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Structural equation models (SEM) are frequently used in Information Systems (IS) to analyze and test theoretical 
propositions. As IS researchers frequently reuse measurement instruments and adapt or extend theories, it is not 
uncommon for a researcher to re-estimate regression relationships in their SEM that have been  examined in 
previous studies. We advocate the use of Bayesian estimation of structural equation models as an aid to cumulative 
theory building; Bayesian statistics offer a statistically sound way to incorporate prior knowledge into SEM 
estimation, allowing researchers to keep a “running tally” of the best estimates of model parameters. 

This tutorial on the application of Bayesian principles to SEM estimation discusses when and why the use of 
Bayesian estimation should be considered by IS researchers, presents an illustrative example using best practices 
and makes recommendations to guide IS researchers in the application of Bayesian SEM. 
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I. INTRODUCTION 

Theories are statements of causal relationships between constructs [Whetten, 1989; Gregor, 2006]. Constructs are 
imbued with meaning in part by their relationship with other constructs and their relationship with observations. In 
other words, besides the relationships specified in the “structural” model  between one construct and another, the 
relationships in the “measurement” model (those between constructs and observations) are also theoretically 
interesting and important constituents of the theory. 

Constructs are typically represented in statistical models as latent variables (SEM), composites (PLS), components 
(PCA) or common factors (EFA). These  constructs are related to each other and to observed variables, which 
represent a construct's measures or indicators, by linear or non-linear relationships. The relationships are 
parameterized and the parameter values can be estimated using a range of statistical techniques. 

IS researchers are encouraged to adapt and extend existing theories and measurement instruments in order to build 
cumulative knowledge. This advice frequently leads to situations where the same parameter value is estimated 
repeatedly. For example, there are a host of studies that build on or adapt some aspect of the Technology 
Acceptance Model (TAM), one of the most widely cited theories in IS. Between 2004 and 2011 (inclusive), we have 
identified 43 empirical studies in the top IS journals (MISQ, JMIS, ISR, JAIS, and ISJ) that reuse some of the TAM 
constructs and TAM indicators developed by Davis [1989] and Davis et al. [1989]. Given the extensive history of 
parameter estimation and consequently our knowledge of previously estimated values, researchers face the 
question of what to do with this prior knowledge. More importantly, as we show later in the paper (Table 6, Figure 1), 
the parameter estimates reported by these studies differ widely and the differences are statistically significant. 

One option is to ignore previously estimated parameter values and only focus on the statistical significance of the 
parameters in the current study. This is the de-facto standard in IS research, but can lead to a situation where new 
estimates differ significantly, from previous estimates. Another alternative for the measurement model, but not for 
the structural model, is to simply omit the observed variable if it is particularly “badly behaved”. However, we agree 
with Evermann and Tate [2011] who argue  that all data deserve an explanation and researchers should not omit 
data merely because it does not fit with pre-existing expectations. Ultimately, ignoring differences in parameter 
estimates can lead to measurement instability, if it occurs in the measurement model, or to divergent theoretical 
conclusions, if it occurs in the structural model. In other words, rather than building cumulative knowledge, we 
accumulate different parameter estimates without being able to reconcile them in a sound and systematic way. 

In this tutorial we present a way to include our prior knowledge into the parameter estimation process, so that new 
estimates are based not only on the new data, but also on our existing knowledge about the likely values of the 
parameters. Bayesian statistical methods provide researchers with a statistically sound way of doing this. One can 
think of this as new studies updating our best estimates of the parameter values, in effect allowing us to keep a 
“running tally” of our model parameter estimates.  

Structural equation models with latent variables are usually estimated in the IS literature either by means of 
covariance-based techniques (using software like LISREL, EQS, AMOS, Mplus, etc.) or by using partial-least 
squares approaches (with software like PLS-Graph, SmartPLS, WarpPLS, etc.), which are based on a frequentist 
concept of probability. Bayesian estimation provides a third alternative to these methods with some pragmatic 
advantages for researchers which are not offered by currently used methods. These include the ability to integrate 
prior knowledge or assumptions into our model estimation: Bayesian estimation can estimate missing values as part 
of the estimation process, rather than in a separate, prior step, as is done by imputation methods. It also provides 
the ability to explicitly model the missingness of MCAR and NMAR data. As part of the Bayesian estimation, latent 
variable scores are explicitly estimated. In fact,  Bayesian estimation views a latent variable simply as one for which 
all value are missing. Especially for CFA (confirmatory factor analysis models), Bayesian estimation relaxes 
traditional model identification requirements, so that it is possible to estimate cross-loadings. Bayesian estimation 
also relaxes normality assumptions and allows the researcher to explicitly specify appropriate probability 
distributions. As a consequence, Bayesian estimation is naturally suited for ordinal data, such as from Likert scales, 
binary variables, and IRT (item response theory models). We discuss these and other advantages over existing 
methods in Section III. While Bayesian statistics itself are not new, there are few applications in the Information 
Systems literature.  A search of the AIS electronic library (including CAIS, JAIS and AIS conference proceedings) 
with the keyword “Bayesian” showed a handful of Bayesian estimation of regression models that do not include 
latent variables, especially multi-level models, or the use of Bayesian networks in information systems engineering 
contexts.  More specifically, we are aware of only one other paper in the IS literature that discusses a Bayesian 
approach in the context of structural equation modelling. Zheng and Pavlou [2009] offer a novel and effective 
method for inferring possible and plausible structural equation models from a given data set. However, their paper is 
very different from this tutorial in that it does not apply a Bayesian approach to the estimation of parameters in a 
structural equation models. Existing introductory texts on Bayesian methods [e.g. Congdon, 2006; Gelman et al., 
2004] typically focus on regression models, especially multi-level regression models, that do not include latent 
variables. Given the extent of structural equation models (SEM) in information systems, this tutorial is specific to the 
use of Bayesian estimation for SEM.  
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The remainder of this tutorial is structured as follows. To establish some basic terminology, we first introduce the 
Bayesian principle of conditional probabilities on which all of Bayesian statistics is founded. To help researchers 
decide when Bayesian estimation may be appropriate, we then discuss some of the advantages and drawbacks of 
Bayesian statistics. The next section then provides an introductory example for the reader to become familiar with 
model specification and estimation in the Bayesian approach. We use an example from the Technology Acceptance 
Model (TAM) for illustration purposes. Following this, the main section of this tutorial presents a general procedure 
for Bayesian estimation and uses an in-depth example to guide the reader through best-practices of estimation and 
diagnostics. Our conclusion focuses on specific recommendations to researchers who wish to use Bayesian  
structural equation models. 

