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Abstract 

Structural equation models are traditionally used for theory testing. With the increasing 

importance of predictive analytics, and the ability of structural equation models to maintain 

theoretical plausibility in the context of predictive modeling, identifying how best to predict from 

structural equation models is important. Recent calls for a refocusing of partial least squares path 

modeling (PLSPM) for predictive applications further increase the need to assess and compare 

the predictive power of different estimation methods for structural equation models. This paper 

presents two simulation studies that evaluate the performance of different modes and variations 

of PLSPM and covariance analysis on prediction from structural equation models. Study 1 

examines all-reflective models using blindfolding and the Q2 statistic. Study 2 examines mixed 

formative-reflective models using out-of-sample cross-validation and the RMSE statistic. 

Recommendations to guide researchers in the choice of appropriate prediction method are 

offered. 
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Assessing the predictive performance of structural equation model estimators 

Introduction 

Explanation and prediction are two main purposes of theories and statistical methods (Gregor, 

2006). Explanation is concerned with the identification of causal mechanisms underlying a 

phenomenon. On the statistical level, explanation is primarily concerned with testing the faithful 

representation of causal mechanisms by the statistical model and the efficient estimation of 

unbiased parameter values from samples, that is, making valid inferences to population 

parameters. In contrast, prediction is the ability to predict values for individual cases based on a 

statistical model whose parameters have been estimated from a suitable training sample.  

Quantitative research in management has been dominated by causal-explanatory statistical 

modeling at the expense of predictive modeling (Shmueli, 2010; Shmueli & Koppius, 2011). The 

advent of big data has changed this. Modern organizations, not only analytics leaders such as 

Facebook, Google, Amazon and Walmart, but also smaller and less prominent businesses, are 

generating petabytes of data that record billions of digital transactions annually (Davenport, 

2006, 2013). Carrying out predictive modeling on such large datasets has the potential to generate 

fresh insights for business practitioners and drive new theorizing for management researchers 

(Shmueli, 2010; Shmueli & Koppius, 2011). 

Structural equation models represent latent and manifest variables and their relationships in a 

single statistical model. The estimation of such models has traditionally relied on covariance 

analysis methods, usually with the maximum likelihood (ML) estimator. However, the use of 

partial least squares path modeling (PLSPM) to estimate such models is increasing in many 

management disciplines, for example in strategic management (Hair, Sarstedt, Peiper and Ringle, 
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2012a; Hulland, 1999), marketing (Hair, Sarstedt, Ringle and Mena, 2012b; Henseler, Ringle and 

Sinkovics, 2009), management information systems (Ringle, Sarstedt and Straub, 2012), 

operations management (Peng and Lai, 2012) and organizational research (Sosik, Kahai and 

Piovoso, 2009).  

Covariance analysis estimates a structural equation model by minimizing the difference 

between the model-implied and the observed covariance matrices. Because covariance analysis 

offers unbiased estimates and provides tests of model fit (Antonakis, Bendahan, Jacquart and 

Lalive, 2010; Rönkkö and Evermann, 2013), covariance analysis is typically associated with 

explanatory modeling. In contrast, the PLSPM technique treats the latent variables as weighted 

composites of their manifest indicator variables and estimates the composite model using 

multiple regression,  resulting in biased parameter estimates. Consequently, PLSPM is often 

recommended for prediction instead (Hair, Ringle and Sarstedt, 2011; Hair et al., 2012a, 2012b; 

Henseler et al., 2009; Ringle et al., 2012). Herman Wold, who originally developed PLSPM, 

positioned PLSPM as a method for prediction (Wold, 1982), de-emphasizing the importance of 

statistical tests and inference to population parameters. Lohmöller later (1989, pg. 72f) writes 

about PLSPM that ”predictor specification is a shortcut term for the type of model building 

where the investigator 

• Starts with the purpose of prediction  

• Sets up a system of relations …where the structure of the relations must be founded in the 

substance of the matter, and the predictive purpose should not jeopardize a structural causal 

interpretation of the relation.  

• …The contrast between predictive vs. structural/causal is not absolute…For simple models 

both aspects come at the same time; for complex models there is a parting of the ways.”  
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Most recently, prominent PLSPM researchers have called for a re-orientation of PLSPM 

towards predictive or forecasting applications and its abandonment for explanatory modeling: 

”We also propose a new ’back-to-basics’ research program, moving away from factor analysis 

models and returning to the original object of constructing indices that extract information from 

high-dimensional data in a predictive, useful way.” (Dijkstra, 2010, pg. 23) ”PLS path modeling 

can and should separate itself from factor-based SEM and renounce entirely all mechanisms, 

frameworks and jargon associated with factor models. … A logical candidate for an alternative 

measurement framework is one that is based on forecasting.” (Rigdon, 2012, pg. 348) 

The emphasis on prediction is reflected in applied research in the management disciplines. 

Ringle et al. (2012) report that 15% of PLSPM studies in management information systems and 

almost a quarter of PLSPM studies in other leading management journals claim to focus on 

prediction. Hair et al. (2012a) report that more than 30% of PLSPM studies in strategic 

management appeal to predictive goals. More than one quarter of PLSPM studies in marketing 

are motivated by predictive goals (Hair et al., 2012b). 

The context of structural equation models for prediction raises important questions. In 

general, a statistical model (not limited to structural equation models) that leads to optimal 

explanation (minimizing bias) does not necessarily also lead to optimal prediction (minimzing 

bias and estimation error) (Shmueli, 2010). Consequently, the development of predictive models 

is primarily driven by data, not theory, to the point that modern prediction methods are entirely a-

theoretical, eschewing easily interpretable regression models for neural networks, support vector 

machines, nearest-neighbor methods and others (Hastie, Tibshirani and Friedman, 2009). These 

considerations naturally raise the question as to the role of theory, and therefore also structural 

equation models, in prediction, and the general relationship between theory development and 
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prediction (Shmueli, 2010; Shmueli and Koppius, 2011). For example, is the insistence on a, 

typically theoretically constrained, structural equation model for prediction, as argued for by 

Lohmöller (1989) in the above quote, over possibly superior a-theoretical models defensible 

(Rönkkö, Antonakis, and McIntosh, 2016)? Should researchers take the risk of compromising 

both prediction and explanation for the pragmatically important interpretability of theoretically 

plausible models (Davenport, 2013; Freitas, 2013; Huysmans, Dejaeger, Mues, Vanthienen, and 

Baesens, 2011)? What role does the predictive power of explanatory models play in theory 

evaluation, selection, and development (Shmueli, 2010; Shmueli and Koppius, 2011)? Moreover, 

while Shmueli & Koppius (2011) present six ways in which predictive models can contribute to 

theoretical development, these ways do not imply that the prediction model coincides with the 

theoretical model, as is the case for prediction from structural equation models considered here. 

A thorough discussion of these issues is beyond the scope of this article, which has a 

narrower focus. Specifically, in light of the arguments about the suitability of PLSPM for 

predictive purposes (Hair et al., 2011, 2012a, 2012b; Henseler et al., 2009; Rigdon, 2012; 

Rigdon, 2014; Ringle et al., 2012) combined with the dearth of supporting empirical evidence, 

this paper addresses the choice of optimally predictive estimation methods for structural 

equation models with a focus on the variants of PLSPM and ML estimation. Two simulation 

studies evaluate the performance of different PLSPM variants and compare PLSPM based 

prediction to ML and other methods. Study 1 examines all-reflective models using blindfolding 

and the Q2 statistic, as recommended by Chin (2010). Study 2 examines mixed formative-

reflective models using cross-validation and the RMSE statistic that are typically used in 

predictive analytics evaluation (Hastie et al., 2009). 
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The remainder of the paper is structured as follows. The next section discusses existing work 

on prediction from structural equation modeling with a focus on PLSPM. The following section 

presents challenges for prediction from structural equation models, followed by an introduction 

of the design factors common to both simulation studies. The subsequent two sections present the 

study design, results, and recommendations for each simulation study. The paper concludes with 

an overall discussion. 

Prior Work 

Numerous studies in the past have focused on evaluating and comparing covariance analysis 

(particularly ML estimation) and PLSPM. However, almost all of them have focused on 

parameter accuracy (bias) and statistical power. These are key issues in inferential applications, 

but are not as important for predictive modeling (Shmueli, 2010). In contrast, despite the oft-

repeated claims about the advantage of PLSPM for predictive modeling (Hair et al., 2011, 2012a, 

2012b; Henseler et al., 2009; Ringle et al., 2012), few studies have systematically tested these 

claims. 

Evermann and Tate (2012) examine the predictive ability of reflective factor models using 

both PLSPM and ML estimation. Prediction from PLSPM estimated models, judged by the Q2 

statistic on blindfolded data sets, is superior to estimation from ML estimated models. However, 

their use of reflective exogenous constructs in the factor models precludes out-of-sample 

evaluation of prediction performance through cross-validation, the accepted standard in the 

predictive analytics literature (Hastie et al., 2009). Becker, Rai and Rigdon (2013) examine the 

predictive ability of PLSPM estimated models with formative/composite constructs. While 

Becker et al. (2013) use cross-validation, they do not focus on the recoverability of individual 
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scores, but on the R2 of the regression of the endogenous formative construct. As noted by 

Sharma, Sarstedt, Shmueli and Kim (2015) and Shmueli, Ray, Velasquez Estrada and Chatla (in 

press), this statistic is a measure of in-sample explanatory power, not a predictive measure. 

Moreover, because Becker et al. (2013) use a statistically unidentified model, they cannot 

compare PLSPM with covariance estimation. Most recently, Evermann and Tate (2014) use a 

cross-validation approach for mixed formative-reflective models and conclude that PLSPM is 

superior to ML and linear regression methods in their simulation scenario, where predictive 

power is assessed as the mean RMSE (root mean square error) across indicators. 

An important aspect not examined by previous studies is the performance of different PLSPM 

estimation methods. Specifically, Evermann and Tate (2012) use only PLSPM mode A 

estimation, because, as they argue, PLSPM mode A is the accepted way of estimating reflective 

models in the applied literature. For their later work, Evermann and Tate (2014) use only one 

combination of mode A and B, again reflecting current practice in the applied literature. 

Recently, Dijkstra and colleagues (Dijkstra and Schermelleh-Engel, 2013; Dijkstra and Henseler, 

2015a, 2015b) have developed a consistent PLS estimator (PLSc) that uses disattenuation by 

estimated composite reliabilities to correct estimated regression path coefficients, yielding yet 

another PLSPM variant. Their initial simulation studies focus only on parameter bias and 

efficiency of estimation, so that the usefulness of PLSc for prediction remains to be explored. 

A second aspect that has been neglected is prediction from misspecified models. While one 

would expect prediction from a model with random misspecifications to be poor, more interesting 

misspecifications are those that add paths to the model, leading, in the limit, to a fully saturated 

model. Given the lack of a model fit test for PLSPM (Evermann and Tate, 2010), researchers 

using PLSPM may be inclined to saturate their model with additional paths. Moreover, because 
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of the different aims of explanatory and predictive models, underspecified models, trading off 

bias against variance, may be able to predict better than fully specified models (Hastie et al., 

2009; Shmueli et al., in press). Hence, prediction under model misspecification is an important 

criterion in practice.  

Prediction from Structural Equation Models 

In the context of predictive modeling, structural equation models can present unique 

challenges. In predictive modeling, the values for a new case are predicted from the predictor 

variables for that case. However, many structural equation models in the management disciplines 

are specified as fully reflective (Ringle et al., 2012; Hair et al., 2012a, 2012b) with all manifest 

variables as endogenous and only latent variables as exogenous. Hence, no manifest predictors 

exist from which values for new cases can be predicted (Evermann and Tate, 2012, 2014). This 

lack of predictors limits the usefulness of these models to guide interventions in business 

practice. For example, in an application of the Technology Acceptance Model (TAM) (Davis, 

1989), a manager may be able to measure the perceived usefulness indicator scores for her 

employees, but the theoretical model does not provide a prediction path from the perceived 

usefulness indicators to the behavioral intention indicators. In the terminology of Shmueli et al. 

(in press), operative prediction is not possible from a fully reflective model.  

Similarly, when a model is specified in a purely formative way, as is done by Becker et al. 

(2013), the model contains no manifest predicted variables; only latent variables are predicted. 

This type of model makes the assessment of the recoverability of individual scores as an 

evaluation of predictive performance impossible (Evermann and Tate, 2012, 2014). In the 
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framework of Shmueli et al. (in press), this model allows only latent prediction, not operative 

prediction.  

One can of course simply disregard the directionality of relationships in the structural 

equation model, picking any set of variables and deciding that some are predictors and some are 

predicted. One can then proceed with prediction, but runs the danger that the exercise is 

irrelevant in the domain of interest: Fully reflective or fully formative models suggest that the 

substantive theory may not have easily identifiable manifest predictors or predicted variables. 

Previous research has dealt with these challenges in different ways. Evermann and Tate 

(2012) evaluate purely reflective models using a blindfolding technique and make the assumption 

that manifest variables linked to exogenous latent variables are predictors. For a purely formative 

model, Becker et al. (2013) choose to not predict individual scores on specific variables, but 

instead evaluate the R2 of the regression of an endogenous latent variable, an explanatory but not 

predictive statistic (Sharma et al., 2015; Shmueli et al., in press). Evermann and Tate (2014) 

restrict their study to mixed reflective-formative models of the kind shown in Figure 1. These 

models have both manifest predictors and predicted manifest variables. Specifically, all 

exogenous latent variables are specified formatively, whereas all endogenous latent variables are 

specified reflectively. In the example model in Figure 1, x1, x2, and x3 clearly are predictors that 

can be used to predict values for y1 to y3 and z1 to z3.  

