
Clustering Traces using Sequence Alignment

Joerg Evermann1, Tom Thaler2,3, and Peter Fettke2,3

1 Memorial University of Newfoundland
2 Deutsches Forschungszentrum für Künstliche Intelligenz

3 Universität des Saarlandes

Abstract. Process mining discovers process models from even logs. Logs
containing heterogeneous sets of traces can lead to complex process mod-
els that try to account for very different behaviour in a single model.
Trace clustering identifies homogeneous sets of traces within a heteroge-
neous log and allows for the discovery of multiple, simpler process models.
In this paper, we present a trace clustering method based on local align-
ment of sequences, subsequent multidimensional scaling, and k-means
clustering. We describe its implementation and show that its perfor-
mance compares favourably to state-of-the-art clustering approaches on
two evaluation problems.

Key words: process mining, process discovery, trace clustering, se-
quence alignment

1 Introduction

Process discovery is that field of process mining that deals with the discov-
ery/mining of process models from event logs. An event log is a set of sequences
of events (traces of process instances). Logs may contain traces that differ widely
in the sequences of events within them. Mining such heterogeneous event log
leads to complicated process models as the mining algorithm constructs models
that account for a large proportion of the observed behaviour. Trace clustering
addresses this issue by identifying clusters of homogeneous traces within such a
heterogeneous log. Constructing a set of process models from sets of homoge-
neous traces is likely to lead to simpler models.

Most existing trace clustering techniques are based on fairly generic meth-
ods for clustering in multivariate settings [1]. These methods operate either by
locating individuals in a feature space (e.g. k-means clustering), or directly on a
distance1 matrix between individuals (e.g. k-median clustering) [2].

The main challenge in trace clustering, when using such generic clustering
techniques, is the gap between clustering and evaluation [3]. In most existing
approaches, the evaluation of process model quality is performed only after clus-
tering is complete. Clustering decisions, e.g. which cluster contains a particular

1 We use the terms distance and dissimilarity matrix interchangeably, and also use the
term similarity matrix synonymously, as one can cluster equally well by maximal
similarity or minimal distance.



2 Joerg Evermann et al.

trace, which cluster to split to combine in hierarchical clustering, are based
purely on statistical criteria, i.e. distances in feature space and the inter- and
intra-cluster variance, or statistics derived from these. However, depending on
how feature space or distance metric are defined, this information is not neces-
sarily a good indicator of the quality of the final process model for each cluster.

There are two ways to address this gap between clustering and evaluation.
First, and ideally, mining the model and evaluating its quality should happen
during, not after, clustering [3]. However, process model mining and log replay
for computing model quality characteristics is computationally expensive. Per-
forming these computations at every step of an iterative clustering algorithm,
such as proposed in [3], may be prohibitive for large logs.

Second, one may focus on the definition of an appropriate feature space
or distance metric so that it provides the right information for the clustering
algorithm to cluster traces that are similar in the sense of being describable
by the same simple yet high quality process model. We consider this second
issue one of the key challenges in trace clustering. As noted by [2, pg. 506],
”specifying an appropriate dissimilarity measure is far more important . . . than
choice of clustering algorithm. This aspect of the problem is emphasized less in
the clustering literature . . . since it depends on domain knowledge specifics . . . .”

In this paper we propose a trace clustering method, called AlignCluster,
that explicitly takes into account information about the sequences of events
in a trace. Specifically, our method uses the Smith-Waterman-Gotoh algorithm
for sequence alignment to compute dissimilarity or distances between traces,
applies multidimensional scaling to construct a feature space, and then applies k-
means clustering. We evaluate our cluster solutions by discovering process models
using the flexible heuristics miner (FHM) [4]. The quality of resulting models
is typically considered in terms of replay fitness, precision, generalizability and
simplicity [5] although information retrieval based measures also exist [6].

The remainder of the paper first introduces our method and then briefly
describe its implementation. We then present an evaluation of our method and
comparison to state-of-the-art in two evaluation scenarios. Our work is then
situated in prior research and the subsequent discussion comprises a brief pre-
sentation of future work and some general comments on trace clustering.

2 Trace Clustering using Sequence Alignment

Our approach consists of four steps, from preprocessing the log to clustering,
described in the following paragraphs.