II. BAYESIAN PRINCIPLES 

In this section, we introduce the basic idea of Bayesian statistical models and focus on conceptual understanding of 
the principles. We show how Bayesian statistics differs from the traditional frequentist perspective and focuses on 
different goals and interpretations. 

Conditional Probabilities 

Bayesian statistics are based on Bayes’ principle of conditional probabilities. In its simplest form, this can be written 
as follows: 

𝑝(𝜃 | 𝑥)𝑝(𝑥) = 𝑝(𝑥 | 𝜃)𝑝(𝜃) 

In this equation, 𝑝(𝜃| 𝑥) is the posterior probability that the model parameter 𝜃 takes on a certain value, conditional 
on the observation of data 𝑥. The term 𝑝(𝑥 |𝜃) represents the probability of observing data 𝑥 conditional on the value 

of model parameter 𝜃 (i.e. the likelihood of 𝑥). The term 𝑝(𝜃) is the prior probability of the values of model parameter 

𝜃 and the term 𝑝(𝑥) is the probability of observing the data 𝑥 not conditioned on any parameter 𝜃.  

In general, the terms 𝜃 and 𝑥 are sets (vectors) of model parameters and observations, for example, 𝜃 represents all 
loadings, latent covariances, and error covariances in a structural equation model (and also the latent variables 
themselves, as we shall see below). The data 𝑥 includes all observed variables in a structural equation model. 

We do not need to consider 𝑝(𝑥) as this probability is not parameterized in terms of 𝜃 and therefore has no bearing 
on the estimation of the values for 𝜃. The above equation can therefore be rewritten as a proportionality statement: 

𝑝(𝜃 | 𝑥) ∝ 𝑝(𝑥 | 𝜃) 𝑝(𝜃) 

The second form of Bayes’ principle shows that our belief about the probability of parameter values after observing 
certain data (posterior belief) depends on our prior belief about the probability of parameter values and the 
probability of the observed data under that prior probability. In other words, the posterior beliefs are an update of the 
prior beliefs after observation of data. For specific Bayesian models, the researcher assumes a probability 
distribution for 𝑝(𝑥 | 𝜃) based on theoretical considerations and the distribution of 𝑝(𝜃) reflects the existing, prior 
knowledge about parameter values.  

Bayesian Inferences 

In the traditional frequentist approach to statistical inference, the probability of an event is interpreted as the relative 
frequency of an event given an infinite sequence of samples from an identical (i.e. fixed) probability distribution. This 
notion is made explicit in Null-hypothesis significance testing (NHST), where the researcher asks how likely it is to 
observe the estimated parameter values (i.e.the data), if a Null-hypothesis (which defines the assumed sampling 
distribution) were true. If this likelihood is below a certain threshold 𝛼 (e.g. 0.05), the researcher rejects the Null-

hypothesis. In other words, the focus in the frequentist paradigm is on 𝑝( 𝑥 |𝜃 ) (more specifically on 𝑝(𝑥 |𝜃0) ), not 

on 𝑝(𝜃|𝑥) as in the Bayesian approach. In the frequentist approach, the data is treated as random by assuming that 
it is a random sample from a hypothetical probability distribution; the model parameters are assumed as fixed, e.g. in 
the form of a Null-Hypothesis that fixes 𝜃 = 0. Importantly, because the p-value in NHST is derived under the 
assumption that the Null hypothesis is true, in rejecting the Null hypothesis researchers lose the ability to make any 
statements about the probability of the observed effect (or any effect, including the Null effect) [Zyphur and Oswald, 
2013]. The only statement is admits is that the Null hypothesis is unlikely. Given that point hypotheses are very 
unlikely to be strictly true, this outcome is not very satisfying [Zyphur and Oswald, 2013]. 