 Figure 1 here.  

Study Design 

Models for simulation studies should be representative of those found in the substantive 

literature. PLSPM models in highly-ranked management information systems journals have a 
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median number of 7 to 9 latent variables with 9 to 11 structural relations (Ringle et al., 2012), 

those in the marketing literature have a median of 7 latent variables with 8 structural relations 

(Hair et al., 2012b), and those in strategic management have a median of 6 latent variables with 9 

structural relations (Hair et al., 2012a). Based on these reports, this study examines the models in 

Figures 2–4 (indicators are not shown). While models 1 and 2 are relatively simple models, 

model 3 matches the typical characteristics of PLSPM models in the literature quite well.  

 Figure 2 here.  

 Figure 3 here.  

 Figure 4 here.  

PLSPM based studies in management information systems have a median sample size of 198. 

Those in other business disciplines have a median sample size of 160 (Ringle et al., 2012). 

Studies in the marketing discipline have a mean sample size of 198 (Hair et al., 2012b) and 

studies in strategic management have a sample size of 155. Given these reports, and following 

Evermann and Tate (2012, 2014), sample sizes of 100, 250, and 750 are examined. 

Both Ringle et al. (2012) and Hair et al. (2012b) report a median of 3.58 indicators for each 

reflective construct in management information systems and marketing research; Hair et al. 

(2012a) report a median of 3 indicators and a mean of 3.4 indicators for each reflective construct 

in strategic management research. Given these reports, and again following Evermann and Tate 

(2012, 2014), models with 3, 5, or 7 indicators per construct are examined.  

Simulations are conducted under conservative conditions: Manifest variables are continuous 

from a multivariate normal distribution with no missing values, all structural paths are significant 

with a regression coefficient of 0.75. Table 1 shows the design factors common to both studies. 
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 Table 1 here.  

Study 1: Reflective Models and Blindfolding 

The first study examines all-reflective models using the technique of blindfolding to compute 

the Q2 statistic (Chin, 2010). The following subsections first present blindfolding and the Q2 

statistic. Next, the experimental design factors are presented, followed by a presentation of results 

and recommendations for researchers.  

Blindfolding and the Q2 statistic 

Because the exogenous variables in a fully reflective model are latent, not manifest variables, 

out-of-sample evaluation of predictive performance is not possible (Shmueli et al., in press). 

Instead, PLSPM researchers advocate the use of blindfolding and the 𝑄2 statistic for assessing 

the predictive strength of structural equation models (Chin, 2010; Hair et al., 2011, 2012b; 

Henseler et al., 2009; Ringle et al., 2012; Sarstedt et al., 2014). While blindfolding and use of the 

𝑄2 statistic are the curent recommendation for PLSPM research, they are not without problems. 

Blindfolding is not a true out-of-sample technique (Shmueli et al., in press) and, because the 

omission sets retain much information about the entire dataset as blindfolding never omits an 

entire case, may lead to overestimation of predictive ability (Rigdon, 2014; Shmueli et al., press). 

In blindfolding, the researcher omits a number of observations from the data set, estimates the 

model parameters, and uses the estimated model to predict the omitted observations. Blindfolding 

is applied to a matrix of observations containing N cases and 𝑀 manifest variables. For an 

omission distance 𝑘, by row and beginning with the first data point (row 1, column 1) of this 

matrix, every k-th observation is omitted. For an illustration, consider the matrix of 𝑁 = 10 cases 

and 𝑀 = 3 indicators (x1, x2, x3) shown in the left panel of Figure 5. An omission distance of 
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𝑘 = 5 leads to omitting, by row, every 5th observation. This process is repeated k times, yielding 

𝑘 omission sets. The omissions in each set are offset by one datapoint, as shown in the remaining 

panels in Figure 5. As is evident from the figure, choosing the omission distance as 

recommended by Wold (1982, p. 33) as a prime number strictly greater than the number of 

columns and strictly less than the number of rows (𝑀 < 𝑘 < 𝑁) ensures even omission across 

rows and columns and ensures that each observation is omitted once. The model is then estimated 

𝑘 times, once with each omission set. To estimate the model, the omitted values in each data set 

are replaced by the columns means (Chin, 2010). 

 Figure 5 here.  

The estimates for the omitted values are compared to the observed values, using the squared 

difference: 

𝐸2 = ∑ ∑(�̂�𝑗 − 𝑋𝑗)
2

𝑗∈𝐽𝑙𝑙=1..𝑘

 

Here 𝑋𝑗 is the observed value for observation 𝑗 and 𝑋�̂� is the estimated value. The set 𝐽𝑙 indexes 

the omitted values in omission set 𝑙. The summation is over all omission sets 𝑙 = 1. . 𝑘 and over 

all omitted values in each set 𝐽𝑙.  

The differences between the variable mean and the observed values are compared in the same 

way: 

𝑂2 = ∑ ∑(�̅�𝑗 − 𝑋𝑗)
2

𝑗∈𝐽𝑙𝑙=1..𝑘

 

Here 𝑋𝑗 is again the observed value for observation 𝑗 and 𝑋�̅� is the column mean of the column of 

observation 𝑗. The summation is again over all omission sets 𝑙 = 1. . 𝑘 and over all omitted values 

in each set 𝐽𝑙.  
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The predictive measure Q2 is then calculated as 

𝑄2 = 1 −  
𝐸2

𝑂2
 

One distinguishes communality-based and redundancy-based prediction, with 

correspondingly differing values for the 𝑄𝑐𝑜𝑚𝑚
2  and 𝑄𝑟𝑒𝑑

2  predictive measures. In communality-

based prediction, the predicted values are based on the estimated composite scores and the factor 

loadings. For redundancy-based blindfolding, the composite scores for endogenous latent 

variables are themselves predicted from the structural model using the estimated regression 

coefficients. Because the prediction of endogenous composite scores is affected by structural 

error terms, redundancy-based prediction will necessarily perform worse than communality-

based prediction. Therefore, communality-based prediction should be chosen for minimizing the 

prediction error, but redundancy-based prediction should be chosen when the predictive 

performance of the structural model is to be evaluated. 

Study Design 

The three models in Figures 2–4 are estimated using PLSPM mode A estimation, PLSPM 

mode B estimation, and covariance estimation using ML. For each of these estimation methods, 

communality-based and redundancy-based prediction from the estimated model is evaluated. 

While typical PLSPM applications use the centroid inner weighting scheme, this study also 

examines the path and factor inner weighting schemes. Finally, while the recent development of 

the consistent PLS estimator (PLSc) (Dijkstra & Schermelleh-Engel, 2013; Dijkstra & Henseler, 

2015a, 2015b) is motivated by the goal of to reducing estimation bias of PLSPM, PLSc is 

included in this study to examine its usefulness also for prediction.  
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Additionally, the model-based prediction methods are compared to an a-theoretical method to 

examine whether prediction from a structural equation model provides substantial advantages or 

disadvantages. Because the absence of manifest exogenous variables rules out linear regression 

models, the EM algorithm is used. While many a-theoretical methods exist (Hastie et al., 2009), 

the EM algorithm is familiar to management researchers as a missing value imputation method. 

The algorithm does not rely on a statistical model, but assumes a multivariate-normal distribution 

of the observed values. The algorithm estimates the means and covariances of this distribution 

using the maximum-likelihood method and then samples the missing values from the estimated 

distribution (Schafer, 1997). Because of this stochastic sampling, following recommended 

practice, multiple imputation with 20 imputation samples is performed. 

Wold (1982, p. 33) recommends that the omission distance k should be a prime number 

between the number of indicators per composite i and the sample size n. Additionally, Chin 

(2010, p. 680) recommends a small value of around 5 to 10. Based on these recommendations, 

the omission distance in this study is the smallest prime that is strictly greater than the number of 

indicators per composite. The blindfolded block of data, as illustrated in Figure 5, may contain 

indicators of all or only some latent variables. However, redundancy-based prediction and the 

Q
2

red  metric are applicable only to observations on indicators of endogenous latent variables, 

whereas communality-based prediction and the 𝑄𝑐𝑜𝑚𝑚
2  metric can be applied to all manifest 

variables.  Following Chin (2010), only the indicators of endogenous latent variables are 

blindfolded to be able to compare the relative performance of communality- and redundancy-

based prediction for the same data. The 𝑄2 metric is not reported per indicator or per latent 

variable because all latent variables have the same number of indicators and all indicators are 

generated with the same loadings. 
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 Table 2 here.  

Table 2 shows further experimental design factors. The models are simulated with strong, 

medium, and weak measurement loadings. For each experimental condition, 500 samples are 

estimated (replications). The reported outcome measure is the mean Q2 over the 500 replications. 

All computations are performed using the R system (version 3.1.2; R Core Team, 2014). 

Specifically, the matrixpls package (version 0.5.0; Rönkkö, 2014) is used for all PLSPM and 

PLSc estimations in this study. Results are doublechecked against the plpspm package (Sanchez 

et al., 2015) and found to be identical to 7 decimal places. The ML estimation is performed using 

the lavaan package (version 0.5-17; Rosseel, 2012). The EM analysis is performed using the 

norm package (version 1.0-9.5). Data are generated by independently drawing the exogenous 

latent variable true scores from a standard normal distribution and then using structural and 

measurement equations to compute scores for endogenous variables, adding orthogonal error 𝜖 as 

indicated in Table 1. 

All ML and PLSPM and PLSc mode A estimations yielded proper results. EM imputation 

had significant problems with approximately 20% of solutions in many conditions and did not 

yield any solutions in many conditions with large proportions of missing data. Problems also 

occurred with PLSc mode B estimation where up to 20% of cases yielded clearly inadmissible 

solutions. Clearly erroneous results are removed and additional cases are simulated to reach 500 

cases per experimental condition. 

Results – Base Model 

Tables 3-5 show the simulation results. The inner weighting scheme does not have any effect 

on the predictive results (identical to 5 decimal places). Consequently, the 𝑄2 values reported in 
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Tables 3-5 are based on the centroid weighting scheme, which is the default in many PLSPM 

software tools; full results are available from the first author. 

 Table 3 here.  

 Table 4 here.  

 Table 5 here.  

Model-based versus EM prediction 

The a-theoretical EM-based prediction performs remarkably well across the three different 

models and experimental conditions. On the other hand, because of the relatively large proportion 

of missing data compared to a typical missing data situation, the EM algorithm has serious 

problems in producing a solution, especially for large datasets (i=7 and also i=5 for model 3). 

Mode A versus Mode B Estimation 

For PLSPM, the differences between mode A and mode B are not very pronounced, with 

mean differences in Q2 of Δ=0.0023 in favor of mode A for redundancy based prediction and 

Δ=0.0014 for communality based prediction. The differences are more pronounced for PLSc 

where mode A performs better than mode B for both redundancy based prediction (Δ=0.138) and 

communality based prediction (Δ=0.121). When considering only the results for medium and 

large samples, differences between mode A and mode B become negligible for PLSPM 

prediction (both redundancy and communality), but remain for PLSc (redundancy based 

Δ=0.086, communality based Δ=0.092), in favor of mode A. Given these findings, the remainder 

of the analysis focuses on mode A estimation only. 
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Communality versus Redundancy Prediction 

Communality based prediction uses only the composite or factor scores and the loadings for 

that composite or factor. In contrast, redundancy-based prediction uses the structural model to 

predict the endogenous composite (factor) scores from the exogenous composite (factor) scores. 

Its predictions are therefore subject to the errors on the endogenous composites (factors). This 

difference is evident in the results: As expected, communality-based prediction outperforms 

redundancy-based prediction for all models, all experimental conditions, and all model-based 

estimation methods (mean difference Δ=0.106). However, the effect is twice as strong for the 

PLSc mode A (Δ=0.110) and PLSPM mode A (Δ=0.122) based predictions than for ML based 

predictions (Δ=0.053). 

Redundancy based prediction is the relevant criterion for assessing the predictive ability of 

the structural model (Chin, 2010; Shmueli et al., in press). Of the redundancy based methods, ML 

estimation performs better than both PLSPM mode A (Δ=0.044) and PLSc mode A (Δ=0.051). In 

contrast, when simply the best prediction method is desired, communality based prediction as the 

superior method should be chosen. However, in that case, the strong performance of the EM 

algorithm must also be considered. 

ML versus PLSc and PLSPM Prediction 

PLSPM has been argued to provide superior predictive abilities compared to ML estimation. 

The results show that this superiority holds for communality based (Δ=0.025) but not for 

redundancy based prediction, where ML based prediction performs better than PLSPM mode A 

(Δ=0.044). The lack of superiority for redundancy-based prediction may be a result of the known 

overestimation of loadings and underestimation of structural paths coefficients by PLSPM. 
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However, a comparison of PLSc mode A, which is intended to correct for this bias, and ML 

estimation shows that the differences for redundancy based prediction are even more pronounced 

(Δ=0.05) and that communality based prediction from PLSc performs about equally well as from 

ML (Δ=0.006). 

Models and Experimental Conditions 

 The models in this study have different characteristics. Models 1 and 2 have the same 

number of latent variables, but whereas three exogenous variables jointly predict two endogenous 

variables in model 1, a single exogenous variable in model 2 predicts four endogenous variables. 

