition inhibi-
tion activation either, as the other P units in the
receiver are not yet activated. There is also no input
from mapping relationships, as there are no map-

ping relationships yet. The same is true for the SP,
role and object units in the receiver.

In step 2f, all units update their input accord-
ing to the computed net change and the formula
presented above. For example, the excitor for SP1
with a computed net change of n = 2 and a cur-
rent activation of e = 0 will, assuming a growth
and decay rate γ = δ = 0.5, be changed by
δe = 0.5× 2(1− 0)− 0.5× 0 = 1.

In step 2g, mapping connections are created be-
tween units of the same type that are active at> 0.5
at this time in both the driver and the recipient.

3. Experiment, Results, and Comparison

We evaluated LISA’s performance on ontology
alignment tasks using standard benchmark tests.
We first describe the benchmark ontology align-
ment tests. Then we present our results and a com-
parison with existing approaches. Our evaluations
used the publicly available version of LISA2.

3.1. Benchmark Dataset

To evaluate LISA’s performance, we used the
set of alignment tests available from the Ontology
Alignment Evaluation Initiative (OAEI) (Aguirre
et al., 2012; Shvaiko and Euzenat, 2013). We used
the ”benchmark” test set, a systematic benchmark
series that is based on a reference ontology in the
domain of academic bibliography. It has 33 named
classes, 24 object properties, 40 data properties,
56 named individuals and 20 anonymous individ-
uals. This test set is intended to be stable, with
results published annually since 2004. The tests
are grouped into three main categories:

1. Simple tests (1xx): The reference ontology
is compared with itself, its representation in
OWL-Lite, or an irrelevant ontology. To de-
termine the correct operation of LISA, we have
only implemented the first of these tests, the
comparison of an ontology with itself.

2. Systematic tests (2xx): Various modified ver-
sions are compared with the reference ontology,
see Table 8. There are 93 tests in this set.

3. Real ontologies (3xx): The reference ontology
is compared with other bibliography domain
ontologies that have been independently devel-
oped.

2http://internal.psychology.illinois.edu/

~jehummel/models.php
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While the tests in the 300-series are perhaps more
realistic than the synthetic benchmarks in the two
other categories, the reference alignments for these
tests are known to be flawed3. Thus, our eval-
uation instead focuses on the 200-series of tests.
In these tests, the reference ontology is systemati-
cally varied by suppressing the names and/or com-
ments, by suppressing, flattening or expanding the
specialization hierarchy, by suppressing the proper-
ties of concepts, or by various combinations of these
changes (Table 8). Figures B.5 and B.6 in the ap-
pendix show, as an example, the two ontologies to
be matched for OAEI benchmark test 258. Given
the space limitations and the complexity of the on-
tologies, only the class hiearchies are shown.

3.2. Experimental Design

LISA, and our encoding of OWL ontologies in
LISA, is configurable. We investigated different
configurations in order to better understand their
influence on the alignment results and to find an op-
timal configuration for comparison to state-of-the-
art alignment systems. We identified and varied the
levels of four experimental design factors.

1. As described in Section 2.2, LISA allows the
binding of either objects or propositions to
roles. We refer to the first encoding as “non-
relational” and to the second “relational”.

2. While the activation order of propositions in
the original LISA work (Hummel and Holyoak,
1997) was optimized manually, this is not fea-
sible in the ontology alignment context where
the analogs are much larger. Instead, we have
defined and experimented with the following
proposition activation orders:

• Ordered: All propositions are activated in
the order in which they appear in the on-
tology. When propositions are activated
multiple times, the same sequence is re-
peated.

• OrderedCSC: First, propositions repre-
senting classes are activated, then propo-
sitions representing subclass relation-
ships, then proposition representing ob-
ject and data properties. When propo-
sitions are activated multiple times, the
same activation sequence is repeated.

3http://oaei.ontologymatching.org/2012/

benchmarks/

• Grouped: Similar to OrderedCSC, propo-
sitions are activated in groups, first those
representing classes, then those repre-
senting sub-class relationships, then those
representing object and data properties.
However, when propositions are activated
multiple times, the set of propsitions
representing classes is activated multiple
times, followed by the set of propositions
representing subclasses activated multiple
times, followed by the set of propositions
representing object and data properties,
activated multiple times.