Step 1: Preprocessing We remove duplicate traces while reading the log. This
greatly reduces the size of the clustering problem but gives equal ”weight” to
each unique trace during clustering.

Step 2: Sequence Alignment To compare traces, we adopt methods developed
in the bio-informatics discipline, which has developed algorithms for optimal



AlignCluster 3

alignment sequences of DNA and protein building blocks. An alignment is a
sequence of pairs, either of elements of the two sequences, or of an element of
the first and a ”gap” in the second sequence, or of a gap in the first and an
element of the second sequence. The notion of gaps is similar to ”move log”
and ”move model” operations in log replay techniques for conformance checking
[5]. For example, the sequences GCATGCA and GATTACA may be aligned as (’-’
represents a gap):

GCATG-CA

G-ATTACA

An alignment may be optimal by some scoring system, which consists of the
similarity matrix between sequence elements and the gap scoring scheme. For
example, a simple scoring system might assign a score of +1 for all exact matches,
and a score of −1 for mismatches and gaps. In general, the similarity matrix
between elements depends on the application area and should be defined with
substantive knowledge about the sequence elements, i.e. the workflow events.

An early algorithm for optimal alignment was developed by [7] and is a type
of global alignment algorithm. A variation on this [8] was improved by [9] and is a
type of local alignment algorithm. The latter type of algorithm identifies multiple
regions of smaller optimal alignments and is appropriate when the sequences are
of different lengths, as is typically the case with process event logs.

We rely on the Smith-Waterman-Gotoh (SWG) local alignment algorithm
[8, 9] for local alignment. Our scoring schema assigns a value of 1 for exact
matches and a fixed penalty otherwise (parameter mismatchPenaltyRelative,
(mmP )). Our gap scoring scheme defines a penalty for beginning a gap (pa-
rameter gapOpenCostRelative (gOC)) and another for extending a gap by one
position (parameter gapExtendCostRelative (gOE)). These parameters are rel-
ative to the value for an exact match.

This step of our method is a critical place to apply substantive business
knowledge. For example, the events ”customer query processed” and ”support
request completed” may be highly similar in a particular organization and pro-
cess, despite the fact that they bear little superficial similarity. While one could
try to devise automated comparison of event names, perhaps even based on
domain ontologies or WordNet lookup, this can never be a full substitute for
application-specific knowledge of the processes that produced the event log.

The SWG algorithm provides two results. The first is the similarity between
the aligned sequences as a count of the number of exact matches. The second re-
sult is the alignment cost as the sum of penalties for opening and extending gaps
in either sequence. Our implementation can use either result to construct the
trace similarity or distance matrix. The choice is parametrized using the boolean
parameter useSim, which, when true, uses the similarity metric, otherwise the
cost-based metric is used.

Step 3: Multi-Dimensional Scaling Clustering algorithms operate either on fea-
tures of instances or on a distance matrix. The feature set spans an n-dimensional
space in which instances can be located and on which a distance metric can be



4 Joerg Evermann et al.

defined. Using this metric, computing distances from features is straightforward.
Many distance metrics have been defined for numerical characteristics (e.g. eu-
clidean distance, Manhattan distance) but also for character-valued characteris-
tics (e.g. string-edit distances). On the other hand, when only a distance matrix
is available, one can use multi-dimensional scaling (MDS) [10] to span a space
of arbitrary dimensions and locate the instances in that space. MDS can be
considered as an optimization problem:

min
x1,...,xI

∑
i<j

(||xi − xj || − δi,j)2

Here, || . . . || is the distance metric to be used for the spanned space, xi, xj are
vectors locating instances i and j in the space, and δ is the distance between
cases i and j.

One of the key choices in MDS is the dimensionality of the space. A higher
dimensionality allows for a better separation of clusters in the following cluster-
ing step. However, when the space gets too sparse, it may be difficult to identify
clusters at all. On the other hand, once the space gets too dense because of
too few dimensions, clusters may not cleanly separate. Moreover, because the
dimensionality of the space is the maximum number of clusters, the dimension-
ality should not be too small. In our work, the dimensionality of the space is a
function of the number of unique traces, e.g.

√
n and loge n.