Model 3 is more complex, including mediations. ML redundancy based prediction performs 

better for model 1 than model 2 (mean difference Δ=0.108 over all experimental factors) and 

model 3 (Δ=0.078). The results for ML communality based predictions are similar but with less 

pronounced differences (Δ=0.070, Δ=0.041). PLSPM mode A also predicts better from model 1 

than model 2 (Δ=0.099) and model 3 (Δ=0.181) with redundancy based prediction. The 

differences are again less pronounced for communality based prediction (Δ=0.066, Δ=0.001). The 

differential behavior of redundancy and communality based prediction with respect to different 

models is expected as communality based prediction does not take into account the differences in 

structural models, whereas redundancy based prediction does. 

As expected from reliability considerations, predictive ability generally increases as the 

number of indicators increase. For ML redundancy based prediction, the mean Q2 statistic over 

all models and other experimental factors increases by Δ=0.081 when moving from 3 to 5 

indicators, and additionally by Δ=0.012 when moving from 5 to 7 indicators. The numbers for 

ML communality based prediction are similar (Δ=0.112, Δ=0.028). The effect is present but less 
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pronounced for PLSPM mode A communality based prediction, with an increase in mean Q2 of 

Δ=0.073 when moving from 3 to 5 indicators and an additional increase of Δ=0.022 when 

moving from 5 to 7 indicators. For PLSPM mode A redundancy based prediction, the opposite is 

true. Here, predictive ability decreases (mean 𝑄2 difference over all models and other 

experimental factors Δ=-0.025) when moving from 3 to 5 indicators and further decreases by Δ=-

0.017 when moving from 5 to 7 indicators.  

Predictive ability behaves as expected with respect to loadings and improves as loadings 

increase, for all estimation methods and for both prediction methods. The effects are very similar 

in size, and combined over estimation and prediction methods the mean Q2 statistic improves by 

Δ=0.067 when moving from low to medium loadings and improves additionally by Δ=0.035 

when moving from medium to large loadings. 

Stability 

The indeterminacy of factor scores from ML estimation is sometimes cited as a reason for 

preferring PLSPM (Rigdon, 2012). While different methods for generating factor scores exist, 

and additionally factors can be rotated, the standard deviations in Table 6 show that once a 

method is chosen (the lavaan package uses the regression method), factor scores are not 

inherently unstable. The ML standard deviations are of approximately the same size as those for 

the PLSPM estimations. Dijkstra (2014) points out that the choice of different PLSPM inner and 

outer modes amounts to the same problem: “The use of a specific proxy cannot take away the 

inherent and real uncertainty” (pg. 149). 

The numerical stability of PLSc mode B based predictions differs from that of the other 

methods. The standard deviations in Table 6 show that PLSc with mode B outer estimation is 
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highly unstable in many experimental conditions, in particular with small samples and many 

indicators (n=100, i=5,7). Here, standard deviations are one or two orders of magnitude above 

those for PLSc mode A or PLSPM estimation. This instability occurs despite precautions in the 

simulation to remove clearly inappropriate solutions. This numerical instability had already been 

noted by Dijkstra and Schermelleh-Engel (2013) in early studies who suggest that "in small 

samples c
i
 [the correction factor] may not be well-defined" (pg. 589). This instability can also be 

seen in the 𝑄2 distribution. Figure 6 shows plots of this distribution for model 3 with 5 indicators 

per latent variable, for different combinations of sample size 𝑛 and loadings 𝑙.  

 Table 6 here.  

 Figure 6 here.  

Comparison to In-Sample Performance 

While blindfolding is not a true out-of-sample evaluation method, blindfolding is also not an 

in-sample method. Therefore, comparing the predictive performance assessed using blindfolding 

to the in-sample predictive performance (i.e. no blindfolding) can provide some assessment of the 

degree of overfitting (Hastie et al., 2009; Shmueli et al., in press). When the in-sample 

performance is much better than out-of-sample performance, the model is closely fitting the 

training data, and possibly over-fitting the training data, which can be a problem if the goal is 

out-of-sample prediction. 

 Overall, when examining ML, PLSPM mode A, and PLSc mode A estimation, the mean 

𝑄2 difference between blindfolded and in-sample performance across all models, experimental 

conditions, and prediction methods is Δ =0.0429, indicating that very little overfitting takes 

place. Communality-based prediction shows a 𝑄2 difference of Δ =0.105 whereas redundancy-
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based prediction shows a difference of Δ =-0.0196, indicating the the blindfolded performance is 

actually better than the in-sample performance. Among the estimation methods, ML shows the 

largest difference in 𝑄2 (Δ =0.0825), followed by PLSc (Δ =0.0267) and PLSPM (Δ =0.0194). 

Results – Misspecified Models 

To examine the performance of the different estimation and prediction methods on 

overspecified models, structural paths from a to y and from c to x are added to the estimated 

model 1, and structural paths from a to l and from a to z are added to the estimated model 3. 

PLSPM mode B is not examined for these models because of its relatively poor performance. 

Only the results of the ML estimation, PLSc and PLSPM mode A estimation and prediction are 

reported in Tables 7 and 8. The EM-based predictions do not change as they are model 

independent and thus are the same as in Tables 3 and 5. 

As the structural misspecification leaves the measurement model essentially invariant, the 

communality based prediction should be the same as for the correctly specified model. Moreover, 

as the additional paths leave the embedded correct structural model intact and the added paths 

should be estimated to have zero coefficients, the redundancy-based prediction should be the 

same as for the correctly specified model. The results in Tables 7 and 8 confirm these 

expectations. Thus, a researcher cannot gain any advantage by overspecifying or saturating the 

inner, structural model. On the other hand, such overspecifications also do not negatively affect 

the predictive performance of the model. 

 Table 7 here.  

 Table 8 here.  
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For an idea as to how much the predictive ability suffers when the estimated model is plainly 

wrong, the estimated model 3 is changed by removing the paths from k to x and from l to z, and 

instead adding paths from k to z and from l to x. Table 9 shows the results for communality and 

redundancy based prediction from ML, PLSc mode A and PLSPM mode A estimated models. 

Communality-based prediction remains equivalent to that from the correctly specified model, 

despite the interdependencies between structural and measurement models in the estimation in 

both the ML and PLS algorithms. As expected, the redundancy-based prediction from ML 

estimated models suffers considerably for a misspecified structural model. A surprising effect is 

noticeable for the PLSc and PLSPM mode A based predictions. The redundancy based 

predictions improve over those from the correctly specified model with more indicators (i=5, 7 

for PLSc; i=7 for PLSPM). 

 Table 9 here.  

Because none of the models allow underspecification by removing paths without severely 

compromising the connectivity of the model, direct paths between 𝑎 and 𝑥, 𝑏 and 𝑦, and 𝑐 and 𝑧 

are added to the generating model 3, but are omitted from the estimated model, which is therefore 

underspecified. Because the generating model is different, the 𝑄2 values are not comparable to 

previous models, so that Table 10 reports the relative percentage difference between the 𝑄2 

values of the true and of the estimated (underspecified) model.  

 Table 10 here.  

Communality-based prediction suffers little for all estimation methods (ML, PLSc, and 

PLSPM), with mean differences generally about one half of a percent for ML (-0.443%) and 
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effectively zero for PLSPM (-0.012%). The number of indicators have an effect on communality-

based prediction from PLSPM and PLSc estimated models. Specifically, the percentage 

differences in 𝑄2 are an order of magnitude higher for 𝑖 = 3 (-0.035% for PLPM; -0.420% for 

PLSc) than for 𝑖 = 5, 7 (-0.000% for PLSPM; -0.012% for PLSc). 

As expected, redundancy-based prediction suffers significantly, by up to eight percent for ML 

estimation (mean of -7.60%), and somewhat less for PLSc and PLSPM estimation (means of -

5.05%). The number of indicators also has an effect on redundancy based prediction from 

PLSPM and PLSc estimated models, however, opposite to the effect for communality-based 

prediction. When the number of indicators is small (𝑖 = 3), redundancy-based prediction suffers 

more (-6.40% for PLSPM, -7.11% for PLSc) than for 𝑖 = 5, 7 (-2.39% for PLSPM, -0.91% for 

PLSc). No such effect exists for ML estimated models exists.  

Recommendations and Discussion 

To identify recommendations for researchers from the results for the correct model, the 

optimal estimation and prediction method is determined for each replication. Classification 

algorithms (Hall, Eibe, Holmes, Pfahringer, Reutemann and Witten, 2009) are then used to derive 

model-independent decision rules and decision trees. Cautious about overfitting and in the 

interest of providing a parsimonious recommendation, the model-independent decision tree in 

Figure 7, based on the C4.5 algorithm, leads to the optimal method for more than 87% of 

simulated samples (F-value=0.878).  

 Figure 7 here.  

Similarly, the following decision rule leads to the optimal method for more than 87% of 

simulated samples (F-value=0.878): 
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If (i <= 3) => EM 

If (i <= 5) and (n >= 250) and (l >= 1) => EM  

Else => PLSPM Mode A Communality 

Finally, even the simple rule of choosing PLSPM mode A with communality-based 

prediction for 5 or more indicators (i=5, 7) and EM prediction otherwise leads to the correct 

choice for more than 83% of simulated samples (F-value=0.833). 

One caveat with the decision tree in Figure 7 and the above decision rules is that they appear 

to select model based prediction predominantly for those cases where EM imputation does not 

yield a solution, suggesting that, when the data, particulary the proportion of to be predicted data, 

allow for this, the EM algorithm might also be useful in other conditions. When the EM results 

are excluded, PLSPM mode A communality based prediction is the preferred method, except for 

large samples, low loadings, and few indicators, as the following decision rule shows (F-

value=0.953): 

If (n >= 750) and (l <= 0.75) and (i <= 3) => ML Communality 

Else => PLSPM Mode A Communality 

Focusing on the predictive ability of the structural model, and therefore on redundancy based 

prediction, shows that both PLSc and ML based redundancy prediction are the preferred options, 

as expressed in the following decision rule (F-value=0.653): 

If (i <= 3) and (l >= 1.25) and (n <= 250) => PLSc Mode A Redundancy 

Else => ML redundancy 

The results for misspecified models suggest that researchers are not served by simply adding 

structural paths to and overspecifying their model, possibly until saturation. When paths are 

added to an already correct model they do not affect the predictive ability at all. On the other 

hand, when the analysts has reason to doubt the correctness of the structural model, the results 
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indicate that communality based prediction remains largely unaffected by underspecification and 

misspecifications, and is the preferred choice.  

The way that blindfolding in a reflective model deals with prediction naturally allows for and 

favors the use of communality based prediction, due to the data set for estimation containing full 

information for all cases and all manifest variables (recall that the blindfolded dataset replaces 

omitted values by means) and, barring misspecifications in the measurement model, communality 

based prediction is not affected by disturbance terms in the structural models, nor is 

communality-based prediction apparently susceptible to structural misspecification. Despite the 

formal interdependence of measurement and structural models for ML, PLSc, and PLSPM, the 

communality-based prediction appears to be, in practice, unaffected by misspecification, 

indicating effective independence of the measurement models from the structural models. 

Furthermore, the absence of a test for model fit in PLSPM and PLSc makes no difference in this 

case as, again barring measurement misspecifications, the correctness of the structural model 

does not appear to be important to communality based prediction.  

In summary, prediction from a fully reflective model is conceptually problematic, as 

discussed earlier, and the use of blindfolding as a technique to establish predictive ability favors 

non-model based methods such as EM or, when using theoretically motivated models, favors 

communality-based prediction. The latter turns out to be effectively not model based as the 

structural misspecifications appear to have no impact, despite the interdependence between 

structural and measurement models during model estimation.  
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Study 2: Mixed Formative-Reflective Models and Cross-Validation 

The second simulation study examines models with reflective exogenous and formative 

endogenous constructs as in the example in Figure 1. In contrast to purely reflective models 

where no manifest predictors exist, exogenous formative constructs with manifest predictors and 

endogenous reflective constructs with manifest predicted variables make for a more realistic 

prediction use case as they allow for operative prediction. The dependent variables for a specific 

case can be predicted from the known exogenous variables of that case and an estimated model. 

These types of models also allow the use of linear multiple regression models (LM) techniques, 

that is, a-theoretical models, for prediction.  

Both ML and PLSPM impose considerable constraints on the predictive model by introducing 

mediating latent variables. Thus, their performance should be worse than that of a linear model 

that does not impose such constraints: ”A path model is …generally subobtimally predictive …if 

the object of the analysis were to predict the response variables, …we cannot do better than to 

use a multivariate regression …” (McDonald, 1996, pg. 266).  

A recent simulation study using simple models that do not include latent variables, shows that 

combining predictors using regression weights is generally sub-optimal to combining predictors 

using their correlations with the criterion variable (Dana & Dawes, 2004). Dana & Dawes (2004, 

pg. 328) conclude that “regression coefficients should not be used for predictions unless error is 

likely to be extremely small by social science standards or sample sizes will be larger than 100 

observations to predictors. In other words, regression coefficients should almost never be used 

for social science predictions.” In a simple two-latent model, PLSPM mode A represents 

correlation weights, whereas PLSPM mode B represents regression weights (Rigdon, 2012). 

Based on this, Rigdon (2012) argues that PLSPM with mode A should be superior to PLSPM 
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mode B and  LM prediction. However, the models considered in this study contain complex 

structural models not considered by either Dana & Dawes (2004) in their simulation or Rigdon 

(2012) in his argument. Moreover, the latent variable model may provide information to the 

PLSPM or ML prediction that is not available to LM prediction. Thus, the question as to the 

relative performance of the different estimation methods remains open. 