• Random: The propositions are activated
in random order.

3. LISA can be configured to activate proposi-
tions more than once, representing repeated
”attention” being paid to propositions. As
described above, this has different effects de-
pending on the chosen ordering of propositions.
We investigate activating propositions once or
twice.

4. LISA normally updates mapping connections
and their weights after the activation of each
proposition (step 3 of the algorithm in Ta-
ble 4). We also investigate activating two
or three propositions before mappings are up-
dated.

Table 5 shows a summary of the four experimen-
tal design factors. Their combination results in 48
experimental conditions. For each of these condi-
tions, we applied LISA to all tests in the reference
alignment test set.

To evaluate the performance of LISA, the ob-
tained alignments are compared to a set of reference
alignments that are provided as part of the OAEI
benchmark set. We use the the F-score measure,
which combines the precision and recall metrics, to
evaluate our ontology alignment results. Figures 2
and 3 show graphical representations of the mean
and median F-score across all 94 OAEI benchmark
tests under different experimental conditions. The
full results can be found in tables A.9 and A.10 in
the appendix. The figures clearly show that the
median values are generally higher than the means,
and also illustrate the complex interaction patterns
between the experimental design factors.

3.3. Data Analysis

To identify which of the experimental design fac-
tors had a significant effect on the F-scores, we per-
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Design Factor Description Levels (Base line in emphasis)

Encoding Propositions or objects as role fillers
(Sec. 2.2)

Objects (”Non-Relational encoding”),
Propositions (”Relational encoding”)

Ordering Order of proposition activation
(Sec. 2.4, Step 1)

Ordered, OrderedCSC, Grouped, Random

NumProps Number of times each proposition is acti-
vated (Sec. 2.4, Step 1)

1, 2

Updates Number of propositions to activate before
mappings are updated (Sec. 2.4, Step 3)

1, 2, 3

Table 5: Experimental Design Factors

Estimate Std. Error t value Pr(>|t|)
(Baseline) 0.4375 0.0111 39.35 0.0000

Encoding.Rel 0.0149 0.0079 1.90 0.0574
Ordering.Grouped 0.0679 0.0111 6.11 0.0000

Ordering.OrderedCSC 0.0836 0.0111 7.52 0.0000
Ordering.Random 0.0452 0.0111 4.07 0.0000

Updates.2 0.0177 0.0096 1.84 0.0657
Updates.3 0.0040 0.0096 0.42 0.6778

NumProps.2 0.0264 0.0079 3.36 0.0008

Table 6: ANOVA Results: Effects of Experimental Design Factors on F-Score and Statistical Significance (Main effects only,
no interaction effects)

formed an analysis of variance (ANOVA), limited to
the main effects of the four design factors without
including interaction effects. The results are shown
in Table 6 with effects compared to the base line
configuration that is highlighted in Table 5. First,
the mean F-score across all tests in the baseline con-
figuration is 0.4375. Next, we examine the effect of
the experimental design factors on the F-score:

Encoding. The encoding of the ontology in LISA
(design factor ”Encoding” in Tables 5 and 6) did
not have a significant effect on the F-score (p =
.0574). A slightly higher mean F value (.4524) is
achieved by moving to relational encoding. As ex-
pected, LISA is primarily a structural matcher and
can exploit the increased structure in the encoding
that provides connection between different proposi-
tions, rather than only between objects.

Ordering. Our results indicate that the activation
order for propositions (design factor ”Ordering” in
Tables 5 and 6) has the largest effect on the F-
scores. The mean F-score improves with any of
the other activation orders, and the increases are
statistically significant. Specifically, activating the
propositions in groups improves the mean F-score
by .0679 against the baseline, and the activation

order ”OrderdCSC” improves the F-score by .0836.
The ordering is important due to the iterative na-
ture of the algorithm: Mapping connections are cre-
ated and their weights are updated (steps 2g and
3) after each proposition is activated (or after two
or three activated propositions in some conditions).
Hence, the activation levels created by earlier acti-
vations have an effect on the updated connections
and weights. Consequently, a different activation
order is likely to result in different mapping con-
nections and weights.