Step 4: Clustering One of the key decisions in clustering is the number of clus-
ters to choose. Different approaches to characterizing the quality of a clustering
solution and for identifying the optimal number of clusters have been proposed
in the literature. However, in the context of trace clustering, these approaches
lack a direct connection to the final outcome of the process mining step, i.e.
the quality of the resulting process models. This has been termed the clustering
versus evaluation bias by [3]. Thus, considerations of within cluster and between
cluster sums-of-squares and derived statistics are only of limited value in the
context of trace clustering. Hence, rather than investigate the performance of
different heuristics for choosing the optimal number of clusters, we defer to the
process analyst to evaluate the resulting process models and to make informed
decisions about the optimal number of clusters. We use k-means clustering for
this research.

3 Implementation

We have implemented our approach as a Java application. The application reads
a log in CSV format and creates a distance matrix using the SWG algorithm,
using the jaligner implementation of the SWG algorithm2. It then writes the
distance matrix and a script for the R statistical system [11] to file and calls the

2 http://jaligner.sf.net



AlignCluster 5

R system to execute the script. MDS and clustering are performed using R and
it is easy to substitute different options and parameters at this stage. Our work
uses the cmdscale function for MDS and the kmeans function for clustering. The
R script writes a set of files with cluster assignments, which is then read back
and used to create logs in XES format.

For evaluation purposes, our application then creates a script for the ProM
process mining framework [12] and calls ProM to execute it. ProM reads each
XES log and applies the FHM [4] with default parameters. FHM is used in other
trace clustering methods as well, specifically the DWS and ActiTraC methods
[3, 13] and we found it to be very robust. The heuristics net is then converted
to a Petri Net. We then use the log replay technique [14], as implemented in the
PNetReplayer plugin [15] to compute fitness, and the PNetAlignmentAnalysis
plugin [16] to compute precision and generalizability.

This scripting approach allows us to automate as much of the process as
possible in order to experiment with different values for important parameters,
such as the sequence element similarities and gap costs for the SWG algorithm,
the dimensionality of the space created by MDS, the number of clusters to iden-
tify, and the clustering algorithm. Our implementation is available from the first
author’s website3.

4 Evaluation

We have evaluated our approach and compared its performance to earlier meth-
ods. Specifically, we compared our method to the same set of algorithms as in
[1], i.e. Sequence Clustering (SC) [17], Trace Clustering (TC) [18], ActiTraC
(AT) [3] and DWS [13]. Implementations for these are provided in the ProM
framework [12]. We evaluated our approach in two scenarios, taken from [1].

4.1 Evaluation Scenario 1

We constructed a log comprised of 500 traces each from three different logs so
that a correct clustering solution exists. Logs from the incident management
process at RaboBank Group ICT [19], the loan application process at a Dutch
financial institute [20], and the translation process at Leginda.de [21] were ran-
domly extracted and aggregated. Results for the state-of-the-art clustering im-
plementations on separating the three processes in the log, reported by [1], show
that only AT was able to cleanly separate the log.

We used the simple scoring scheme described in Sec. 2. As noted earlier, this
is the place in our algorithm where substantive business knowledge about the
similarity of different activities could be applied. In this artificial problem the
number of clusters is known to be 3. The parameter settings in Table 1 are those
with which our method was able to cleanly separate the three component logs.

3 http://joerg.evermann.ca/software.html



6 Joerg Evermann et al.

mismatchPenaltyRelative mmp Penalty for an alignment mismatch, relative
to an exact match

−1.0

costGapOpenRelative cGO Cost to open a gap, relative to an exact match 0.0

costGapExtendRelative cGE Cost to extend a gap, relative to the cost of
opening a gap

0.5

useSim Use similarity, rather than alignment cost false

numDimensions dim Function to compute number of dimensions
for MDS from number of traces

sqrt

numClusters c Number of clusters to identify 3

Table 1. Parameters, their descriptions, and settings for evaluation scenario 1

4.2 Evaluation Scenario 2

The second scenario is a more realistic case, using a log of 1,500 traces from the
above mentioned loan application process [20], available from the first author’s
website. We evaluated the four quality dimensions of fitness, precision, general-
ization using existing ProM plugins [15, 16], as described above. For assessing
simplicity we refer to [22] and use three different metrics. The cyclomatic num-
ber CN is defined as CN = |A| − |N | + 1 where |A| is the number of arcs and
|N | is the number of nodes in the Petri net. The coefficient of connectivity CNC

is defined as CNC = |A|
|N | and the density ∆ is defined as ∆ = |A|

|N |∗(|N |−1) . We

aggregated the quality metrics across clusters using the weighted mean, weighted
by the number of traces in each cluster.