Cross-Validation 

When considering models of the form in Figure 1, the cross-validation method to evaluate 

predictive ability (Hastie et al., 2009) can be applied. In k-fold cross-validation, a sample of 𝑛 

cases is split randomly into 𝑘 sub-samples (folds), each with 𝑛 𝑘⁄  cases. The following procedure 

is then repeated k times: Select 𝑘 − 1 sub-samples as the training sample and estimate the model 

using these cases. Using the manifest predictor variables of the remaining testing sub-sample and 

the estimated model parameters, predict the values of the dependent variables for the testing sub-

sample. Note that communality-based prediction is not available as the scores for endogenous 

latents are not estimated for the testing sub-sample. Prediction in this study is therefore analogous 

to redundancy-based prediction in study 1 in the sense that the structural model is used for 

prediction and is evaluated during cross-validation. 

Let �̂�𝑖,𝑗,ℎ be the matrix of predicted values for fold 𝑖 and let 𝑌𝑖,𝑗,ℎ be the matrix of true values 

for fold 𝑖. Each matrix has 𝑗 = 1. . 𝑛
𝑘⁄  rows and ℎ = 1. . 𝑀 columns, where 𝑀 is the total number 

of indicators for all endogenous latent variables. The prediction error is then defined as the root 

mean squared error (RMSE), averaged over all 𝑘 folds: 

𝑅𝑀𝑆𝐸 =
1

𝑘
∑ √

𝑘

𝑛𝑀
∑ ∑ (�̂�𝑖,𝑗,ℎ − 𝑌𝑖,𝑗,ℎ)

2

ℎ=1..𝑀𝑗=1..𝑛/𝑘𝑖=1..𝑘
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Study Design 

The second simulation uses the same models as the first simulation. All exogenous latent 

variables have formative indicators (predictors for cross-validation), all endogenous latent 

variables have reflective indicators (predictands for cross-validation). Sample size n and the 

number of indicators i are varied as before. Two experimental design factors are added, the 

correlation between formative indicators of the same construct c and the error (residual) variance 

for the formative construct e, yielding 3333=81 experimental conditions for each of the three 

models. For each of these conditions, 500 samples (replications) are estimated. Table 11 

summarizes the experimental design factors for this study. Data are generated by first 

constructing a population covariance matrix of the exogenous formative indicators for each latent 

variable with unit variances and covariance 𝑐 according to the experimental condition. Formative 

indicator scores are then sampled from a multi-variate normal distribution with that covariance 

matrix and summed to form the resulting latent variable true score. Orthogonal error 𝑒 is added to 

the latent variable score according to the experimental condition. Data for the endogenous latent 

variables and indicators are then generated using the structural and measurement model 

equations. 

 Table 11 here.  

For each sample, the model is estimated using PLSPM with modes A and B and mixed modes 

AB (mode A for exogenous, mode B for endogenous latent variables) and BA (mode B for 

exogenous, mode A for endogenous latent variables), ML estimation, and a linear model (LM) 

that simply regresses the endogenous manifest variables on the exogenous manifest variables. 

Because the consistent PLS estimator (PLSc) (Dijkstra and Schermelleh-Engel, 2013; Dijkstra 

and Henseler, 2015a, 2015b) is based on a correction that uses the estimated reliability of 
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composites under the assumption of a reflective common factor model,  this correction, and 

PLSc, is not applicable to formative models. 

For each sample and prediction method, 10-fold cross-validation is applied, following the 

recommendation by Hastie et al. (2009, pg. 243). The mean RMSE value over 500 replications is 

reported as outcome measure. As in study 1, all indicators have the same loadings, and all latent 

variables have the same number of indicators so that indicator-specific or latent variable-specific 

RMSE are not reported. All computations are performed using the R system (version 3.1.2; R 

Core Team, 2014). Specifically, the plspm package (version 0.4.7; Sanchez et al., 2015) is used 

for all PLSPM estimations; the ML estimation is performed using the lavaan package (version 

0.5-20; Rosseel, 2012).  

Results – Base Model 

Tables 12-14  show the RMSE results for the three models. As in study 1, the inner weighting 

scheme does not have any effect on the predictive results (identical to 5 decimal places). 

Consequently, the values reported in Tables 12-14 are based on the centroid weighting scheme 

which is the default in many PLSPM software tools.The RMSE of the PLSPM mixed mode BA 

are effectively equal those for PLSPM mode A, and those of PLSPM mixed mode AB are 

effectively equal those for PLSPM mode B. The mixed mode results are therefore omitted in 

Tables 12-14; full results are available from the correspnding author. The equality of the mixed 

modes with modes A or B suggests that only the PLSPM estimation mode for the endogenous 

latent variables has a significant effect on predictive performance, whereas the PLSPM 

estimation mode for the exogenous latent variables does not.  
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To provide an idea of the distribution of RMSE values, Figure 8 shows distribution plots for 

model 3 for medium sample size (n=250) and a medium number of indicators (i=5) for varying 

degrees of structural error variance 𝑒 and formative indicator covariance 𝑐. Table 15 shows the 

standard deviations of RMSE across all models for the different experimental conditions. 

 Table 12 here.  

 Table 13 here.  

 Table 14 here.  

 Figure 8 here.  

 Table 15 here.  

The results are generally model independent. The RMSE increases with increasing error 

variance, which is expected as additional random error in the prediction path will negatively 

impact the predictive abilities of the model no matter what prediction method is chosen. This 

effect is weakest for PLSPM estimation and strongest for ML estimation: Coefficients of 

regressing RMSE on structural error variance 𝑒 are 0.6821 (PLSPM mode A), 0.6831 (PLSPM 

mode B), 0.7115 (LM), and 0.8014 (ML). Better prediction is achieved with fewer indicators and 

larger samples: Regressing RMSE on sample size 𝑛 and number of indicators 𝑖 across all models 

and estimation methods yields regression coefficients of -.0000386 (sample size) and 0.0028 

(number of indicators). This result is not surprising, as a larger sample means more accurate 

estimations of model parameters and fewer indicators mean that a model with the same number 

of structural parameters has to predict fewer values. 
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For PLSPM mode A only, the formative indicator covariance 𝑐 has a small negative effect on 

the RMSE (regression coefficient of  -0.031), corresponding to a positive effect on predictive 

performance. The effect is more pronounced as sample size decreases and/or the number of 

indicators increase. 

Overall, the ML-based prediction performs worst, with the largest RMSE values for all 

models and for all experimental conditions (mean RMSE 0.6179). The PLSPM-based methods 

generally perform well with small but consistent advantages for PLSPM mode A estimation 

(mean RMSE 0.5640 for mode A, 0.5711 for mode B). Counter to expectations (McDonald, 

1996), all PLSPM methods perform slightly better than even linear multiple regression (mean 

RMSE 0.5806 for LM).  

Comparison to In-Sample Performance 

Comparing the out-of-sample predictive performance to in-sample performance is useful to 

assess the degree of overfitting (Hastie et al., 2009; Shmueli et al., in press). When the in-sample 

performance is much better than out-of-sample performance, the model is closely fitting the 

training data, and possibly over-fitting the training data, which can be a problem if the goal is 

out-of-sample prediction. 

Across all experimental conditions and all models, the in-sample RMSE is lower only by 

Δ =0.0238. Differences in RMSE are smallest for PLSPM mode A (Δ =0.00784) and mode B 

(Δ =0.0123), followed by ML estimation (Δ =0.0357) and LM (Δ =0.0391). A regression of 

experimental factors on RMSE differences (main effects only) shows that differences are more 

pronounced for smaller samples and lower formative indicator covariance. Full in-sample results 

are available from the first author. 
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The small size of these differences, relative to the standard deviations in Table 15 and the 

differences between experimental conditions, show that the cross-validated out-of-sample 

performance is very close to in-sample performance, indicating little evidence of overfitting and 

thus high generalizability of predictions to new samples.  

Results – Misspecified Models 

As with the first simulation study, examining the predictive ability of misspecified models is 

informative. The same misspecifications as in the first simulation study are examined in this 

study. Structural paths from a to y and from c to x are added to model 1, and structural paths from 

a to l and from a to z are added to model 3. The additional paths leave the embedded correct 

structural model intact. Because PLSPM mode A performs better than PLSPM mode B and 

mixed mode for the correctly specified models, only ML and PLSPM mode A are examined.  

Tables 16 and 17 show the mean RMSE values for the misspecified models 1 and 3. 

Comparing these to the RMSE values for the correctly specified models in Tables 12 and 14 

shows that, for both models and medium or large samples (n=250, 750), ML based prediction and 

PLSPM based prediction from the misspecified model are equivalent to predictions from the 

correctly specified model. For small samples (n=100), both ML based and PLSPM mode A based 

prediction from the misspecified model is slightly worse than that from the correctly specified 

model. However, the relative performance does not change: PLSPM mode A estimation 

continues to offer better prediction than ML estimation in all experimental conditions.  

 Table 16 here.  

 Table 17 here.  
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Similar to the first simulation study, to give an idea as to how much the predictive ability 

suffers when the estimated model is plainly wrong, model 3 is changed by removing the path 

from k to x and from l to z, and instead adding paths from k to z and from l to x. Table 18 shows 

the results for prediction from ML and PLSPM mode A estimated models. As expected, the 

RMSE rises significantly over the RMSE for prediction from the correct model, in some 

experimental conditions by 50%, for both methods.  

 Table 18 here.  

Again, similar to the first study, direct paths between 𝑎 and 𝑥, 𝑏 and 𝑦, and 𝑐 and 𝑧 are added 

to the generating model 3, but not the estimated model 3. The latter is therefore underspecified. 

As for the first study, because the generating model is different, the RMSE values are not 

comparable to the previous models, so that Table 19 reports the relative percentage difference 

between the RMSE values of the true and of the estimated (underspecified) model.  

 Table 19 here.  

The RMSE is higher for the underspecified model than the correct one in all experimental 

conditions and for both estimation methods. The mean percentage differences are 14.1% for 

PLSPM mode A and 12.1% for ML estimation, indicating poorer prediction from underspecified 

models. The RMSE increases more strongly for smaller structural errors. While the increase is 

independent of sample size for PLSPM mode A, the RMSE differences for ML estimation show a 

sample size dependency. At all sample sizes, the RMSE differences for ML estimation are 

smaller than those of PLSPM mode A estimation for small structural errors (𝑒 = 0) and approach 

those for PLSPM-A as structural error increases (𝑒 = 0.4). However, as the sample size 
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increases, the RMSE differences for ML estimation also increase for small structural errors (𝑒 =

0, 𝑒 = 0.1). Despite an effect of indicator covariance 𝑐 on the RMSE for correctly specified 

models (Table 14), no such effect is present for the RMSE differences in the underspecification 

case. 

In summary, irrespective of any experimental factor or estimation method, the underspecified 

model considered here suffers least in predictive performance when structural error is already 

high, that is, when prediction performance is already poor. 

Recommendations and Discusion 

Similar to study 1, recommendations for researchers are identified using classification 

algorithms (Hall et al., 2009) to derive model-independent decision rules and decision trees. 

Cautious about overfitting and in the interest of providing a parsimonious recommendation, the 

model-independent decision tree in Figure 9, based on the C4.5 algorithm, leads to the optimal 

method for more than 83% of simulated samples (F-value=0.819). 

 Figure 9 here.  

Even the following, much simpler rule leads to the optimal method for more than 81% of 

simulated samples (F-value=0.816): 

If (c = 0) => PLSPM mode B 

Else => PLSPM mode A 

However, considering that the differences in RMSE between PLSPM mode A and PLSPM 

mode B for 𝑐 = 0 are minimal (Tables 12-14) and that in practice, an indicator covariance of 

exactly zero is unrealistic even for carefully constructed indicators and carefully collected data, 

researchers should always use PLSPM mode A for estimation and prediction.  
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The predictive advantage of PLSPM over LM holds only for correctly specified models, or 

models that contain the correctly specified models and additional structural paths. Unfortunately, 

model misspecification is a condition that cannot be identified in PLSPM. Therefore, researchers 

should use ML and PLSPM estimation in a complementary way, using a two-step approach. As 

ML estimation offers a statistical test of model correctness, researchers should use ML estimation 

in a first step to ensure model correctness so that the subsequent prediction from that model with 

PLSPM is optimally predictive as well as theoretically sound. In the second step, researchers 

should then estimate and predict from the model using PLSPM mode A. In this application, 

covariance SEM will estimate population parameters, whereas the PLSPM estimation will result 

in sample parameters for prediction from a particular sample, with no claim of inference to the 

population. In contrast to causal modeling, when covariance estimation is used in this context, 

only model fit is important. Parameter significance and the validity and reliability of the 

measurement model are of secondary importance, only in support of any secondary explanatory 

research aims. For the subsequent PLSPM estimation, predictive validity assessment is important, 

but, again, parameter significance or measurement model validity and reliability considerations 

are not. 

The good performance of PLSPM compared to LM is contrary to the assertion by McDonald 

(1996) that linear multiple regression is the optimal prediction method. As noted earlier, two rival 

explanations exist. First, as Rigdon (2012) suggests, the use of correlation weights in the PLSPM 

mode A algorithm may offer better performance than regression weights (LM). On the other 

hand, PLSPM mode B also performs better than LM. Second, the structural model may provide 

additional information that is not available to the LM estimation. On the other hand, such 
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information is also available to ML estimation, which does not perform as well. Further research 

is needed to disentangle and identify the individual effects. 

The effect of indicator covariance on PLSPM mode A estimation is also unexpected. 