In contrast, the Bayesian approach focuses directly on the probability of an effect, i.e. on the probability of observing 
the estimated parameters given the data, i.e. on 𝑝( 𝜃 |𝑥 ). Further, in addition to the sampling uncertainty of the data, 
the Bayesian approach also treats the model parameters as uncertain, i.e. assumed as following a probability 
distribution, namely the prior distribution  𝑝(𝜃). This more realistic treatment allows the model to make a statement 
about the probability of the obvserved effect, rather than simply rejecting an (unrealistic) Null-hypothesis. 

This difference in interpretation is evident in the reporting of Bayesian analyses. Whereas the frequentist researcher 
provides the p-value to show whether the Null-hypothesis should be rejected, the Bayesian provides a point estimate 
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for the probability of the observed effect given the data (𝑝( 𝜃|𝑥), as either the mean or mode of the posterior 
probability distribution. Additionally, Bayesian researchers report credibility intervals (e.g. the 2.5% and 97.5% 
percentile) around this point estimate to show the credible range of the parameter value given the observed data. 
While these credibility intervals can be used for significance testing in the same way as a confidence interval in 
NHST, this is not the main goal of Bayesian analysis. 

III. WHEN TO USE BAYESIAN ESTIMATION OF STRUCTURAL EQUATION MODELS 

While we have motivated this paper by appealing to our desire for integrating prior knowledge into our model 
estimation, Bayesian estimation of structural equation models offers other advantages as well. 

 Integration of prior knowledge into the estimation process 

In contrast to covariance-based or partial least squares methods, the Bayesian approach can explicitly 
incorporate prior knowledge of parameter values into the estimation [Kruschke et al., 2012; Scheines et al., 
1999]. Prior knowledge is specified by the probability distribution of model parameters. The mean and 
variance of these prior distributions reflect our “point beliefs” and the certainty about or the precision of our 
prior knowledge. 

 Integrated treatment of missing values 

In contrast to missing value imputation prior to model estimation, Bayesian estimation allows missing values 
to be estimated as part of the estimation of the overall model [Asparouhov and Muthen, 2010a; Lunn et al., 
2013]. Hence, missing value estimation is able to use the model structure, rather than relying only on 
sample information, such as when using the EM algorithm. This covers MCAR1 (missing completely at 
random) (missing at random) and MAR data. Moreover, the flexibility of Bayesian models allows the 
researcher to also specify a mechanism to model the missingness, covering NMAR (not missing at random) 
data [Lee, 2007; Lunn et al., 2013; Song and Lee, 2008; 2012]. 

 Explicit estimation of latent variable scores 

Latent variables are explicitly modeled and estimated in Bayesian statistics. In fact, the treatment of latent 
variables differs little from the treatment of missing values, and one can view a latent variable as one for 
which all value are missing. Conceptually, missing values and latent variables are closely related in 
Bayesian estimation [Asparouhov and Muthen, 2010b, Lee, 2007; Song and Lee, 2008]. 

 Relaxation of model identification requirements 

Traditional estimation methods require a model to be identified. For example, it is impossible in covariance-
based methods to estimate a CFA (confirmatory factor analysis) model in which all cross-loadings are free 
parameters. Bayesian estimation allows researchers to estimate non-identified models if the prior parameter 
distributions sufficiently constrains their values. For example, it is possible to estimate CFA models with 
cross-loadings that are expected to be approximately zero, but are allowed to vary somewhat around these 
values. Such models are argued to be more appropriate in expressing a researcher’s theoretical 
expectations about cross-loadings [Asparouhov and Muthen, 2010a; Scheines et al., 1999; Muthen and 
Asparouhov, 2012]. 

 Accuracy at small sample sizes and no reliance on asymptotic (large sample) validity of estimates 

Covariance-based methods make assumptions about the asymptotic distribution of parameter estimates and 
test statistics, which are strictly only valid for very large samples. Partial least squares techniques make no 
such assumptions for the test statistics, but the “consistency at large” theorem means that PLS estimates 
are only unbiased for very large sample. In contrast, Bayesian estimation does not make such large sample, 
asymptotic assumptions for the distribution of model parameter and variable estimates [Asparouhov and 
Muthen, 2010a; Kruschke et al., 2012; Rupp et al., 2004; Scheines et al., 1999]. Moreover, Bayesian 

                                                      
1 Missing completely at random denotes data whose probability of missing does not depend on observed or unobserved data. Missing at random 
denotes data whose probability of missing depends on the observed data. MCAR and MAR data are called “ignorable” because they do not 
provide any information on the data. 
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estimates have been noted as more accurate for small sample sizes than maximum-likelihood (ML) 
estimates [Asparouhov and Muthen, 2010a].  

 Relaxation of normality assumptions 

Especially covariance-based methods make assumptions about the (multivariate-)normal distribution of 
variables to arrive at well-defined test statistics. Because the probability distributions for different variables 
are explicitly modeled in Bayesian estimation, it is possible to assign other than normal distributions, if these 
are more appropriate [Scheines et al., 1999], either based on prior knowledge or theoretical considerations. 
However, for the estimation to remain possible, the distributions that can be modeled are often restricted to 
so-called conjugate distribution (see below).  