Updates. The number of propositions h that are
activated before mappings are updated (step 3 in
Table 4, design factor ”Updates” in Tables 5 and
6) has no significant effect on the F-scores. For
h = 2, there is an increase of approx. 2%. In-
terestingly, for the relational encoding, there is a
significant positive effect (mean F = 0.53745) for
h = 3, while there is a significant negative effect
(mean F = .48528) for h = 3 and non-relational
encoding.

Number of Propositions. Repeating the activation
of propositions (design factor ”NumProps” in Ta-
bles 5 and 6) also has a small but significant effect
on the F-scores, increasing the F-score by .0264
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Figure 2: F-scores under different experimental conditions
(mean across all OAEI tests)

against the baseline. This is expected, as the al-
gorithm can update the mapping connections and
their weights again after the final proposition in the
first sequence has been activated, in a sense allow-
ing LISA to ”revisit” and ”refine” earlier mappings
in light of propositions activated later.

In addition to these main effects, there are a va-
riety of interaction effects, such that changes to the
F-score depend on multiple experimental factors.
The LISA configuration with the highest mean F-
score across all 94 OAEI benchmark tests was rela-
tional encoding, ordered by class–subclass groups,
with a single proposition activated between map-
ping updates, and activating propositions twice.
The mean F-score for this condition was 0.6293.
This was also the configuration with the highest
median F-score across all OAEI tests; the median
F-score for this condition was 0.6866. Using the
optimal LISA configuration for each OAEI bench-
mark test, the mean F-score across all OAEI tests
is 0.7147 and the median F-score across all OAEI
tests is 0.7788.

3.4. Comparison to Other Systems

Table 7 shows the mean and median F-scores of
all reported systems in the 2012 OAEI competi-
tion4. Based on this data, LISA in a single opti-

4The OAEI results compute the mean F-score by first
computing the arithmetic means of precision and recall
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Figure 3: F-scores under different experimental conditions
(median across all OAEI tests)

mal configuration across all tests ranked fourth by
mean and sixth by median F-score. When using an
optimal configuration for each OAEI test (labelled
”LISA (opt.)” in Tab. 7), LISA again ranks fourth
by mean F-score (with a very small difference be-
hind AROMA) and also fourth by median F-score,
with only a small difference behind AROMA.

Test cases such as the OAEI benchmarks are in-
tended to be representative of a range of different
situations, e.g. differing by knowledge domain or
by the type of ontology features. Thus, one can
interpret the benchmark tests as samples from a
possible set of benchmarks. With this interpreta-
tion, one can ask whether the observed F-score dif-
ferences between LISA and other systems on this
particular set of benchmarks indicate a statistically
significant difference in the population of alignment
problems. To answer this question, we compare
LISA to other systems using a pairwise comparison
test. For this, we use the single best LISA configu-
ration (relational encoding, ordering by class–sub-
class, propositions activated twice, and mapping

across all benchmark tests, and then computing the har-
monic mean. However, this is not the mean of the F-scores
of different tests, but the F-score of the mean precision and
recall and has a tendency to artificially inflate the results. In
this paper, we first compute the harmonic mean of precision
and recall for individual tests, and then take the arithmetic
mean of those.
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System Mean F Median F Sig. Diff.

MapSSS 0.7784 0.8732 *
YAM++ 0.7682 0.8529 *
AROMA 0.7169 0.7922 *
LISA (opt.) 0.7147 0.7788 *
LISA 0.6294 0.6866
WeSeE 0.6069 0.7461
AUTOMSv2 0.6068 0.7414
GOMMA 0.5842 0.6690 *
Hertuda 0.5826 0.7100 *
HotMatch 0.5706 0.6604 *
Optima 0.5520 0.6073 *
MaasMatch 0.5488 0.6051 *
Wmatch 0.5383 0.6198 *
ServOMap 0.5335 0.5663 *
LogMapLt 0.5065 0.5567 *
LogMap 0.4883 0.5174 *
MEDLEY 0.4802 0.5244 *
ASE 0.4569 0.5075 *
edna 0.4110 0.4000 *
ServOMapLt 0.3581 0.3333 *

Table 7: Mean and Median F-scores of systems in the 2012
OAEI competition (across 94 benchmark tests), sorted by
mean F with significant differences (paired t-test, α < 0.05)
to LISA score indicated. ”LISA” represents LISA in single
optimal configuration; ”LISA (opt.)” represents LISA with
test-specific optimal configurations.