Increased collinearity (covariances) leads to increased standard errors of the estimated regression 

parameters as different combinations of regression weights of formative indicators produce the 

same composite. However, since any combination of weights is equivalent in determining the 

composite scores, this uncertainty should not affect the predictions derived from the estimated 

model, as observed for LM, ML, and PLSPM mode B estimation. While small sample sizes and a 

large number of indicators appear to be the condition in which PLSPM is most susceptible to 

capitalization on chance (Rönkkö & Evermann, 2013), capitalization on chance is not a 

satisfactory explanation, as capitalization on chance occurs primarily with a weak structural 

model (Rönkkö & Evermann, 2013), which is not the case here, and also occurs for PLSPM 

mode B estimation, whereas indicator covariance has no effect on predictive ability for PLSPM 

mode B.  

Overall Discussion 

The main contribution of this study is an evaluation of the predictive ability of competing 

methods for estimating structural equation models: PLSPM, PLSc, ML, and a-theoretical 

methods. This study contributes to the ongoing discussion of the relative merits of PLSPM and 

covariance based methods by showing that PLSPM has a place in the methodological toolbox of 

management researchers for predictive modeling. Specifically, PLSPM and its new variant PLSc 

outperform covariance based methods for prediction from structural equation models across 

many of the conditions examined in this simulation study, and should be the preferred choices 
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when the research aim is prediction. In contrast to a-theoretical prediction methods, PLSPM and 

PLSc allow the researcher to work with an explanatory, theory-based model, to aid in theory 

development, evaluation, and selection (Shmueli & Koppius, 2011).  

The present work should only be seen as an initial study, limited in several ways. First, this 

study does not evaluate prediction from correlations, as noted earlier. Second, the fact that all 

latent variables have equal numbers of indicators and all indicators have equal loadings 

significantly simplifies the experimental design but represents a limitation to be addressed in 

future studies. Third, as PLSPM and related methods are undergoing active development, further 

research is required to examine the predictive performance of such novel methods as NSC-PM 

(non-symmetrical component-based path modeling) developed by Dolce (2015), Dolce, Esposito 

Vinzi & Lauro (2015) and RGCCA (regularized general component correlation analysis) 

developed by Tenenhaus & Tenenhaus (2011). Fourth, further work is required to examine the 

range of options for generating factor scores in covariance-based SEM, for example extensions to 

Bartlett’s method (Yuan and Hayashi, 2010; Yung and Yuan, 2013), in order to determine the 

optimally predictive method. 

The indeterminacy of factor scores from ML estimation is sometimes cited as a reason for 

preferring PLSPM (Rigdon, 2012). While different methods for generating factor scores exist, 

and additionally, factors can be rotated, Dijkstra (2014) points out that the choice of different 

PLSPM inner and outer modes amounts to the same problem: “The use of a specific proxy cannot 

take away the inherent and real uncertainty” (pg. 149). The standard deviations in Table 6 show 

that, once a method for generating factor scores is chosen,  (this study uses regression scores), 

factor scores are as stable as the composite scores produced by PLSPM.  
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Echoing Hair et al. (2012a, 2012b), Ringle et al. (2012) and Sarstedt et al. (2014), the final 

recommendation to researchers who motivate their choice of PLSPM by appealing to the 

predictive aim of their study, is to act accordingly. Specifically, researchers should perform 

blindfolding or cross-validation and report Q2 or RMSE values (Sarstedt et al., 2014, Shmueli et 

al., in press). Reporting the endogenous R2, as is common current practice, is insufficient 

(Sharma et al., 2015; Shmueli et al., in press). Additionally, the theoretical motivation, parameter 

significance testing, and the assessment of validity and reliability of the measures should take a 

limited and sub-ordinate role to the presentation of appropriate blindfolding or cross-validation 

procedures and metrics. Researchers need to make an explicit case for how the prediction of 

specific cases is an appropriate and relevant goal for their study, as opposed to the identification 

or testing of causal mechanisms, and at the same time need to outline their reasons for using a 

theoretically-based structural equation model for prediction, rather than an entirely a-theoretic, 

and possibly more predictive, method. Given the current execution and reporting of many 

PLSPM based studies, with an emphasis on theoretical motivation, measurement validity and 

reliability testing, and parameter significance tests, the claims of predictive goals are difficult to 

accept for many published PLSPM studies. 
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Figure 1: Exogenous formative construct with manifest predictor variables 
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Figure 2: Model 1 
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Figure 3: Model 2 
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Figure 4: Model 3 
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X1 X2 X3  X1 X2 X3  X1 X2 X3  X1 X2 X3  X1 X2 X3 

 5 4  3  4  3 5   3 5 4  3 5 4 

4 3   4 3 3  4 3 3   3 3  4  3 

3 4 3   4 3  3  3  3 4   3 4 3 

2  4  2 7   2 7 4  2 7 4   7 4 

4 6 2  4 6 2   6 2  4  2  4 6  

 5 5  3  5  3 5   3 5 5  3 5 5 

1 4   1 4 3  1 4 3   4 3  1  3 

3 4 2   4 2  3  2  3 4   3 4 2 

2  4  2 6   2 6 4  2 6 4   6 4 

5 7 3  5 7 3   7 3  5  3  5 7  

Omission set 

for 𝑙 = 1 

 
Omission set 

for 𝑙 = 2 

 
Omission set 

for 𝑙 = 3 

 
Omission set 

for 𝑙 = 4 

 
Omission set 

for 𝑙 = 5 

 

Figure 5: Illustration of omission during blindfolding with 𝑁 = 10 cases, 𝑀 = 3 manifest 

variables, omission distance 𝑘 = 5 showing the five iterations 𝑙 = 1. .5 of omitting values. 
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Figure 6: 𝑄2 distribution plots for model 3, 𝑖 = 5 varying in loadings 𝑙 and sample size 𝑛. 
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Figure 7: Decision tree for choosing estimation and prediction method for reflective models 
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Figure 8: RMSE distribution plots for model 3, 𝑛 = 250, 𝑖 = 5 varying in structural error 

variance 𝑒 and formative indicator covariance 𝑐. 
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Figure 9: Decision tree for choosing estimation method for formative models 
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Table 1: Common Experimental Design Factors 

Sample size n 100, 250, 750 

Number of indicators per latent construct i 3, 5, 7 

Structural regression coefficients  0.75 

Error variance on reflective indicators and 

endogenous latent variables 
 0.1 

Sampling distribution  Normal 

Response type  Continuous 

Missing values  None 
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Table 2: Experimental Design Factors for Study 1 

Factor loadings (unstandardized) l Low (0.75), medium (1), high (1.25) 

Estimation methods  PLSPM, PLSc, ML, EM 

Prediction methods (for PLSPM, PLSc, ML)  Communality-based, Redundancy-based 

Outer modes (for PLSPM)  Mode A, Mode B 

Inner schemes (for PLSPM)  Centroid, Path, Factor 
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Table 3: Mean Q2 for model 1. Some EM imputations did not converge, indicated by ”—”. 

All values significantly different from next lowest in row (paired sample t-test, p=0.05), except 

where noted by * 

 

      PLSc PLSPM 

    ML Mode A Mode B Mode A Mode B 

n i l EM comm red comm Red comm Red comm red comm red 

100 3 0.75 0.779 0.736 0.734* 0.717 0.734 0.692 0.596 0.748 0.730 0.745 0.718* 

  1 0.862 0.787 0.784 0.774 0.792 0.746 0.607 0.803 0.790 0.801 0.775* 

  1.25 0.907 0.816 0.812 0.805 0.822 0.776 0.551 0.833 0.821 0.831 0.807 

 5 0.75 0.772* 0.797 0.769 0.807 0.757 0.717 0.514 0.817 0.754 0.812 0.733 

  1 0.860 0.850 0.815 0.864 0.810 0.764 0.422 0.873 0.809 0.868 0.787 

  1.25 0.909 0.878 0.839 0.894 0.837 0.788 0.404 0.903 0.836 0.897 0.813 

 7 0.75 — 0.826 0.786 0.835 0.770 0.606 0.321 0.839 0.768 0.830 0.738 

  1 — 0.880 0.832 0.891 0.822 0.613 0.236 0.895 0.821 0.885 0.787 

  1.25 — 0.908 0.854 0.920 0.847 0.611 0.231 0.923 0.846 0.913 0.813 

250 3 0.75 0.810 0.748* 0.745 0.719 0.738 0.710 0.695 0.748 0.732 0.748 0.727 

  1 0.882 0.800 0.796 0.777 0.795 0.766 0.730 0.804 0.792 0.804 0.787 

  1.25 0.921 0.828 0.823* 0.807 0.825 0.796 0.731 0.833 0.823 0.833 0.818 

 5 0.75 0.821 0.806 0.778* 0.808 0.758 0.778 0.702 0.817 0.755 0.816 0.747 

  1 0.891 0.860 0.826 0.866 0.812 0.832 0.732 0.874 0.810 0.873 0.801 

  1.25 0.928 0.888 0.849 0.895 0.839 0.860 0.663 0.903 0.838 0.902 0.829 

 7 0.75 — 0.833 0.793 0.835 0.771 0.757* 0.670 0.839 0.769 0.837 0.757 

  1 — 0.888 0.839 0.892 0.823 0.798 0.676 0.896 0.821 0.893 0.809 

  1.25 — 0.916 0.862 0.921 0.849 0.815 0.592 0.924 0.848 0.921 0.834 

750 3 0.75 0.820 0.752 0.749* 0.720 0.739 0.717 0.724 0.748 0.733 0.748 0.731 

  1 0.889 0.806 0.801 0.778 0.797 0.774 0.776 0.805 0.793 0.805 0.791 

  1.25 0.925 0.833 0.828 0.807 0.827 0.804 0.799 0.834 0.824 0.834 0.822 

 5 0.75 0.836 0.810 0.782 0.808 0.759 0.799 0.738 0.818 0.756 0.817 0.753 

  1 0.901 0.865 0.830 0.867 0.813 0.857 0.787 0.875 0.811 0.875 0.808 

  1.25 0.934 0.893 0.854 0.896 0.841 0.886 0.810 0.904 0.839 0.904 0.836 

 7 0.75 — 0.837 0.797 0.836 0.772 0.813 0.737 0.840 0.769 0.839 0.766 

  1 — 0.893 0.844 0.893 0.824 0.865 0.782 0.897 0.823 0.896 0.819 

  1.25 — 0.920 0.867 0.922 0.850 0.891 0.803 0.925 0.849 0.924 0.845 
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Table 4: Mean Q2 for model 2. Some EM imputations did not converge, indicated by ”—”. 

All values significantly different from next lowest in row (paired sample t-test, p=0.05), except 

where noted by * 

 

      PLSc PLSPM 

    ML Mode A Mode B Mode A Mode B 

n i l EM comm red comm red comm red comm red comm red 

100 3 0.75 0.632* 0.637* 0.617* 0.621 0.624 0.597 0.595 0.652 0.627 0.649 0.627 

  1 0.761 0.715 0.686 0.711 0.706 0.684 0.674 0.742 0.707 0.738 0.708 

  1.25 0.837 0.758 0.725 0.761 0.752 0.731 0.716 0.791 0.753 0.787 0.754 

 5 0.75 0.600 0.703 0.642 0.710 0.638* 0.636 0.572 0.722 0.639 0.717 0.641 

  1 0.748 0.787 0.708 0.800 0.712 0.704 0.630 0.811 0.712 0.805 0.715 

  1.25 0.830 0.834 0.745* 0.850 0.754 0.743 0.663 0.860 0.754 0.854 0.757 

 7 0.75 — 0.730 0.652 0.738 0.640 0.572 0.500 0.744 0.640 0.736 0.643 

  1 — 0.817 0.719 0.828 0.710 0.605 0.526 0.833 0.710 0.823 0.713 

  1.25 — 0.864 0.755 0.876 0.749 0.606 0.526 0.880 0.748 0.870 0.752 

250 3 0.75 0.687 0.650 0.628* 0.622 0.625 0.614 0.615* 0.652 0.628* 0.651 0.627 

  1 0.799 0.728 0.700 0.714 0.709 0.703 0.697 0.744 0.711* 0.742 0.711 

  1.25 0.860 0.769 0.735 0.762 0.751* 0.751 0.739 0.791 0.752 0.789 0.753 

 5 0.75 0.702 0.712 0.651 0.712 0.638 0.682 0.612 0.722 0.640 0.720 0.641 

  1 0.811 0.797 0.719 0.802 0.712 0.765 0.683 0.812* 0.713 0.810 0.714 

  1.25 0.872 0.843 0.754* 0.851 0.752 0.809 0.719 0.860 0.752 0.858 0.754 

 7 0.75 — 0.740 0.662 0.741 0.640 0.672 0.584 0.746 0.642 0.743 0.643 

  1 — 0.825 0.728 0.830 0.710 0.735 0.635 0.834 0.711 0.830 0.712 

  1.25 — 0.872 0.763 0.878 0.748 0.759 0.655 0.881 0.748 0.877 0.750 

750 3 0.75 0.707 0.657 0.635 0.625 0.627 0.622 0.624 0.654 0.630 0.654 0.630 

  1 0.810 0.733 0.704 0.715 0.708 0.711 0.705 0.743 0.710 0.743 0.710 

  1.25 0.868 0.774 0.740 0.763 0.751 0.759 0.748 0.791 0.753 0.790 0.753 

 5 0.75 0.729 0.718 0.657 0.713 0.640 0.704 0.631 0.724 0.642 0.723 0.642 

  1 0.828 0.801 0.723 0.803 0.712 0.791 0.703 0.813 0.713 0.812 0.714 

  1.25 0.883 0.848 0.759 0.852 0.752 0.838 0.742 0.861 0.753 0.860 0.753 

 7 0.75 — 0.743 0.665 0.741 0.639 0.718 0.620 0.746 0.641 0.745 0.642 

  1 — 0.829 0.733 0.831 0.710 0.798 0.686 0.834 0.711 0.833 0.712 

  1.25 — 0.877 0.769 0.879 0.748 0.839 0.719 0.882 0.749 0.881 0.750 
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Table 5: Mean Q2 for model 3. Some EM imputations did not converge, indicated by ”—”. 