 Easy extensibility to non-continuous observed data 

While some approaches exist to extend covariance analysis to ordinal data, this can be done more naturally 
and explicitly in Bayesian estimation [Asparouhov and Muthen 2010a; 2010b; Lee, 2007; Lee at el., 2010; 
Song et al., 2001]. This allows the easy expression of IRT (item-response-theory) models [Rupp et al., 2004] 
as well a more faithful representation of Likert scales or binary latent variables. Bayesian estimation has 
been shown to be more accurate than covariance-based methods for categorical data with missing variables 
[Asparouhov and Muthen, 2010a]. 

 Easy extensibility to multi-level models 

While multi-level structural equation models have not been used to great extent in the IS literature, they may 
be appropriate as organizational theories in IS may include individual-level, firm-level and industry-level 
constructs and relationships. Because the relationships between multiple levels of analysis are explicitly 
modeled and the estimation relies on iterative sampling of (relatively) simple distributions, it is possible to 
easily express multi-level statistical models in Bayesian approaches [Browne and Draper, 2006; Asparouhov 
and Muthen, 2010a; Song and Lee, 2008; Yuan and MacKinnon, 2009]. An easy way to model and estimate 
multi-level relationships may lead to more applications of these models in an IS context. 

 Convergence with traditional methods 

Bayesian estimates of parameter values converge to those of traditional methods. Specifically, with 
increasing sample size, Bayesian estimates converge asymptotically on maximum-likelihood estimates 
[Lunn et al., 2013]. Intuitively, this expresses the increasing weight of evidence by the data over prior 
assumptions. Further, a non-informative prior distribution can be chosen to further reduce the effect of the 
prior distribution. 

However, while Bayesian estimation has many advantages over traditional methods, it also has some drawbacks. 
The most important ones are the following: 

 Large computational resource requirements 

Bayesian estimation uses an iterative method of sampling parameter estimates from posterior probability 
distributions. The computational requirements are generally larger than for covariance-based or partial-least-
squares estimation. Further, because all latent variables in the model, including errors, are estimated during 
each iteration, the resulting data volume is significantly larger. However, with the increase in personal 
computer power in recent years, it is now feasible to estimate even complex models in a few seconds. 
Moreover, in some cases, Bayesian estimation is shown to be more computationally efficient than traditional 
estimation approaches [Asparouhov and Muthen, 2010a] 

 Dependence of results on prior distributions (even uninformative ones) 

Even as Bayesian estimates are noted as more accurate than ML estimates for small samples, Bayesian 
results for small sample sizes may depend on the specified prior probability distributions of model 
parameters, especially and even for different uninformative distributions [Asparouhov and Muthen, 2010a]. 
While there are no guidelines as to which models are affected at which sample size, researchers are urged 
to check for prior assumption dependence by estimating the model with different prior knowledge 
assumptions [Asparouhov and Muthen, 2010a]. 
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 Lack of overall model test (i.e. overidentification test as in covariance analysis) 

In covariance-analysis, the 𝜒2 test of model fit (and its robust versions) provides an easy diagnostic tool to 
assess the fit of the estimated model with the sample data [Evermann and Tate, 2011]. There is no such 
statistical test for Bayesian structural equation models. However, the “posterior predictive p-value” (PPP) 
[Gelman et al., 1996; Scheines et al., 1999; Muthen and Asprouhov, 2012] has been argued to serve a 
similar role and might be used as a test of model fit: “The LRT [likelihood ratio test, i.e. 𝜒2 test], appears to 
be more powerful than the PPP … but this is at the cost of incorrect type I error for small sample cases… 
On the other hand, the PPP is always reliable and for sufficiently large sample size has the same 
performance as the LRT” [Asparouhov and Muthen, 2010a, p. 31]. 

Recommendation: Use Bayesian analysis for 

 non-standard models that are difficult to express in covariance or partial-least squares  models (such as 
 multi-level models, underidentified models, models with missing values  and/or non-continuous variables) 

 estimation that allows the use of prior knowledge about parameter values, and/or 

 estimation from small sample sizes 

What Bayesian Estimation is Not 

Bayesian estimation can be related to other concepts in the research methods literature. First, Bayesian statistics is 
not a research methodology. The concept of a research method is broader and encompasses an underlying 
ontology and epistemology that guide the researcher in asking research questions, collecting data, analyzing data, 
and interpreting results. In contrast, Bayesian estimation, in its narrowest interpretation, is a statistical tool for data 
analysis. In  a slightly broader interpretation, it also suggests a different interpretation of the results, differing from 
the frequentist notion of probability. 

Bayesian estimation is not a method that is limited to survey research. Bayesian statistics are suitable for the 
analysis of other types of data [Congdon, 2006; Gelman et al. 2004] and it is up to the researcher to specify the 
appropriate statistical model. However, this tutorial is concerned only with structural equation models. 

Bayesian analysis of structural equation models is not a new way of doing survey research. Recommendations for 
instrument design and data collection remain unaffected by the type of subsequent data analysis method. Bayesian 
estimation of SEM models also does not affect the notions of reliability or validity of measurement instruments. The 
substantive interpretation of the model and its estimated parameters, in terms of validity and reliability of indicators 
[e.g. Gefen et al., 2011] is based on the estimates of parameter values, and does not depend on the type of 
estimation as long as the estimation produces valid estimates (e.g. asymptotically unbiased estimates). 

Bayesian estimation is not meta-analysis, nor an alternative to meta-analysis. Whereas meta-analysis is concerned 
only with a few important parameters and does not typically include new data, Bayesian estimation is concerned with 
all parameters of a model and requires a data set to analyze. 