updates after each activated proposition). Perform-
ing this comparison to all other systems shows that
the differences in F-score are significant only for
some systems (Table 7, column ”Sig. Diff.”). There
are significant differences between LISA’s perfor-
mance and that of the group of top three other
approaches. Further, there are significant differ-
ences between LISA’s performance and the bottom
group of 13 other approaches. Thus, while there
may be differences for this particular set of bench-
mark tests, these sample differences do not nec-
essarily reflect real performance differences across
different but similar benchmark tests, e.g. with a
different knowledge domain. Not indicated in Ta-
ble 7, when LISA is optimized for each test (”LISA
(opt.)”), there are no significant differences to the
AROMA system, indicating that LISA in the test-
optimal configuration occupies third place in the
ranking.

3.5. Effects of Test Difficulty

Many of the tests in the OAEI benchmark suite
come in different levels of difficulty as the bench-

mark tests are synthetically created by altering the
source ontology. For example, the target ontology
for test 201 is created by omitting names from the
common baseline ontology. For many tests, the
changes are applied for only a fraction of the ontol-
ogy, rather than the entire ontology. For example,
test 201-2 omits names from 20% of the ontology,
202-4 omits names from 40% of the ontology, etc.,
resulting in increasingly difficult alignment tests.
The OAEI benchmark provides tests 201-202, 248-
254, and 257-262 in these different levels of diffi-
culties. As indicaed in Table 8, these tests deal
primarily with the suppression of names and com-
ments, but also include variations of the hierarchy
and the object and data properties (tests 248-254,
257-262).

Figure 4 shows a plot of the F-values for the op-
timal LISA configuration for tests that have dif-
ferent levels of difficulties. As expected, the per-
formance decreases as more names and comments
are removed, although there is considerable varia-
tion in the results. The different tests are closer in
performance when more names and comments are
present, and performance increasingly diverges as
such information is removed. We conclude that the
information about hierarchy, instances, and classes
that is manipulated by these tests is increasingly
important as the information that is contained in
names and comments is removed. While LISA is
primarily a structural alignment algorithm, as de-
scribed in Sec. 2, the names and comments are crit-
ical for our encoding, as they are parsed to form
the semantic units that connect the two analogs in
LISA (Sec. 2.2).

3.6. Effects of Ontology Features

Table 8 shows how the synthetic benchmarks ma-
nipulate different ontology features. It also shows
the F-score achieved by LISA in its optimal configu-
ration (propositions ordered by classes–sub-classes,
propositions activated twice, mapping updated af-
ter each activated propositions) for both types of
encodings (”Relational’, ”NonRelational”). The
ontology features manipulated by each test affect
the performance of relational and non-relational en-
coding in different ways.

Names and Comments. A closer look at the bench-
mark tests reveals the importance of names and
comments in the alignment task and its effect on
the performance of the two types of ontology en-
codings. For example, in test 101 and tests 221-247
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101 - - - - 92 96
201 R - - - 81 87
202 R S - - 27 24
221 - - S - 85 89
222 - - F - 68 94
223 - - E - 90 93
224 - - - - 91 96
225 - - - R 84 86
228 - - - S 95 98
232 - - S - 89 85
233 - - S S 86 98
236 - - - S 71 82
237 - - F - 91 86
238 - - E - 87 92
239 - - F S 84 98
240 - - E S 73 95
241 - - S S 84 98
246 - - F S 97 98
247 - - E S 75 84
248 S S S - 30 24
249 S S - - 10 0
250 S S - S 71 57
251 S S F - 25 22
252 S S E - 34 27
253 S S S - 10 0
254 S S S S 65 50
257 S S - S 11 6
258 S S F - 8 2
259 S S E - 12 2
260 S S F S 50 47
261 S S E S 60 50
262 S S S S 22 6
265 S S F S 17 6
266 S S E S 17 0

Note: S refers to suppressed, R to re-
placed, F to flattened, and E to ex-
panded

Table 8: OAEI benchmark tests and LISA
F-score values between relational and non-
relational encodings for the optimal LISA con-
figuration. Tests with partially modified target
ontology not listed for space reasons.
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Figure 4: Boxplot of F-values for different levels of test dif-
ficulty for the optimal LISA configuration

where entity names and comments were available,
the F-scores were significantly higher for the rela-
tional encoding. For tests 248-266, where names
and comments were suppressed, the non-relational
encoding performed better.