Many trace clustering methods are extensively parametrized, as is our own.
For our comparison to the state-of-the-art, it is impractical to systematically
explore the different parameter settings for existing approaches. We followed
[1] and limited the number of configurations. ActiTraC was applied in three
configurations (3 clusters; 6 clusters; 6 clusters with ICS set to 0.95). DWS was
applied in two configurations (default settings; max clusters per split = max
feature length = max splits = 5 and max number of features = 10). Trace
clustering was applied in five configurations (default; width 1, height 3; width 2
height 3; width 3, height 3; width 4, height 3). Sequence clustering was applied
in five configurations (number of clusters 3, 6, 9, 12, 15). Table 2 shows the
performance of the state-of-the-art systems on the different quality dimensions
with the best values highlighted.

We conducted an experiment that systematically varied the parameters for
our method. Table 3 shows the parameter values we applied, yielding 720 ex-
perimental conditions. From these we identified the configuration that yield the
optimum outcome for each quality characteristic, shown in the bottom part of
Table 2 and plotted in Figure 1. The complete set of 720 results is available from
the first author’s website.

On this evaluation scenario the optimal configurations were fairly close in
performance, even though optimized for different quality criteria (Table 2). For
example, generalizability was close to 1 for all configurations, precision close to



AlignCluster 7

Conf CNC CN Delta Fit Prec Gen mmP cGO cGE useSim dim c
AT-3 1.1670 33.7120 0.0240 0.7000 0.4737 0.7322
AT-6 1.1198 26.1960 0.0326 0.6670 0.5663 0.6011
AT-6-ICS95 1.1709 27.3087 0.0072 0.8529 0.3751 0.9661
DWS-Std 1.2275 30.8013 0.0103 0.8783 0.3219 0.9586
DWS-55510 1.1579 17.3960 0.0208 0.7721 0.5459 0.9581
TC 1.1773 31.6533 0.0270 0.7823 0.4062 0.7419
TC-W1-H3 1.2434 46.1867 0.0129 0.8213 0.3232 0.8937
TC-W2-H3 1.1792 35.1787 0.0217 0.7235 0.4413 0.8037
TC-W3-H3 1.1542 31.6587 0.0279 0.6991 0.4686 0.7309
TC-W4-H3 1.1542 31.6587 0.0279 0.6991 0.4840 0.7332
SC-3 1.1976 32.9653 0.0071 0.8475 0.3631 0.9598
SC-6 1.1346 20.5973 0.0071 0.8644 0.5103 0.9905
SC-9 1.1273 17.7667 0.0078 0.8623 0.5408 0.9335
SC-12 1.1048 13.6540 0.0083 0.8607 0.5502 0.9628
SC-15 1.0974 12.0793 0.0104 0.8919 0.5760 0.9793
maxPrec 1.1201 15.0000 0.0094 0.8036 0.5992 0.9957 -0.5 0.5 1.0 false log 9
maxGen 1.1507 22.0000 0.0073 0.7775 0.5158 0.9988 -0.5 1.0 0.5 false log 3
maxFit 1.1209 14.0000 0.0104 0.8540 0.5679 0.9965 -0.5 1 0.5 false log 9
minCNC 1.1164 13.0000 0.0108 0.8502 0.5872 0.9969 -1 1 1 false log 9
minCN 1.1164 13.0000 0.0108 0.8502 0.5872 0.9969 -1 1 1 false log 9
minDelta 1.1840 30.0000 0.0072 0.7888 0.4767 0.9941 -0.5 0.5 0.5 false sqrt 3