Finally, Bayesian estimation is not a “silver bullet” that fixes all shortcomings of existing methods. In fact, the 
advantages and disadvantages we have outlined should be used as guidelines by researchers to identify if Bayesian 
estimation is suitable, and whether it provides advantages over traditional methods in particular applications. 

Relationship to Meta-Analysis 

As can be seen from our discussion this far, Bayesian estimation, in that it allows researchers to synthesize prior 
estimates, is related to meta-analytic techniques. However, meta-analysis aims only to synthesize existing 
estimates, rather than to incorporate this existing knowledge into the estimation of a new model [King and He, 2005]. 
Meta-analysis is appropriate for synthesizing an existing corpus of studies, but is not a technique for model 
estimation. In contrast, Bayesian estimation is not suitable to synthesizing a set of existing studies, but is concerned 
with the estimation of  particular model with a specific sample.  

Meta-analyses are typically concerned with only a few model parameters of theoretical interest, whereas Bayesian 
analysis estimates all parameters in a model. For example, a meta-analysis of the Technology Acceptance Model 
[Ma and Liu, 2004], a model that we also use for illustration purposes later, only examines the structural 
relationships. On danger in this is what King and He [2005] call the “apples and oranges” issue, where researchers 
may aggregate results from studies with incommensurable measures. By estimating complete models including 
measurement relations, rather than focusing on a few structural relationships, Bayesian researchers are at least 
aware of the measurement model and can exclude studies with very different operationalizations of constructs.  
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Meta-analysis can also be used with structural equation models [Joseph et al., 2007]. Here too, the focus is typically 
on structural relationships, and again does not allow the estimation of a new model given the known information.  

Meta-analyses can be conducted even if the models are very different from each other, as long as they contain the 
relationship(s) of interest. Similarly, prior estimates need not be available for all parameters in Bayesian model, as 
the Bayesian approach allows the use of uninformative priors when no such knowledge is available.  

In summary, we view meta-analysis as a possible pre-cursor to Bayesian estimation. It provides the researcher with 
a systematic method to identify, collect, and aggregate the parameter estimates from different studies. Such 
systematically derived prior knowledge can then be modeled as part of the Bayesian structural equation model. 
Hence, for integration of prior studies, the researcher chooses a meta-analytic technique. If, in addition, a model is to 
be estimated with a new data set, a subsequent Bayesian approach can integrate the prior knowledge from the 
meta-analysis. 

Recommendation:  

 Meta-analysis is a valuable pre-cursor to Bayesian estimation 

 Use the meta-analytic results to aggregate data from former studies for use in Bayesian estimation 

IV. A SIMPLE ILLUSTRATION OF BAYESIAN ESTIMATION 

We presented the basic principle of Bayesian statistics in Section II. This section illustrates how that principle is 
applied to the estimation of a simple linear regression model. The aim of the section is to familiarize the reader with 
Bayesian terminology and equip the reader with a basic understanding of Bayesian model specification and model 
estimation. While we illustrate the mathematical specification of the model and the different probabilities and 
likelihoods, we do not provide any derivations, which are conceptually simple but lengthy and somewhat tedious. 
They can be found in any good textbook, such as Congdon [2006] or Gelman et al. [2004] for regression models, 
and Lee [2007] or Song and Lee [2012] for structural equation models.  

Consider a simple linear regression example including two observed variables. For example, in an application to the 
IS context, 𝑦𝑖 might be the perceived usefulness in the Technology acceptance model (TAM), while 𝑥𝑖 might 
represent the perceived ease of use of that technology2. 

𝑦𝑖 =  𝛽𝑥𝑖 + 𝜀𝑖 (Equation 1) 

Further, we make the standard assumptions that the errors (residuals) are normally distributed with mean zero and 
variance 𝜎2: 

𝜀𝑖  ~ 𝑁(0, 𝜎2) (Equation 2) 

Rewriting equations 1 and 2 in terms of probability distributions shows that the observations 𝑌 are normally 

distributed with mean 𝑋𝛽 and variance 𝜎2:  

𝑌 ~  𝑁(𝑋𝛽, 𝜎2) (Equation 3) 

Here, 𝑌 and 𝑋 are vectors of the 𝑦𝑖 and 𝑥𝑖 respectively. Thus, the likelihood function is the following normal density:  

𝑝(𝑌, 𝑋 |  𝛽, 𝜎2)  ∝ (𝜎2)−
𝑛
2exp (−

1

2 𝜎2
(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)) 

(Equation 4) 

We now need to specify our prior knowledge about the parameters 𝛽 and 𝜎2 by specifying a distribution for the prior 

probability 𝑝(𝛽, 𝜎2). Assuming that the prior mean and variance are independent, we can simplify the prior 
distributions for easier specification: 

𝑝(𝛽, 𝜎2) = 𝑝(𝛽 | 𝜎2)𝑝(𝜎2)  (Equation 5) 

Here, 𝑝(𝜎2) represents our prior knowledge about the errors (residuals) in the regression of attitude towards 
technology on perceived usefulness. For our TAM example we might come to have expectations based on e.g. the 

mean and range of reported 𝑟2 values in published studies of perceived ease of use and perceived usefulness. 