All values significantly different from next lowest in row (paired sample t-test, p=0.05), except 

where noted by * 

 

      PLSc PLSPM 

    ML Mode A Mode B Mode A Mode B 

n i l EM comm red comm red comm red comm red comm red 

100 3 0.75 0.727 0.600 0.562 0.667 0.671 0.230 0.212 0.738 0.673 0.741 0.672 

  1 0.830 0.646 0.596 0.718* 0.717 0.168 0.135 0.794 0.708 0.802 0.712 

  1.25 0.884 0.671 0.613 0.744 0.740 0.130 0.096 0.822 0.724 0.835 0.731 

 5 0.75 — 0.802 0.749 0.807 0.541 0.708 0.409 0.817 0.587 0.812 0.585 

  1 — 0.854 0.790 0.865 0.568 0.738 0.327 0.874 0.607 0.868 0.608 

  1.25 — 0.882 0.809 0.893 0.586 0.741 0.245 0.902 0.620 0.895 0.623 

 7 0.75 — 0.826 0.758 0.834 0.514 0.656 0.269 0.839 0.543 0.833 0.537 

  1 — 0.880 0.799 0.890 0.538 0.649 0.179 0.894 0.559 0.887 0.556 

  1.25 — 0.909 0.821 0.920 0.558 0.629 0.158 0.923 0.575 0.915 0.574 

250 3 0.75 0.798 0.609 0.570 0.667 0.673 0.238 0.255 0.738 0.672 0.746 0.677 

  1 0.876 0.657 0.606 0.720 0.719 0.173 0.184 0.795 0.707 0.810 0.717 

  1.25 0.917 0.683 0.623 0.747 0.743 0.128 0.132 0.823 0.724 0.843 0.735 

 5 0.75 — 0.811 0.757 0.808 0.533 0.762 0.563 0.818 0.583 0.815 0.584 

  1 — 0.865 0.800 0.867 0.566* 0.803 0.563 0.875 0.607 0.872 0.611 

  1.25 — 0.892 0.820 0.896 0.580 0.814 0.481 0.904 0.617 0.899 0.622 

 7 0.75 — 0.835 0.768 0.836 0.509 0.761 0.514 0.840 0.541 0.838 0.540 

  1 — 0.890 0.810 0.893 0.538 0.791 0.490 0.896 0.562 0.893 0.563 

  1.25 — 0.917 0.830 0.921 0.553 0.793 0.385 0.924 0.573 0.921 0.574 

750 3 0.75 0.820 0.614 0.574 0.668 0.675 0.242 0.273 0.739 0.673 0.749 0.681 

  1 0.889 0.663 0.611 0.721* 0.721 0.175 0.200 0.795 0.707 0.813 0.719 

  1.25 0.925 0.689 0.628 0.747 0.743 0.129 0.150 0.824 0.723 0.846 0.737 

 5 0.75 — 0.816 0.761 0.809 0.531 0.784 0.566 0.818 0.583 0.816 0.586 

  1 — 0.869 0.804 0.867 0.563 0.829 0.608 0.875 0.606 0.873 0.611 

  1.25 — 0.896 0.825 0.896 0.578 0.846 0.627 0.904 0.616 0.901 0.622 

 7 0.75 — 0.840* 0.771 0.837 0.509 0.807 0.539 0.841 0.541 0.840 0.542 

  1 — 0.893 0.813 0.893 0.535 0.849 0.572 0.896 0.560 0.895 0.562 

  1.25 — 0.921 0.834 0.922 0.547 0.864 0.584 0.925 0.569 0.923 0.571 
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Table 6: Standard deviations of the Q2 metrics of the 500 samples for each experimental 

conditions, averaged over model and prediction method 

 

     PLSc PLSPM 

n i l EM ML Mode A Mode B Mode A Mode B 

100 3 0.75 0.03520 0.02820 0.02490 0.07226 0.02424 0.02597 

  1 0.02413 0.02389 0.01911 0.07513 0.01859 0.02069 

  1.25 0.01692 0.02168 0.01612 0.08580 0.01583 0.01760 

 5 0.75 0.03777 0.02597 0.02456 0.11873 0.02343 0.02448 

  1 0.02377 0.02280 0.02023 0.15187 0.01927 0.02027 

  1.25 0.01674 0.01947 0.01621 0.16472 0.01549 0.01675 

 7 0.75 — 0.02575 0.02427 0.14189 0.02353 0.02523 

  1 — 0.02167 0.01941 0.16580 0.01887 0.02065 

  1.25 — 0.01915 0.01647 0.17096 0.01605 0.01771 

250 3 0.75 0.01688 0.01536 0.01515 0.02160 0.01513 0.01541 

  1 0.01175 0.01375 0.01185 0.03230 0.01180 0.01227 

  1.25 0.00808 0.01212 0.00984 0.03620 0.00984 0.01031 

 5 0.75 0.01653 0.01477 0.01515 0.02522 0.01450 0.01473 

  1 0.01084 0.01220 0.01212 0.05728 0.01158 0.01178 

  1.25 0.00774 0.01073 0.01024 0.11178 0.00981 0.01001 

 7 0.75 — 0.01527 0.01525 0.03527 0.01479 0.01519 

  1 — 0.01195 0.01199 0.06739 0.01195 0.01199 

  1.25 — 0.01055 0.01021 0.11396 0.00994 0.01036 

750 3 0.75 0.00869 0.00840 0.00849 0.01011 0.00851 0.00857 

  1 0.00603 0.00688 0.00659 0.00925 0.00666 0.00669 

  1.25 0.00423 0.00588 0.00531 0.00887 0.00541 0.00542 

 5 0.75 0.00844 0.00828 0.00880 0.00956 0.00841 0.00846 

  1 0.00564 0.00658 0.00689 0.00876 0.00660 0.00663 

  1.25 0.00413 0.00570 0.00606 0.00995 0.00580 0.00585 

 7 0.75 — 0.00811 0.00853 0.01043 0.00826 0.00833 

  1 — 0.00656 0.00704 0.01091 0.00683 0.00686 

  1.25 — 0.00524 0.00560 0.01419 0.00545 0.00553 
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Table 7: Mean Q2 for model 1 with misspecification. All values significantly different from 

next lowest in row (paired sample t-test, p=0.05), except where noted by *  

 

   ML PLSc (mode A) PLSPM (mode A) 

n i l comm red comm red comm red 

100 3 0.75 0.734 0.733* 0.716 0.732 0.747 0.730 

  1 0.790 0.788 0.775 0.792 0.804 0.791* 

  1.25 0.815 0.812 0.804 0.821* 0.833 0.821 

 5 0.75 0.797 0.770 0.806 0.756 0.817 0.755 

  1 0.852 0.818 0.863 0.810 0.873 0.809 

  1.25 0.878 0.840 0.893 0.837 0.902 0.837 

 7 0.75 0.824 0.785 0.833 0.768 0.839 0.767 

  1 0.880 0.832 0.890 0.821 0.895 0.820 

  1.25 0.908 0.854 0.919 0.847 0.923 0.846 

250 3 0.75 0.746 0.743 0.718 0.736 0.748 0.731 

  1 0.801 0.797 0.777 0.795 0.805 0.792 

  1.25 0.828 0.824 0.807 0.825* 0.834 0.823 

 5 0.75 0.806 0.778 0.807 0.758 0.817 0.755 

  1 0.860 0.826 0.866 0.813 0.875 0.811 

  1.25 0.888 0.850 0.895 0.840 0.904 0.839 

 7 0.75 0.833 0.793 0.835 0.770 0.839 0.769 

  1 0.888 0.840 0.892 0.823 0.896 0.821 

  1.25 0.917 0.863 0.921 0.849 0.924 0.848 

750 3 0.75 0.752 0.749 0.720 0.738 0.748 0.733 

  1 0.805 0.801 0.777 0.797 0.805 0.793 

  1.25 0.833 0.828 0.807 0.827 0.834 0.824 

 5 0.75 0.810 0.782 0.808 0.759 0.818 0.756 

  1 0.865 0.830 0.866 0.813 0.875 0.811 

  1.25 0.893 0.854 0.896 0.840 0.904 0.839 

 7 0.75 0.837 0.797 0.836 0.771 0.839 0.769 

  1 0.892 0.844 0.893 0.824 0.896 0.822 

  1.25 0.920 0.867 0.922 0.850 0.925 0.849 
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Table 8: Mean Q2 for model 3 with misspecification. All values significantly different from 

next lowest in row (paired sample t-test, p=0.05), except where noted by *  

 

   ML PLSc (mode A) PLSPM (mode A) 

n i l comm red comm red comm red 

100 3 0.75 0.598 0.561 0.666* 0.665 0.737 0.671 

  1 0.647 0.598 0.720 0.712 0.794 0.708 

  1.25 0.670 0.611 0.745 0.734 0.821 0.722 

 5 0.75 0.801 0.748 0.806 0.539 0.816 0.586 

  1 0.855 0.790 0.864 0.570 0.873 0.608 

  1.25 0.881 0.809 0.893 0.585 0.902 0.619 

 7 0.75 0.826 0.759 0.833 0.513 0.838 0.542 

  1 0.880 0.800 0.890 0.542 0.894 0.563 

  1.25 0.908 0.821 0.919 0.557 0.923 0.574 

250 3 0.75 0.610 0.571 0.668 0.671 0.738 0.673 

  1 0.657 0.606 0.721 0.717 0.795 0.707 

  1.25 0.683 0.623 0.748 0.739 0.823 0.723 

 5 0.75 0.811 0.756 0.807 0.532 0.817 0.582 

  1 0.864 0.799 0.866 0.565 0.875 0.607 

  1.25 0.891 0.820 0.895 0.579 0.903 0.616 

 7 0.75 0.835 0.767 0.835 0.510 0.839 0.542 

  1 0.890 0.810 0.893 0.537 0.896 0.561 

  1.25 0.917 0.830 0.921 0.550 0.924 0.571 

750 3 0.75 0.614 0.574 0.668 0.673 0.738 0.672 

  1 0.662 0.610 0.721 0.719 0.795 0.707 

  1.25 0.689 0.628 0.748 0.742 0.824 0.723 

 5 0.75 0.815 0.761 0.809 0.532 0.818 0.583 

  1 0.869 0.803 0.867 0.562 0.875 0.605 

  1.25 0.896 0.824 0.896 0.577 0.904 0.616 

 7 0.75 0.839 0.771 0.836 0.507 0.840 0.541 

  1 0.893* 0.813 0.893 0.535 0.896 0.560 

  1.25 0.921 0.834 0.922 0.547 0.925 0.569 
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Table 9: Mean Q2 for model 3 with misspecification where the estimated model omits correct 

paths and adds wrong paths. All values significantly different from next lowest in row (paired 

sample t-test, p=0.05), except where noted by *  

 

   ML PLSc (mode A) PLSPM (mode A) 

n i l comm red comm red comm red 

100 3 0.75 0.593 0.456 0.659 0.565 0.737 0.584 

  1 0.643 0.479 0.712 0.608 0.794 0.626 

  1.25 0.671 0.500 0.740 0.629 0.822 0.646 

 5 0.75 0.796 0.570* 0.802 0.546 0.815 0.565 

  1 0.852 0.630 0.862 0.587 0.874 0.602 

  1.25 0.878 0.635 0.891 0.604 0.902 0.618 

 7 0.75 0.826 0.564 0.832 0.540 0.839 0.552 

  1 0.879 0.632 0.888 0.576 0.895 0.585 

  1.25 0.908 0.649 0.918 0.596 0.923 0.604 

250 3 0.75 0.602 0.467 0.665 0.571 0.738 0.584 

  1 0.655 0.485 0.718 0.615 0.795 0.627 

  1.25 0.681 0.504 0.744 0.635 0.823 0.647 

 5 0.75 0.807* 0.600 0.807 0.552 0.818 0.569 

  1 0.862 0.645 0.865 0.591 0.875 0.605 

  1.25 0.889 0.647 0.894 0.609 0.903 0.622 

 7 0.75 0.833 0.589 0.834 0.541 0.839 0.553 

  1 0.888 0.643 0.891 0.578 0.895 0.587 

  1.25 0.917 0.651 0.920 0.597 0.924 0.605 

750 3 0.75 0.609 0.478 0.668 0.576 0.739 0.586 

  1 0.659 0.490 0.720 0.618 0.795 0.627 

  1.25 0.687 0.501 0.746 0.637 0.824 0.647 

 5 0.75 0.811 0.616 0.808 0.553 0.818 0.569 

  1 0.866 0.652 0.867 0.593 0.876 0.607 

  1.25 0.894 0.651 0.896 0.613 0.904 0.625 

 7 0.75 0.837 0.610 0.836 0.543 0.840 0.554 

  1 0.892 0.649 0.893 0.580 0.896 0.588 

  1.25 0.920 0.659 0.922 0.599 0.925 0.606 
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Table 10: Percentage difference in 𝑄2 for underspecified model. 