Table 2. Performance of the state-of-the-art and different AlignCluster configurations
on evaluation scenario 2, best values for each quality criterion shaded, worst values
italicized

mismatchPenaltyRelative mmP 0.0, −0.5, −1.0, −2.0

costGapOpenRelative cGO 0.0, 0.5, 1.0

costGapExtendRelative cGE 0.0, 0.5, 1.0

useSim false, true

numDimensions dim sqrt, log

numClusters c 3, 6, 9

Table 3. Parameters and settings for evaluation scenario 2

0.6 for all but one configuration, and fitness was high at approx. 0.85 even for
conditions optimized for simplicity (minCNC, minCN). Examining the parame-
ter values of the configurations shows that while moving from 9 to 3 clusters may
have optimized generalizability or minimized ∆, the trade-off on other quality
characteristics was significant. The configuration minimizing CNC and CN also
performs well on the other quality characteristics. Consequently, we recommend
this configuration for logs similar to this log. As this log is similar to others we
have encountered, we recommend this as the default configuration.

Comparing this default configuration to the performance of existing meth-
ods in Table 2 shows that the our method performs comparably to ActiTraC but
providing somewhat simpler models with somewhat better precision and gener-
alizability, and comparable trace fitness. It performs comparably to DWS in
its standard configuration but with better precision. Our method outperforms
Trace Clustering in all its configurations, yielding simpler models with better
fitness, precision, and generalizability. Finally, our method performs similar to



8 Joerg Evermann et al.

meanCNC

meanCN

meanDelta

meanTraceFitness

meanPrecision

meanGeneralizability

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

max Precision
max Generalization
max Fitness
min CNC
min CN
min Delta

Fig. 1. Radarplot of AlignCluster performance on evaluation scenario 2

Sequence Clustering with 9 or more clusters, but has a slight advantage in terms
of precision and generalizability.

5 Related Work

Sequence alignment and related techniques have been used in process mining
before. Most similar to our work is the work on trace alignment by [23, 24]. Also
inspired by bio-informatics research, it uses the Needleman-Wunsch algorithm
[7] for global alignment, rather then local alignment as we do. Their work is
implemented in the Trace Alignment plugin for ProM. However, clustering is
not their primary goal and is used only to construct the ”guide tree” which
guides the selection of sequences for alignment. Clustering in [23, 24] is not
based on sequence alignment but is an agglomerative method on a feature space
spanned by maximal repeat features [25].

The approach in [26] uses the edit distance between sequences for clustering.
While not based on a local or global sequence alignment, as in this paper, string
edit distance also accounts for sequence characteristics of traces and is known
to be equivalent to sequence alignment approaches [27]. As in our work, models
are not mined or evaluated until clustering is completed and the gap between



AlignCluster 9

clustering and evaluation is addressed indirectly through the choice of trace
similarity metric.

The model-based approach by [28, 17] represents each cluster by a Markov
chain that can generate the behaviour of sequences in that cluster. Traces are
assigned to clusters by maximizing the probability that traces are produced by
their cluster’s Markov chain. An implementation based on commercial tools is
described in [28]; an implementation in the Sequence Clustering ProM plugin
is presented by [17]. This method address the gap between clustering and eval-
uation directly by using a notion analogous to replay fitness in the clustering
algorithm. However, the estimation of Markov Chain parameters is computa-
tionally expensive. Our own approach achieves similar, and even slightly better
performance, using a less computationally demanding method.

ActiTraC [3] also addresses the gap between clustering and evaluation di-
rectly by repeatedly mining and evaluating process models during clustering. It
uses maximal repeat features [25] to select candidate traces for assignment to
clusters, which are then evaluated using the FHM and replay fitness. Both Acti-
TraC and Sequence Clustering are computationally intensive. Because it mines
process models during clustering, ActiTraC provides not only clusters as a re-
sult, but also the generated model, which we have not used in our evaluation.
However, as these are also based on the FHM algorithm they are likely to be
similar to the ones post-hoc generated in our evaluation.

Other log clustering methods account for sequence information in a more
limited way. The Trace Clustering method and ProM plugin [18] is based on a
feature space of which the ”follows” relation between events is the only sequence-
related dimension. Additionally, data attributes for cases, event, and perfor-
mance characteristics are used to span the feature space. A variety of distance
metrics and standard clustering methods can then be applied.