Similarly, 𝑝(𝛽 |𝜎2) represents our prior knowledge about the regression coefficient in the regression of perceived 
usefulness on perceived ease of use. Again, we might come to have expectations based on the reported values in 

                                                      
2 In the interest of presenting a running example, we use the TAM constructs here as observed variables, even though they should be modelled 
as latent variables, as we do in later sections. For this simple initial example, one could assume these variables as sum scores of their indicators. 
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prior studies on TAM. Alternatively, for either or both distributions, researchers might choose uninformative prior 
distributions, if no previous knowledge is available. 

Conjugate Prior Distributions and Uninformative Priors 

To make the estimation tractable, the prior probability is typically assumed to have a conjugate distribution to the 

likelihood function 𝑝(𝑥 | 𝜃). This means that the product 𝑝(𝑥 | 𝜃) 𝑝(𝜃) (i.e. the posterior probability) is of the same 

distribution family as 𝑝( 𝜃). Table 1 presents a list of frequently used conjugate prior distributions in Bayesian 
estimation. 

For our case of a normal likelihood function (Equation 4), appropriate conjugate prior distributions are another 

normal distribution for 𝑝(𝛽 | 𝜎2) and an inverse Gamma distribution for 𝑝(𝜎2): 

𝑝(𝛽 | 𝜎2) ~ 𝑁(𝜇, 𝜈) 

𝑝(𝜎2) ~ 𝑖𝑛𝑣𝐺𝑎𝑚𝑚𝑎 (𝑎, 𝑏) 

(Equation 6) 

(Equation 7) 

Each of these probability distributions has their own parameters, called hyper-parameters, which affect the mean 
and variance of the distribution (Table 1).  

In our TAM example, the hyper-parameters 𝜇 and 𝜈 in Equation 6 represent our prior knowledge of the mean an 

variance for the regression coefficient 𝛽. As an example, from Table 1 we see that setting 𝜇 = 0.5 and 𝜈 = 5 for the 

hyper-parameters in Equation 6 will yield a mean of 0.5 which represents our prior “point belief” of 𝛽. The variance of 
the prior distribution of 5 represents our certainty (or uncertainty) about our prior “point belief”. For our particular 
example of the regression of perceived usefulness on perceived on ease of use, we look towards an existing meta-
analytic study [Ma and Liu, 2004]. In that study, the authors analyzed 33 correlations between the two variables from 
21 studies. With correlations being equal to standardized regression coefficients in a two-variable linear model we 
may use their point estimate of 0.50 for the hyper-parameter 𝜇 and their variance estimate of 0.038 for the hyper-
parameter 𝜈 if we use standardized data.  

Similarly, in our TAM example the parameters 𝑎 and 𝑏 in Equation 7 represent our prior knowledge of the means 

and variances for the variances of the regression errors 𝜀𝑖 in the regression of attitude on perceived usefulness. For 

example, from Table 1 we see that setting 𝑎 = 3 and 𝑏 = 1 yields a mean of 0.5 and a variance of 0.25 as our prior 
estimate of the error variances.  Unfortunately, the meta-analysis by Ma and Liu [2004] does not provide any data on 

the 𝑟2 for a simple regression of perceived usefulness on perceived ease of use. In cases like this, where there is no 
prior knowledge, or our prior knowledge is very uncertain, researchers can use non-informative distributions, e.g. an 
normal distribution with a very large variance, or a uniform distribution. The last column in Table 1 shows frequently 
used choices for uninformative prior distributions. In our TAM example, if we had no prior beliefs about the 

regression parameters of attitude on perceived usefulness, we might specify 𝜇 = 0 and 𝜈 = 1010 which describes a 
zero-centered distribution with very large variance, i.e. it is essentially flat and provide no useful information about 
the parameter 𝛽 that it describes. Similarly, if we had no prior knowledge about the error (residual) variance in the 
regression, we might choose an uninformative prior gamma distribution with 𝑎 = −1  and 𝑏 =  0 which yields a 
uniform density of 1. 

With the choices of prior distributions in Equations 6 and 7, and the likelihood function as in Equation 4, one can 
analytically derive the form of the normal posterior probability distribution. Conceptually simple, the derivation is too 
space-consuming to show. 

We emphasize that while conjugate priors are useful because they yield analytically derivable, closed form 
expressions for the posterior, and thus make estimation easier, the choice of conjugate priors is not a strict 
requirement. Even when a closed form expression of the posterior is not available, one can sample from it using 
Markov Chain Monte Carlo methods, and particularly the Gibbs sampler, presented next. 