 

   ML PLSc (mode A) PLSPM (mode A) 

n i l comm red comm red comm red 

100 3 0.75 -0.5454 -6.9181 -0.4359 -1.1827 -0.0405 -2.4995 

  1 -0.3002 -7.2048 -0.4352 -0.9588 -0.0395 -2.3495 

  1.25 -0.1925 -7.3944 -0.4380 -0.7166 -0.0401 -2.1405 

 5 0.75 -0.7035 -7.6449 -0.0329 -6.9010 -0.0018 -5.8420 

  1 -0.6143 -7.7749 -0.0263 -6.4748 -0.0019 -5.7185 

  1.25 -0.5862 -7.8718 -0.0220 -6.2336 -0.0017 -5.6155 

 7 0.75 -0.3592 -7.9519 -0.0152 -7.8174 -0.0008 -7.1727 

  1 -0.2850 -8.0104 -0.0122 -7.3030 -0.0006 -6.9295 

  1.25 -0.2518 -8.0382 -0.0087 -7.0410 -0.0007 -6.7832 

250 3 0.75 -0.5495 -6.8629 -0.4187 -1.0591 -0.0345 -2.4452 

  1 -0.2913 -7.1525 -0.4135 -0.7972 -0.0333 -2.2601 

  1.25 -0.1838 -7.3875 -0.4055 -0.6698 -0.0333 -2.1842 

 5 0.75 -0.7365 -7.5547 -0.0159 -7.0516 -0.0013 -5.8847 

  1 -0.6607 -7.7071 -0.0144 -6.6668 -0.0010 -5.8018 

  1.25 -0.6306 -7.7990 -0.0131 -6.4707 -0.0010 -5.7504 

 7 0.75 -0.3753 -7.8821 -0.0065 -8.0895 -0.0003 -7.3131 

  1 -0.3075 -7.9629 -0.0038 -7.5028 -0.0004 -7.0072 

  1.25 -0.2746 -7.9322 -0.0040 -7.2074 -0.0003 -6.8320 

750 3 0.75 -0.5554 -6.9911 -0.4108 -1.1713 -0.0312 -2.5996 

  1 -0.2955 -7.2210 -0.4085 -0.8676 -0.0303 -2.3692 

  1.25 -0.1818 -7.4301 -0.4098 -0.7554 -0.0289 -2.2932 

 5 0.75 -0.7545 -7.5173 -0.0103 -7.1387 -0.0008 -5.9150 

  1 -0.6804 -7.6349 -0.0099 -6.6597 -0.0007 -5.7557 

  1.25 -0.6482 -7.7067 -0.0094 -6.4739 -0.0007 -5.7092 

 7 0.75 -0.3856 -7.7792 -0.0029 -8.0728 -0.0001 -7.2451 

  1 -0.3159 -7.9146 -0.0024 -7.6029 -0.0001 -7.0503 

  1.25 -0.2855 -7.9488 -0.0021 -7.3403 -0.0001 -6.9123 
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Table 11: Experimental Design Factors for Study 2 

Factor loadings (unstandardized) l 1 

Indicator covariance c 0, 0.1, 0.4 

Error variance on formative constructs e 0, 0.1, 0.4 

Estimation method  PLSPM, ML, LM 

Outer modes (for PLSPM)  Mode A, Mode B, Mixed 

Inner schemes (for PLSPM)  Centroid, Path, Factor 

 

 



Table 12: Mean RMSE for model 1 with 10-fold cross-validation. Non-significance (paired-sample t-test, p<0.05) to next lowest value 

with equal 𝑛, 𝑖, 𝑒, 𝑐 indicated by * 

   

PLSPM-A PLSPM-B LM ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 0.419 0.406 0.396 0.419 0.416 0.417 0.421 0.419 0.419 0.473 0.469 0.475 

  

0.1 0.508 0.500 0.489 0.509 0.510 0.508 0.519 0.519 0.518 0.564 0.565 0.564 

  

0.4 0.714 0.708 0.700 0.715 0.716 0.717 0.738 0.740 0.740 0.801 0.806 0.801 

 

5 0 0.442 0.414 0.396 0.441 0.441 0.440 0.436 0.436 0.436 0.478 0.474 0.477 

  

0.1 0.530 0.506 0.49 0.531 0.531 0.530 0.540 0.541 0.541 0.569 0.572 0.571 

  

0.4 0.733 0.710 0.700 0.738 0.732 0.736 0.772 0.768 0.771 0.823 0.814 0.817 

 

7 0 0.466 0.417 0.396 *0.466 0.464 0.465 0.456 0.456 0.456 0.479 0.480 0.479 

  

0.1 0.550 0.508 0.489 0.553 0.551 0.550 0.566 0.564 0.564 0.578 0.584 *0.609 

  

0.4 0.747 0.720 0.701 0.756 0.761 0.757 0.806 0.810 0.806 0.831 0.838 0.870 

250 3 0 0.404 0.400 0.396 0.404 0.403 0.404 0.404 0.404 0.405 0.426 0.425 0.426 

  

0.1 *0.498 0.493 0.491 0.498 0.497 0.498 0.501 0.501 0.502 0.525 0.524 0.525 

  

0.4 0.708 0.706 0.702 0.708 0.709 0.708 0.717 0.718 0.717 0.772 0.773 0.771 

 

5 0 0.415 0.403 0.396 0.414 0.413 0.413 0.411 0.411 0.411 0.428 0.428 0.427 

  

0.1 0.506 0.496 0.491 0.506 0.506 0.506 0.509 0.509 0.509 0.528 0.527 0.528 

  

0.4 0.716 0.706 0.701 0.717 0.714 0.714 0.729 0.727 0.727 0.778 0.775 0.776 

 

7 0 0.423 0.404 0.396 0.422 0.421 0.422 0.417 0.417 0.417 0.428 0.429 0.429 

  

0.1 0.515 0.497 0.492 0.515 0.513 0.515 0.517 0.516 0.518 0.530 0.503 0.531 

  

0.4 0.723 0.707 0.701 0.724 0.721 0.722 0.740 0.737 0.738 0.784 0.780 0.781 

750 3 0 0.399 0.397 0.396 0.399 0.399 0.399 *0.399 0.399 0.399 0.411 0.411 0.411 

  

0.1 0.493 0.492 0.491 0.493 0.493 0.493 0.494 0.494 0.494 0.513 0.513 0.513 

  

0.4 0.705 0.704 0.702 *0.705 0.705 0.704 0.708 0.708 0.707 0.764 0.764 0.763 

 

5 0 0.402 0.398 0.396 0.401 0.401 0.401 0.401 0.401 0.401 0.412 0.411 0.412 

  

0.1 0.496 0.493 0.491 0.496 0.496 0.496 0.497 0.497 0.497 0.514 0.514 0.514 

  

0.4 0.707 0.705 0.702 0.707 0.708 0.707 0.711 0.711 0.710 0.765 0.766 0.765 

 

7 0 0.405 0.398 0.396 0.404 0.404 0.404 0.403 0.402 0.403 0.412 0.412 0.412 

  

0.1 0.499 0.493 0.491 0.499 0.499 0.498 0.500 0.499 0.499 0.515 0.515 0.515 

  

0.4 *0.710 0.705 0.702 0.710 0.709 0.709 0.715 0.714 0.714 0.768 0.767 0.766 



Table 13: Mean RMSE for model 2 with 10-fold cross-validation. Non-significance (paired-sample t-test, p<0.05) to next lowest 

value with equal 𝑛, 𝑖, 𝑒, 𝑐 indicated by *  

   
PLSPM-A PLSPM-B LM ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 0.461 0.458 0.458 0.460 0.459 0.459 0.472 0.472 0.472 0.530 0.531 0.529 

  
0.1 0.539 0.538 0.534 0.539 0.539 0.537 0.552 0.552 0.551 0.620 *0.672 0.607 

  
0.4 0.723 0.720 0.718 0.724 0.723 0.723 0.738 0.737 0.738 0.821 0.818 0.816 

 
5 0 0.463 0.461 0.459 0.461 0.461 0.461 0.478 0.478 0.479 0.528 0.531 0.527 

  
0.1 0.542 0.538 0.535 0.540 0.541 0.540 0.558 0.559 0.558 0.609 0.617 0.608 

  
0.4 0.730 0.722 0.719 0.731 0.729 0.730 0.748 0.747 0.747 0.828 0.822 0.825 

 
7 0 0.469 0.461 0.458 0.463 0.462 0.461 0.485 0.484 0.484 0.548 0.527 0.529 

  
0.1 0.548 0.538 0.535 0.544 0.543 0.543 0.565 0.564 0.565 0.61 0.634 0.609 

  
0.4 0.735 0.722 0.716 *0.735 0.735 0.733 0.755 0.755 0.753 0.832 0.832 0.825 

250 3 0 0.461 0.461 0.461 0.461 0.461 0.461 0.466 0.466 0.466 0.491 0.491 0.491 

  
0.1 0.539 0.539 0.539 0.539 0.540 0.540 0.544 0.545 0.545 0.576 0.576 0.576 

  
0.4 0.725 0.724 0.724 *0.725 0.725 0.726 0.731 0.731 0.731 0.796 0.796 0.797 

 
5 0 0.463 0.462 0.461 0.462 0.462 0.461 0.468 0.469 0.468 0.491 0.491 0.492 

  
0.1 0.542 0.539 0.538 0.541 0.540 0.540 0.548 0.547 0.547 0.576 0.576 0.576 

  
0.4 0.729 0.726 0.723 *0.729 0.729 0.727 0.735 0.736 0.734 0.800 0.802 0.800 

 
7 0 0.464 0.462 0.461 0.462 0.462 0.462 0.471 0.471 0.471 0.492 0.492 0.493 

  
0.1 0.543 0.540 0.538 0.542 0.541 0.541 0.550 0.550 0.549 0.578 0.577 0.577 

  
0.4 0.730 0.726 0.724 0.730 0.730 0.730 0.738 0.738 0.738 0.803 0.804 0.804 

750 3 0 0.462 0.462 0.462 0.462 0.462 0.462 0.464 0.464 0.464 0.481 0.481 0.481 

  
0.1 0.540 0.540 0.540 0.540 0.540 0.540 0.542 0.542 0.542 0.567 0.567 0.567 

  
0.4 0.726 0.727 0.725 *0.726 0.727 0.726 0.728 0.729 0.728 0.793 0.794 0.793 

 
5 0 0.462 0.462 0.462 0.462 0.462 0.462 0.464 0.464 0.464 0.481 0.481 0.481 

  
0.1 0.541 0.540 0.540 0.541 0.541 0.540 0.543 0.543 0.543 0.568 0.568 0.567 

  
0.4 0.728 0.726 0.725 0.728 0.726 0.726 0.730 0.729 0.728 0.794 0.793 0.793 

 
7 0 0.463 0.462 0.462 0.462 0.462 0.462 0.465 0.465 0.465 0.481 0.481 0.481 

  
0.1 0.542 0.540 0.540 0.541 0.541 0.541 0.544 0.543 0.544 0.568 0.568 0.568 

  
0.4 0.728 0.727 0.726 0.728 0.728 0.728 0.731 0.731 0.731 0.795 0.795 0.795 



Table 14: Mean RMSE for model 3 with 10-fold cross-validation. Non-significance (paired-sample t-test, p<0.05) to next lowest 

value with equal 𝑛, 𝑖, 𝑒, 𝑐 indicated by * 

   
PLSPM-A PLSPM-B LM ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 0.473 0.464 0.455 0.472 0.472 0.472 0.483 0.483 0.482 0.543 0.533 0.532 

  
0.1 0.549 0.542 0.534 0.549 0.549 0.549 0.565 0.566 0.566 0.606 0.617 0.610 

  
0.4 0.735 0.728 0.721 0.735 0.735 0.736 0.764 0.763 0.764 0.829 0.845 0.834 

 
5 0 0.491 0.469 0.455 0.489 0.489 0.490 0.502 0.502 0.501 0.533 0.532 0.530 

  
0.1 0.569 0.547 0.535 0.568 0.566 0.567 0.592 0.589 0.590 0.621 0.614 0.622 

  
0.4 0.751 0.734 0.721 0.752 0.753 0.750 0.796 0.797 0.794 0.846 0.842 0.844 

 
7 0 0.512 0.473 0.454 0.507 0.508 0.507 0.525 0.525 0.524 0.535 0.538 0.539 

  
0.1 0.588 0.549 0.533 0.585 0.582 0.582 0.616 0.615 0.616 0.62 0.618 0.626 

  
0.4 0.761 0.733 0.719 0.763 0.764 0.764 0.828 0.828 0.827 0.868 0.852 0.888 

250 3 0 0.462 0.459 0.455 0.462 0.462 0.462 0.465 0.465 0.465 0.486 0.487 0.487 

  
0.1 0.542 0.537 0.535 0.542 0.54 0.541 0.548 0.546 0.547 0.574 0.572 0.573 

  
0.4 0.729 0.725 0.722 *0.729 0.728 0.728 0.739 0.739 0.738 0.80 0.799 0.798 

 
5 0 0.470 0.460 0.455 0.469 0.468 0.468 0.472 0.472 0.472 0.488 0.488 0.488 

  
0.1 0.550 0.540 0.535 0.549 0.547 0.547 0.556 0.555 0.555 0.577 0.576 0.576 

  
0.4 0.735 0.726 0.724 *0.735 0.733 0.736 0.750 0.748 0.751 0.805 0.803 0.806 

 
7 0 0.478 0.461 0.455 0.476 0.475 0.475 0.479 0.479 0.479 0.489 0.489 0.488 

  
0.1 0.554 0.541 0.535 0.553 0.554 0.554 0.562 0.563 0.563 0.577 0.577 0.578 

  
0.4 0.74 0.727 0.722 0.740 0.740 0.740 0.760 0.760 0.760 0.810 0.809 0.809 

750 3 0 0.458 0.457 0.455 0.457 0.458 0.458 0.458 0.458 0.458 0.474 0.475 0.475 

  
0.1 0.538 0.536 0.535 0.538 0.537 0.537 0.539 0.539 0.539 0.563 0.562 0.563 

  
0.4 0.725 0.725 0.723 0.725 0.726 0.725 0.729 0.729 0.729 0.791 0.791 0.791 

 
5 0 0.460 0.457 0.455 0.459 0.459 0.460 0.461 0.460 0.461 0.475 0.475 0.475 

  
0.1 0.539 0.537 0.535 0.539 0.539 0.539 0.541 0.541 0.542 0.563 0.564 0.564 

  
0.4 0.728 0.726 0.723 0.728 0.728 0.727 0.732 0.733 0.732 0.793 0.794 0.793 

 
7 0 0.462 0.457 0.455 0.462 0.461 0.462 0.463 0.462 0.463 0.475 0.475 0.475 

  
0.1 0.542 0.537 0.535 0.541 0.541 0.541 0.544 0.544 0.544 0.564 0.564 0.564 

  
0.4 0.730 0.726 0.724 0.730 0.730 0.730 0.736 0.736 0.736 0.795 0.795 0.795 



Table 15: Mean standard deviations of RMSE across all models. 