While LISA is primarily a structural matcher,
one critical element in its architecture is the connec-
tion of the two analogs via shared semantic units.
As described in Section 2, these are parsed from
labels and comments in natural language. When
these are suppressed there are only a few shared se-
mantic units left to connect the two analogs, those
defined with reference to OWL terminology, e.g. se-
mantic units such as ”OWL”, ”class”, ”rdf”, ”sub-
class”, etc. The diminished performance in condi-
tions without comments and other annotations is
therefore not surprising.

Hierarchy. Suppressing, flattening, or expanding
the ontology subclass hierarchy also affected the
alignment results. First, suppressing the hierarchy
added an additional level of difficulty to the task
of alignment as LISA is unable to exploit ontology
structure and must increasingly rely on the shared
semantic units. However, the F-scores for both rela-
tional and non-relational encodings remained high
(relative to the equivalent tests with hierarchy in-
formation present) in tests 221, 232, 233, 241, 248,
253, 254, and 262. Second, flattening the ontology
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hierarchy leads to a general decrease in the F-scores,
seen particulary in tests 222, 237, 239, and 246,
and even more so in tests 251, 258, 260, and 265.
In the latter case, LISA has neither textual infor-
mation nor structural information available. Third,
as expected, expanding the hierarchy of the ontolo-
gies leads to good results, seen in tests 223, 238,
240, and 247. These conditions provide additional
structural information that can be exploited.

Properties. Surprisingly, suppressing properties
from the ontologies results in a better F-scores
for both relational and non-relational encodings for
some tests. For example, comparing test 222 with
test 239 shows that LISA achieved better results
when the properties were suppressed. However,
LISA performed better when all properties were
suppressed rather than only removing restrictions
on classes: compare test 225, where properties re-
strictions on classes have been discarded, with test
228, where properties and relations between objects
have been completely suppressed.

This seemingly surprising result may be ex-
plained by the fact that, while properties add im-
portant structural information to the problem, they
must also be matched, and this adds a level of dif-
ficulty to the problem in the form of a significantly
increased set of concepts that must be aligned. This
is especially true for data properties as these add
little structure to the problem. In the absence of
naming or other information, two data properties
on the same class are essentially indistinguishable.
In contrast, object properties connect classes and
thus add structure that LISA can exploit.

4. Discussion and Conclusion

This paper has investigated ontology align-
ment from the perspective of analogical reasoning.
Specifically, we chose LISA as our first cognitive
model of analogy to be explored in this line of re-
search.

The paper makes three specific contributions.
First, from the cognitive science perspective, we
adapt and apply the LISA system to a novel con-
text. This extension and the systematic exploration
of LISA performance under varying conditions and
on different tests can be used to further help refine
this computational model of analogical reasoning.
Second, from the perspective of semantic web re-
search, we have demonstrated that analogical rea-
soning can provide a good source of algorithms and

heuristics to tackle the difficult problem of ontology
alignment. Finally, our research bridges the gap
between the disciplines of cognitive science and se-
mantic web research; it is a step towards the vision
of a cognitive semantic web (Raubal and Adams,
2010; Gentner et al., 2012). To our knowledge,
it is the first application of a cognitive model to
the ontology alignment problem. We believe that
our proposed approach to combine cognitive science
and the semantic web shows promise. The results
we presented are approximately equivalent or sur-
pass those of the state-of-the art alignment systems.
However, other cognitive models of analogy remain
to be explored and more work remains to be done,
both with LISA and with other cognitive computa-
tional models. Specifically, we have identified the
following challenges for future research.

First, we applied LISA and configured its encod-
ings, mapping updates, proposition activation or-
der, and the number of time propositions are acti-
vated. We observed that LISA’s performance de-
pends strongly on the order in which propositions
are activated. This is especially true when propo-
sitions are activated multiple times. The ordering
is important due to the iterative nature of the al-
gorithm as the activation levels created by earlier
activations have an effect on the mapping connec-
tions and weights used in later activation updates.
Prior research on LISA suggests that when multiple
propositions are activated before the next mapping
connection and weight update, they should be cho-
sen in ways that create ”textual coherence”, e.g. be
related to the same higher-order relation or share
a number of arguments and predicates (Hummel
and Holyoak, 1997). Thus, detecting such related
propositions to guide the algorithm is a key chal-
lenge to achieving good performance. While we
have explored some proposition activation orders in
this research, many others could be designed that
may lead to improved results.