DWS [13] is a divisive hierarchical clustering method and ProM plugin that
is based on a vector space spanned by frequent features. A frequent feature is
a subsequence and a task such that the feature is frequent in the log, but the
sequence and appended task are not. By using such sequence frequency infor-
mation, DWS attempts to include the notion of soundness, which is somewhat
analogous to the notion of fitness in that it indicates how well the model explains
the traces, into the clustering algorithm.

The method in [29] is based on the number of repeating features (subse-
quences) in a trace. This accounts for some sequence information, but then
abstracts by creating a feature space based on the number of occurrences of
subsequences and using these to locate traces in the space for clustering.

6 Discussion

The key challenge in trace clustering, bridging the gap between clustering and
evaluation, can be addressed in two ways. The direct, but computationally expen-
sive way, exemplified by the ActiTraC [3] and Sequence Clustering [17] methods,
incorporates process mining and model evaluation into the clustering method.



10 Joerg Evermann et al.

We have chosen the less direct, but computationally less demanding way of fo-
cusing on the definition of a distance metric and feature space that allows the
application of generic multivariate clustering methods. Our experiments, albeit
limited in scope to two evaluation scenarios, show that this less direct way is
able to yield results as good as those obtained by the more direct approaches.

Despite our initial results, many open questions remain. For example, there
is a lack of agreed upon quality characteristics for sets of process models. In this
paper, we have followed [1] in using simple weighted averages over the clusters,
but this is surely a naive view and a better approach rooted in considerations
of the process models is required. Consider the optimal results highlighted in
Table 2. As the number of clusters increases, the models tend to improve in
quality. This reduction in model size, and improvement in fitness and precision
is expected as it is the main reason for performing clustering in the first place.
Hence, what is required is either a ”correction” or ”adjustment” for the number
of clusters (models) or a restriction to clustering solutions with the same number
of clusters.

Second, there may be possible interactions between the clustering method
and the mining method. For example, a particular mining algorithm might yield
better results when operating on clusters from one clustering method than from
another clustering method. For example, a mining algorithm geared towards
discovering parallelism requires clusters that separate choices, while an algorithm
that favors choice requires clusters with sequential parallel behaviour4. Despite
some concerns about the use of heuristics and the lack of semantic preserving
translation from heursistic models to Petri nets, in this work we have used only
the FHM as it is also used by other approaches and yields sensible models in
many situations. Exploring this potential inter-dependency remains a challenge
for future research.

There are many possible extensions to the method presented here. First, the
elimination of duplicate traces in the log greatly reduces the size of the problem,
but may bias the resulting quality metrics, computed by replaying each trace
against a model. Consequently, a variation of our method may choose to not
remove the duplicate traces and opt for worse runtime performance instead.

We use a local alignment method, whereas [23, 24] use a global alignment
method. The latter is better suited to sequences that are similar in length. It
may be worthwhile to compare the performance of these types of alignment
methods and choose based on log characteristics.

An optimal alignment offers a range of possible similarity or distance mea-
sures beyond the simple match/mismatch and gap-cost-based ones explored here.
One possibility is to use a weighted mean of the two measures we have presented.
Another possibility is to not simply count the matches and mismatches, but to
weight these by the similarity of the trace events that are aligned.

Finally, a variation of k-means clustering is k-median clustering. This uses the
distance matrix for clustering and removes the need to use MDS for constructing.
In k-median clustering the cluster center is represented by a specific individual.

4 We thank one of the anonymous reviewers for this specific example.



AlignCluster 11

Given the typically large number of traces in trace clustering applications, we
expect differences to k-mean clustering to be minimal, as there is likely to be an
individual very close to the k-mean cluster center.

In conclusion, this initial application of sequence alignment to trace clustering
shows promising results and improves on the existing state-of-the-art, but much
future research remains in this area.