 

  

PLSPM-A PLSPM-B LM ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 0.013 0.011 0.01 0.013 0.013 0.013 0.012 0.011 0.011 0.188 0.088 0.068 

  

0.1 0.02 0.019 0.018 0.02 0.02 0.019 0.02 0.02 0.019 0.137 0.529 0.066 

  

0.4 0.033 0.031 0.031 0.033 0.032 0.032 0.034 0.033 0.033 0.074 0.158 0.059 

 

5 0 0.015 0.011 0.009 0.015 0.015 0.015 0.011 0.011 0.011 0.067 0.051 0.04 

  

0.1 0.021 0.019 0.017 0.022 0.022 0.022 0.021 0.021 0.02 0.054 0.068 0.08 

  

0.4 0.033 0.032 0.031 0.034 0.034 0.034 0.036 0.036 0.036 0.085 0.058 0.06 

 

7 0 0.016 0.011 0.009 0.016 0.017 0.017 0.012 0.012 0.011 0.183 0.067 0.062 

  

0.1 0.023 0.019 0.018 0.024 0.023 0.024 0.022 0.022 0.022 0.042 0.243 0.294 

  

0.4 0.034 0.031 0.029 0.035 0.035 0.035 0.038 0.038 0.038 0.139 0.062 0.463 

250 3 0 0.007 0.007 0.006 0.007 0.007 0.007 0.006 0.006 0.006 0.01 0.011 0.011 

  

0.1 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.014 0.014 0.014 

  

0.4 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.02 0.019 0.026 0.025 0.026 

 

5 0 0.007 0.006 0.005 0.007 0.007 0.007 0.006 0.006 0.006 0.01 0.01 0.01 

  

0.1 0.012 0.011 0.011 0.012 0.012 0.012 0.012 0.011 0.012 0.015 0.015 0.015 

  

0.4 0.019 0.019 0.018 0.019 0.019 0.019 0.02 0.02 0.019 0.025 0.026 0.026 

 

7 0 0.007 0.006 0.005 0.007 0.007 0.008 0.006 0.006 0.006 0.01 0.01 0.01 

  

0.1 0.012 0.011 0.01 0.012 0.012 0.012 0.012 0.011 0.011 0.014 0.014 0.014 

  

0.4 0.019 0.019 0.018 0.019 0.02 0.019 0.02 0.02 0.019 0.026 0.026 0.025 

750 3 0 0.004 0.003 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.005 0.005 0.005 

  

0.1 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.008 0.007 0.008 

  

0.4 0.011 0.01 0.01 0.011 0.01 0.01 0.011 0.01 0.01 0.014 0.014 0.014 

 

5 0 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 

  

0.1 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 

  

0.4 0.011 0.011 0.01 0.011 0.011 0.01 0.011 0.011 0.01 0.014 0.014 0.014 

 

7 0 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 

  

0.1 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 

  

0.4 0.011 0.01 0.01 0.011 0.01 0.01 0.011 0.01 0.01 0.014 0.013 0.014 



Table 16: RMSE for the misspecified model 1 with 10-fold cross-validation. All values with 

equal 𝑛, 𝑖, 𝑒, 𝑐 are significantly different (paired-sample t-test, p<0.05). 

   

PLSPM-A ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 0.429 0.415 0.400 0.469 0.475 0.475 

  

0.1 0.521 0.506 0.494 0.570 0.564 0.568 

  

0.4 0.727 0.716 0.702 0.815 0.826 0.804 

 

5 0 0.462 0.428 0.399 0.474 0.480 0.475 

  

0.1 0.547 0.516 0.493 0.578 0.581 0.574 

  

0.4 0.747 0.720 0.701 0.844 0.820 0.820 

 

7 0 0.494 0.431 0.399 0.479 0.480 0.493 

  

0.1 0.574 0.521 0.494 0.582 0.601 0.580 

  

0.4 0.757 0.727 0.706 0.827 0.891 0.842 

250 3 0 0.412 0.405 0.397 0.427 0.427 0.426 

  

0.1 0.504 0.498 0.492 0.526 0.526 0.526 

  

0.4 0.713 0.710 0.703 0.774 0.775 0.773 

 

5 0 0.426 0.410 0.397 0.428 0.428 0.427 

  

0.1 0.517 0.502 0.493 0.528 0.528 0.530 

  

0.4 0.722 0.711 0.703 0.777 0.778 0.778 

 

7 0 0.441 0.412 0.397 0.430 0.429 0.429 

  

0.1 0.529 0.504 0.493 0.530 0.530 0.532 

  

0.4 0.734 0.714 0.702 0.785 0.785 0.782 

750 3 0 0.402 0.399 0.397 0.411 0.411 0.412 

  

0.1 0.496 0.494 0.491 0.513 0.513 0.513 

  

0.4 0.706 0.705 0.703 0.763 0.764 0.764 

 

5 0 0.408 0.401 0.396 0.412 0.411 0.411 

  

0.1 0.501 0.495 0.491 0.515 0.514 0.514 

  

0.4 0.711 0.706 0.703 0.766 0.766 0.766 

 

7 0 0.413 0.401 0.397 0.412 0.412 0.413 

  

0.1 0.505 0.495 0.492 0.515 0.515 0.516 

  

0.4 0.714 0.707 0.703 0.768 0.768 0.767 
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Table 17: RMSE for the misspecified model 3 with 10-fold cross-validation. Non-

significance (paired-sample t-test, p<0.05) to next lowest value with equal 𝑛, 𝑖, 𝑒, 𝑐 indicated by * 

 

   
PLSPM-A ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 0.488 0.475 0.458 0.527 0.556 0.531 

  
0.1 0.564 0.549 0.537 0.612 0.612 0.609 

  
0.4 0.746 0.737 0.722 0.839 0.831 0.828 

 
5 0 0.519 0.485 0.458 0.533 0.537 0.538 

  
0.1 0.591 0.559 0.536 0.619 0.621 0.621 

  
0.4 0.764 0.741 0.724 0.849 0.844 0.849 

 
7 0 0.545 0.489 0.458 *0.626 0.543 0.541 

  
0.1 0.615 0.566 0.535 0.622 0.628 0.632 

  
0.4 0.783 0.745 0.722 0.862 0.860 0.863 

250 3 0 0.470 0.463 0.457 0.487 0.487 0.487 

  
0.1 0.550 0.543 0.537 0.575 0.574 0.575 

  
0.4 0.732 0.730 0.724 0.799 0.801 0.800 

 
5 0 0.485 0.468 0.456 0.488 0.488 0.487 

  
0.1 0.563 0.547 0.536 0.577 0.576 0.577 

  
0.4 0.744 0.733 0.724 0.805 0.806 0.806 

 
7 0 0.499 0.471 0.455 0.490 0.490 0.489 

  
0.1 0.575 0.549 0.536 0.578 0.578 0.578 

  
0.4 0.754 0.734 0.723 0.812 0.811 0.810 

750 3 0 0.462 0.458 0.456 0.475 0.474 0.475 

  
0.1 0.540 0.538 0.536 0.563 0.562 0.563 

  
0.4 0.728 0.726 0.725 0.792 0.791 0.792 

 
5 0 0.467 0.460 0.455 0.475 0.475 0.475 

  
0.1 0.546 0.539 0.535 0.564 0.564 0.563 

  
0.4 0.732 0.727 0.724 0.793 0.794 0.794 

 
7 0 0.472 0.461 0.455 0.475 0.475 0.475 

  
0.1 0.550 0.540 0.535 0.564 0.565 0.564 

  
0.4 0.735 0.727 0.724 0.795 0.794 0.795 
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Table 18: RMSE for the misspecified model 3 (wrong model) with 10-fold cross-validation. 

All values with equal 𝑛, 𝑖, 𝑒, 𝑐 are significantly different (paired-sample t-test, p<0.05). 

   
PLPM-A ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 0.659 0.654 0.647 0.782 0.818 0.773 

  
0.1 0.699 0.696 0.693 0.832 0.834 0.829 

  
0.4 0.814 0.808 0.804 0.969 0.964 0.968 

 
5 0 0.669 0.657 0.649 0.79 0.779 0.779 

  
0.1 0.710 0.699 0.693 0.829 0.826 0.844 

  
0.4 0.825 0.811 0.804 0.985 0.976 0.978 

 
7 0 0.681 0.659 0.650 0.785 0.782 0.785 

  
0.1 0.720 0.701 0.692 0.832 0.835 0.840 

  
0.4 0.830 0.814 0.806 0.987 0.991 0.994 

250 3 0 0.654 0.653 0.652 0.753 0.754 0.754 

  
0.1 0.696 0.695 0.694 0.800 0.799 0.802 

  
0.4 0.812 0.810 0.809 0.946 0.948 0.949 

 
5 0 0.658 0.654 0.651 0.753 0.754 0.754 

  
0.1 0.702 0.697 0.694 0.804 0.803 0.804 

  
0.4 0.815 0.812 0.807 0.949 0.952 0.949 

 
7 0 0.662 0.656 0.653 0.755 0.757 0.758 

  
0.1 0.706 0.698 0.693 0.805 0.806 0.804 

  
0.4 0.820 0.812 0.806 0.956 0.955 0.952 

750 3 0 0.654 0.653 0.653 0.750 0.749 0.749 

  
0.1 0.696 0.696 0.695 0.797 0.798 0.797 

  
0.4 0.811 0.810 0.809 0.943 0.942 0.942 

 
5 0 0.655 0.653 0.653 0.750 0.749 0.751 

  
0.1 0.698 0.696 0.695 0.798 0.799 0.798 

  
0.4 0.812 0.810 0.810 0.944 0.943 0.944 

 
7 0 0.656 0.653 0.653 0.749 0.750 0.751 

  
0.1 0.699 0.696 0.695 0.800 0.799 0.799 

  
0.4 0.813 0.810 0.810 0.944 0.945 0.945 
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Table 19: Percentage difference in RMSE for underspecified model. 

   

PLSPM-A ML 

n i e c=0 c=0.1 c=0.4 c=0 c=0.1 c=0.4 

100 3 0 25.0 24.7 24.6 16.0 15.1 14.1 

  

0.1 14.4 14.0 13.5 10.3 11.0 10.6 

  

0.4 4.2 4.0 3.8 4.0 3.8 4.4 

 

5 0 24.8 24.8 24.5 16.3 16.4 17.2 

  

0.1 14.7 14.0 13.5 10.5 8.9 9.5 

  

0.4 4.5 4.0 3.7 4.3.0 3.9 5.4 

 

7 0 24.6 24.7 24.4 16.6 16.8 16.6 

  

0.1 14.9 14.1 13.3 13.5 10.8 10.3 

  

0.4 4.7 4.1 3.6 3.6 4.0 4.4 

250 3 0 24.8 24.7 24.5 20.4 20.4 20.3 

  

0.1 13.8 13.8 13.5 12.2 12.3 12.2 

  

0.4 3.9 3.8 3.7 3.9 3.9 3.9 

 

5 0 25.0 24.7 24.6 21.3 21.3 21.3 

  

0.1 14.0 13.5 13.3 12.6 12.5 12.5 

  

0.4 4.0 3.8 3.6 4.0 4.0 4.0 

 

7 0 24.6 24.7 24.6 21.6 21.6 21.6 

  

0.1 14.1 13.5 13.3 12.7 12.8 12.8 

  

0.4 4.1 3.7 3.6 4.1 4.1 4.1 

750 3 0 24.8 24.7 24.6 22.4 22.4 22.3 

  

0.1 13.5 13.5 13.4 12.8 12.8 12.8 

  

0.4 3.8 3.7 3.7 3.9 3.9 3.9 

 

5 0 24.8 24.6 24.6 23.3 23.2 23.2 

  

0.1 13.5 13.4 13.3 13.2 13.1 13.2 

  

0.4 3.7 3.6 3.6 3.9 3.9 4.0 

 

7 0 24.7 24.7 24.5 23.6 23.6 23.5 

  

0.1 13.6 13.3 13.2 13.4 13.3 13.3 

  

0.4 3.7 3.6 3.5 3.9 3.9 3.9 

  

 