Table 1: Typical conjugate prior distributions used in Bayesian estimation (choices for uninformative priors from 
[Asparouhov and Muthen, 2010b]) 

Likelihood function 
Conjugate prior 

distribution 
Mean Variance 

Example choices 
for uninformative 
prior distribution 

Normal  

(with known variance) 

Normal 

𝑁(𝜇, 𝜈) 
𝜇 𝜈 𝑁(0, 1010) 

Normal 

(with known mean) 

(parameterized using 
mean and variance) 

Inverse Gamma 

𝐼𝐺(𝑎, 𝑏) 

𝑏

𝑎 − 1
 

𝑏2

(𝑎 − 1)2(𝑎 − 2)
 

𝐼𝐺(0, 0) 

𝐼𝐺(−1, 0) 

𝐼𝐺(0.001, 0.001) 
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Table 1: Typical conjugate prior distributions used in Bayesian estimation (choices for uninformative priors from 
[Asparouhov and Muthen, 2010b]) 

Likelihood function 
Conjugate prior 

distribution 
Mean Variance 

Example choices 
for uninformative 
prior distribution 

Normal3  

(with known mean) 

(parameterized using 
mean and precision) 

Gamma 

𝐺(𝑎, 𝑏) 

𝑎

𝑏
 

𝑎

𝑏2
 𝐺(0.001, 0.001) 

Multivariate Normal 

(parameterized using 
means, covariances 

Inverse Wishart4 

𝐼𝑊(Ωp, d) 

Ω

𝑑 − 𝑝 − 1
 

Proportional to 

1

(𝑑 − 𝑝)(𝑑 − 𝑝 − 1)2(𝑑 − 𝑝 − 3)
 

𝐼𝑊(0, −𝑝 − 1) 

𝐼𝑊(0, 0) 

𝐼𝑊(𝐼, 𝑝 + 1) 

Multivariate Normal 

(parameterized using 
means, inverse 

covariances 

Wishart5 

𝑊(Ωp, d) 
𝑑Ω   

Exponential, 

Gamma 

Gamma 

𝐺(𝑎, 𝑏) 

𝑎

𝑏
 

𝑎

𝑏2
 𝐺(0.001, 0.001) 

 
Uniform6 

𝑈(𝑎, 𝑏) 

1

2
(𝑎 + 𝑏) 

1

12
(𝑏 − 𝑎)2 

𝑈(−1010, 1010) 

𝑈(0, 1010) 

Bayesian Estimation with the Gibbs Sampler 

Having developed our statistical model and found a solution for the posterior probability, we are now in a position to 
estimate the parameter values from this posterior distribution. This occurs by sampling values of individual 
parameters from the posterior distribution one parameter at a time, a process referred to as Gibbs sampling, a form 
of a technique called Markov Chain Monte Carlo (MCMC) sampling. Using our example, we have analytically 
determined the posterior probability distribution to be normal (because of the normal likelihood and the conjugate 
prior distribution). We now iteratively sample values from this normal distribution, e.g. first for 𝛽 from 

𝑝(𝛽 | 𝜎2, 𝑌, 𝑋, 𝑎, 𝑏, �̅�, 𝑆) (Step 1) 

and then for 𝜎2 from 

𝑝(𝜎2 | 𝛽, 𝑌, 𝑋, 𝑎, 𝑏, �̅�, 𝑆) (Step 2) 

Every iteration comprises these two steps. In the first iteration, a starting value for 𝜎2 is either specified by the 
researcher, sampled from the prior distribution, or is the default set by the estimation software. After the first step 
samples a value for 𝛽, this value becomes input to step 2 in that same iteration and allows sampling of a value for 

𝜎2. These sampled values form the input for the next iteration of these two steps. The iterations continue until the 
sampled values are stable. In our simple example, each sampling step samples a single parameter. In many 
models, multiple parameters have a joint distribution, so that values for a set of parameters will be sampled in each 
step. 

In practice, it is common to begin multiple of these sampling chains from different starting values to ensure 
convergence of samples on the posterior parameter estimate. Final parameter estimates are then computed as the 
mean of the sampled values after a “burn-in” period where stabilization occurs and whose samples are discarded. 
Typically, there may be up to 10,000 iterations in each of three Markov Chains, with burn-in periods of between 
2,000 and 5,000. These numbers indicate the substantial computational requirements for Bayesian statistics, 
especially for complex structural equation models with dozens or hundreds of parameters. 

                                                      
3 In some Bayesian literature, the normal distribution is parameterized as 𝑁(𝜇, 𝜈−1) where 𝜈−1 is the inverse variance, called precision.  
4 For the inverse Wishart distribution, Ω𝑝 is a positive definite matrix of size 𝑝. The variance is a complex formula not shown here, but can be 

influenced by the choice of 𝑑 as shown in the table. 
5 For the Wishart distribution, Ω𝑝 is a positive definite matrix of size 𝑝. The variance is a complex formula not shown here. 

6 The uniform distribution is often used as a “pseudo conjugate” prior and is an intuitive uninformative distribution. 
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OpenBUGS Model and Script 

Easy to use software for Bayesian SEM has only been developed relatively recently, in the form of the WinBUGS 
and OpenBUGS software [Lunn et al., 2013], and inclusion of Bayesian analysis in popular SEM software packages 
like MPlus. In this tutorial, we focus on the use of open-source software OpenBUGS for estimating Bayesian models, 
and the R system to analyze the results. OpenBUGS is an open-source version of the commercial WinBUGS 
software (“Bayesian Inference Using Gibbs Sampling”), originally developed by the biostatistics unit at Cambridge 
University. Model definitions are fully interchangeable between the two. Another open-source software that is very 
similar to both WinBUGS and OpenBUGS is JAGS (“Just Another Gibbs Sampler”). OpenBUGS model definitions 
are also usable with JAGS, and OpenBUGS scripts can easily be translated to JAGS scripts. Lunn et al. [2013] 
provide an introduction to BUGS, its syntax and a comparison of the three BUGS implementations (WinBUGS, 
OpenBUGS, JAGS). 