Second, as we have noted earlier, the encoding
of ontologies in LISA admits many design decisions
and is not governed or constrained by any theoret-
ical or logic-based principles. We have chosen an
intuitive route via an RDF representation of OWL
ontologies and a direct mapping to LISA knowledge
representation elements. Other encodings are pos-
sible. For example, many of the OWL constructs
that are now encoded as semantic units may be rep-
resented as LISA objects in their own right. The
latter approach may strengthen the structure of the
problem representation, yet at the same time reduce
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the number of semantic units by which activation
progresses from driver to recipient. Another deci-
sion is the extent to which the structure of OWL
should be represented. For example, one could
imagine to represent the entire OWL vocabulary
as LISA predicates and construct propositions that
directly reflect the OWL ontology. On the other
hand, one can limit the use of OWL vocabulary as
we have done here and instead focus on the content
of the ontology. The first approach will likely yield
”deeper” structure in LISA at the expense of being
specific to OWL ontologies and perhaps overempha-
sizing structural information. The latter approach
may yield a ”flatter” structure in LISA, but may af-
ford LISA more flexibility in finding matches. The
effects of such different encodings remains to be ex-
plored in further systematic experiments.

Third, similar to all other state-of-the-art sys-
tems, the performance of LISA was significantly
lower when information from labels and comments
was expressed in a different language. Thus,
one important question concerns the translation
of labels, comments, and annotations of concepts.
While LISA is primarily a structure-based algo-
rithm, the key to its performance is the set of
shared semantic units. When ontologies are pre-
sented in different languages, semantic units are
unlikely to be shared, severely limiting the perfor-
mance of LISA. This would suggest that ontologies
should be pre-processed by translating terms to a
common language, using information and services
external to the ontologies. This is done by all other
systems that participated in the 2012 OAEI con-
test. On the other hand, this external information
should strictly not be necessary as LISA itself is
presented as a way to ”translate” concepts and may
therefore not reflect cognitive principles (Hummel
and Holyoak, 1997, 2003).

The final challenge concerns the reasoning sup-
port that is afforded by ontologies. As OWL ontolo-
gies admit inferences over the subsumption hierar-
chy, it is possible to also use inferred subsumption
relationships in the ontology alignment algorithm,
in addition to those explicitly axiomatized in the
ontology. This is exploited by some of the systems
that participated in the OAEI contest and may be
used to improve the alignment performance. How-
ever, as with the translation issue, the important
question from the cognitive perspective is whether
such formal reasoning still represents human cogni-
tive processes.

In conclusion, our research has contributed to a

theoretical foundation of ontology alignment in the
psychology of analogical reasoning, and opened up
possibilities for future work in the area. This foun-
dation can provide guidance for the field of ontology
alignment in that results from the ongoing work in
cognition may be transferred to improve ontology
alignment performance.
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Appendix A. Full Results Tables
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Encoding Ordering Upd NumP F
1 NonRel Grouped 1 1 0.49
2 Rel Grouped 1 1 0.52
3 NonRel Ordered 1 1 0.44
4 Rel Ordered 1 1 0.41
5 NonRel OrderedCSC 1 1 0.56
6 Rel OrderedCSC 1 1 0.60
7 NonRel Random 1 1 0.46
8 Rel Random 1 1 0.42
9 NonRel Grouped 2 1 0.52