References

1. Thaler, T., Ternis, S.F., Fettke, P., Loos, P.: A comparative analysis of process in-
stance cluster techniques. In Thomas, O., Teuteberg, F., eds.: Smart Enterprise En-
gineering: 12. Internationale Tagung Wirtschaftsinformatik, WI 2015, Osnabrück,
Germany, March 4-6, 2015. (2015) 423–437

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2009)

3. De Weerdt, J., Vanthienen, J., Baesens, B., et al.: Active trace clustering for
improved process discovery. Knowledge and Data Engineering, IEEE Transactions
on 25(12) (2013) 2708–2720

4. Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining CIDM 2011,
Paris, France. (2011)

5. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Verlag, Heidelberg, Germany (2011)

6. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust f-measure
for evaluating discovered process models. In: Proceedings of the IEEE Symposium
on Computational Intelligence and Data Mining, CIDM 2011, part of the IEEE
Symposium Series on Computational Intelligence 2011, April 11-15, 2011, Paris,
France, IEEE (2011) 148–155

7. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology 48(3) (1970) 443 – 453

8. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of molecular biology 147(1) (1981) 195–197

9. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of
molecular biology 162(3) (1982) 705–708

10. Cox, T.F., Cox, M.A.: Multidimensional scaling. CRC Press (2000)
11. R Core Team: R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. (2014)
12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,

van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool
support. In: Proceedings of the 26th International Conference on Applications and
Theory of Petri Nets, Berlin, Heidelberg, Springer-Verlag (2005) 444–454

13. De Medeiros, A.K.A., Guzzo, A., Greco, G., Van Der Aalst, W.M., Weijters, A.,
Van Dongen, B.F., Saccà, D.: Process mining based on clustering: A quest for
precision. In: Business Process Management Workshops, Springer (2008) 17–29

14. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1) (2008) 64–95



12 Joerg Evermann et al.

15. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery 2(2) (2012) 182–192

16. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In Rosa, M.L., Soffer, P., eds.:
Business Process Management Workshops - BPM 2012 International Workshops,
Tallinn, Estonia, September 3, 2012. Revised Papers. Volume 132 of Lecture Notes
in Business Information Processing., Springer (2012) 137–149

17. Veiga, G.M., Ferreira, D.R.: Understanding spaghetti models with sequence clus-
tering for ProM. In: BPM Workshops, Springer (2010) 92–103

18. Song, M., Günther, C.W., Van der Aalst, W.M.: Trace clustering in process mining.
In: Business Process Management Workshops, Springer (2009) 109–120

19. Van Dongen, B., Weber, B., Ferreira, D., De Weerdt, J.: Business process intelli-
gence challenge (BPIC’14) (2014)

20. Van Dongen, B., Weber, B., Ferreira, D.: Business process intelligence challenge
(BPIC’12) (2012)

21. Thaler, T., Fettke, P., Loos, P.: Process mining - Fallstudie leginda.de. HMD
Praxis der Wirtschaftsinformatik 293 (2013) 56—66

22. Melcher, J.: Process Measurement in Business Process Management – Theoretical
Framework and Analysis of Several Aspects. KIT Scientific Publishing, Karlsruhe,
Germany (2012)

23. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Process diagnostics using
trace alignment: Opportunities, issues, and challenges. Inf. Syst. 37(2) 117–141

24. Jagadeesh Chandra Bose, R., van der Aalst, W.: Trace alignment in process mining:
Opportunities for process diagnostics. In Hull, R., Mendling, J., Tai, S., eds.:
Business Process Management. Volume 6336 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2010) 227–242

25. Bose, R.J.C., van der Aalst, W.M.: Trace clustering based on conserved patterns:
Towards achieving better process models. In: Business Process Management Work-
shops, Springer (2010) 170–181

26. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards
improving process mining results. In: Proceedings of the SIAM International Con-
ference on Data Mining, SDM 2009, April 30 - May 2, 2009, Sparks, Nevada, USA,
SIAM (2009) 401–412

27. Sellers, P.H.: On the theory and computation of evolutionary distances. SIAM
Journal on Applied Mathematics 26(4) (1974) 787–793

28. Ferreira, D.R.: Applied sequence clustering techniques for process mining. In
Cardoso, J., van der Aalst, W., eds.: Handbook of Research on Business Process
Modeling. Information Science Reference, Hershey, PA (2009) 481–502

29. Bose, R., van der Aalst, W.: Trace clustering based on conserved patterns: Towards
achieving better process models. In Rinderle-Ma, S., Sadiq, S., Leymann, F., eds.:
BPM Workshops. Springer Berlin Heidelberg (2010) 170–181