10 Rel Grouped 2 1 0.55
11 NonRel Ordered 2 1 0.46
12 Rel Ordered 2 1 0.46
13 NonRel OrderedCSC 2 1 0.50
14 Rel OrderedCSC 2 1 0.53
15 NonRel Random 2 1 0.56
16 Rel Random 2 1 0.52
17 NonRel Grouped 3 1 0.51
18 Rel Grouped 3 1 0.54
19 NonRel Ordered 3 1 0.41
20 Rel Ordered 3 1 0.49
21 NonRel OrderedCSC 3 1 0.49
22 Rel OrderedCSC 3 1 0.56
23 NonRel Random 3 1 0.51
24 Rel Random 3 1 0.52
25 NonRel Grouped 1 2 0.55
26 Rel Grouped 1 2 0.55
27 NonRel Ordered 1 2 0.49
28 Rel Ordered 1 2 0.45
29 NonRel OrderedCSC 1 2 0.60
30 Rel OrderedCSC 1 2 0.63
31 NonRel Random 1 2 0.50
32 Rel Random 1 2 0.45
33 NonRel Grouped 2 2 0.54
34 Rel Grouped 2 2 0.57
35 NonRel Ordered 2 2 0.50
36 Rel Ordered 2 2 0.49
37 NonRel OrderedCSC 2 2 0.52
38 Rel OrderedCSC 2 2 0.55
39 NonRel Random 2 2 0.59
40 Rel Random 2 2 0.55
41 NonRel Grouped 3 2 0.49
42 Rel Grouped 3 2 0.56
43 NonRel Ordered 3 2 0.45
44 Rel Ordered 3 2 0.53
45 NonRel OrderedCSC 3 2 0.48
46 Rel OrderedCSC 3 2 0.58
47 NonRel Random 3 2 0.53
48 Rel Random 3 2 0.52

Table A.9: Mean of F-values for 94 OAEI tests for all
experimental conditions. Encoding refers to relational or
non-relational encoding, Updates is the number of propo-
sitions activated before mapping connections are updated,
NumProps refers to the number each proposition is acti-
vated.

Encoding Ordering Upd NumP F
1 NonRel Grouped 1 1 0.56
2 Rel Grouped 1 1 0.58
3 NonRel Ordered 1 1 0.44
4 Rel Ordered 1 1 0.31
5 NonRel OrderedCSC 1 1 0.60
6 Rel OrderedCSC 1 1 0.68
7 NonRel Random 1 1 0.50
8 Rel Random 1 1 0.42
9 NonRel Grouped 2 1 0.54

10 Rel Grouped 2 1 0.61
11 NonRel Ordered 2 1 0.46
12 Rel Ordered 2 1 0.47
13 NonRel OrderedCSC 2 1 0.50
14 Rel OrderedCSC 2 1 0.53
15 NonRel Random 2 1 0.66
16 Rel Random 2 1 0.56
17 NonRel Grouped 3 1 0.54
18 Rel Grouped 3 1 0.57
19 NonRel Ordered 3 1 0.40
20 Rel Ordered 3 1 0.53
21 NonRel OrderedCSC 3 1 0.51
22 Rel OrderedCSC 3 1 0.63
23 NonRel Random 3 1 0.50
24 Rel Random 3 1 0.57
25 NonRel Grouped 1 2 0.59
26 Rel Grouped 1 2 0.60
27 NonRel Ordered 1 2 0.55
28 Rel Ordered 1 2 0.38
29 NonRel OrderedCSC 1 2 0.65
30 Rel OrderedCSC 1 2 0.69
31 NonRel Random 1 2 0.49
32 Rel Random 1 2 0.43
33 NonRel Grouped 2 2 0.62
34 Rel Grouped 2 2 0.65
35 NonRel Ordered 2 2 0.53
36 Rel Ordered 2 2 0.51
37 NonRel OrderedCSC 2 2 0.52
38 Rel OrderedCSC 2 2 0.56
39 NonRel Random 2 2 0.64
40 Rel Random 2 2 0.61
41 NonRel Grouped 3 2 0.55
42 Rel Grouped 3 2 0.61
43 NonRel Ordered 3 2 0.46
44 Rel Ordered 3 2 0.53
45 NonRel OrderedCSC 3 2 0.44
46 Rel OrderedCSC 3 2 0.65
47 NonRel Random 3 2 0.56
48 Rel Random 3 2 0.55

Table A.10: Median of F-values for 94 OAEI tests for all
experimental conditions. Encoding refers to relational or
non-relational encoding, Updates is the number of propo-
sitions activated before mapping connections are updated,
NumProps refers to the number each proposition is acti-
vated.
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Appendix B. Example OAEI Alignemnt
Problem

Figure B.5: Protege screenshot of the class hierarchy of the
base ontology in the OAEI benchmark test suite. Test 101
aligns this ontology with itself.

Figure B.6: Protege screenshot of the class hieararchy of the
ontology for OAEI benchmark test 258. Notice the scram-
bling of the labels and the flattening of the class hierarchy.
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