 

Table 2: OpenBUGS model definition for the introductory example 

Line Model 

1 model { 

2   for(i in 1:N) { 

3     mu[i] <- beta * x[i] 

4     y[i] ~ dnorm(mu[i],psi) 

5   }  

6   beta ~ dnorm(0.5, 5) 

7   psi ~ dgamma(3, 1) 

8 }  

 

Table 2 shows how our introductory TAM example is defined as an OpenBUGS model. The model definition begins 

with the model keyword in line 1. Line 2 shows that each individual observation is defined separately. Lines 3 and 4 

show the definition of the 𝑦𝑖 in the same form as we used in Equation 3. In other words, mu[i] in line 3 represents 

the expected observation 𝛽𝑥𝑖 and line 4 mirrors Equation 3.  Lines 6 and 7 set up the prior probability distributions 
for the two model parameters in the same form as we have done in Equations 6 and 7. 

One important aspect of the OpenBUGS specification is that OpenBUGS parameterizes the normal distribution 
using the mean and precision (inverse variance), instead of the more typical mean and variance. The relationship 
between the two is simple: 

𝑥 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)    →   
1

𝑥
 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) (Equation 8) 

Thus, the specification dnorm(mu[i], psi) on line 4 uses mean mu[i] and precision  psi. Accordingly, instead 

of an inverse gamma for the prior distribution of the variance, as in Equation 7, we use a gamma prior distribution for 

the precision psi (line 8). As per Equation 8, the specification dgamma(3,1) in line 7 for the precision parameter 

(which yields a mean and a variance of 3, see Table 1) is equivalent to inverse gamma specification on the variance 
parameter (and yields a mean of 0.5 and variance of 0.25, see Table 1).  

This simple example shows that the model definition in OpenBUGS is very explicit in the sense that it is analogous 
to the mathematical definition of the model derived earlier. This has the advantage of being very flexible. For 

example, we could easily specify hetero-skedastic models by introducing different psi parameters for different 

observations in lines 4 and 8 of Table 2. It is also easy to see how a regression intercept could be added to the 
model in line 3, with the addition of an appropriate prior specification later in the model. On the other hand, this 
explicit specification requires an understanding of the mathematical concepts in this section.  

Having developed the OpenBUGS model specification, the model can be estimated with the OpenBUGS software, 
controlled via a script. This script is shown in Table 3. Line 1 is used to specify the working directory where the 
model and data files are found. Line 2 loads the model and performs a syntactic check. The model data file is loaded 
in line 3. The data file must also include values for all constants in the model, e.g. the number of observations N, 
which is used in line 2 in Table 2. Line 4 compiles the model for three MCMC sampling chains. Initial values are 
automatically generated in line 8. Lines 9 and 10 control for which of the model variables samples are to be 
collected. Line 11 sets up the computation of the Deviance Information Criterion (DIC), an important diagnostic tool. 
We discuss DIC and other diagnostics later. Finally, line 13 writes the sampled values in CODA format (a format that 
is suitable for later analysis using the R software) to the specified file. Lines 14 and 15 print summary statistics for 
the sampled variables and the DIC, respectively. 
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Table 3: OpenBUGS script to control the estimation  

Line Script 

1 modelSetWD('OpenBUGSExample') 

2 modelCheck('model1.txt') 

3 modelData('data1.txt') 

4 modelCompile(3) 

8 modelGenInits() 

9 samplesSet('beta') 

10 samplesSet('psi') 

11 dicSet() 

12 modelUpdate(5000, 1, 1, 'F') 

13 samplesCoda('*', 'codaoutput') 

14 samplesStats('*') 

15 dicStats() 

 

Recommendation: Use the OpenBUGS software for Bayesian estimation because it is 

 Flexible (not limited to certain types of models) 

 Expressive (provides a wide range of probability distributions with which to model) 

 Extendable (researchers can provide user-defined probability functions) 

 Free and open-source (and integrates well with the popular R statistical environment) 

 Cross-platform (works well in a heterogenous IT environment) 

 Scriptable (rather than relying on graphical user interfaces, scripts can ensure replicability of results) 

V. BEST-PRACTICE EXAMPLE: BAYESIAN ESTIMATION OF TAM CONSTRUCTS 

The previous section presented a simple illustration of how the Bayesian principle can be applied to a linear 
regression problem. That section has provided us with Bayesian terminology and equipped use with a basic 
understanding of Bayesian model specification and model estimation. In this section, we illustrate Bayesian best 
practices using a full example. We follow the steps in Table 4, which are generic steps for every Bayesian 
estimation, whether structural equation model or others. 

We use the Technology Acceptance Model (TAM) as an illustrative example also in this section because its 
constructs have been measured consistently using the same measurement items across multiple studies. Thus, it 
provides a rich set of prior knowledge about parameter estimates for us to use. TAM focuses on the relationship 
among three constructs, Perceived Ease of Use (PEoU), Perceived Usefulness (PU) and Behavioral Intention to use 
(BI). In this section, we focus on a CFA (confirmatory factor analysis) of perceived usefulness and behavioral 
intentions, due to the availability of data for these constructs. Our example uses the TAM data from Chin et al. 
[2008], which was also used in [Evermann and Tate, 2011]. 

 

Table 4: Recommended process steps for Bayesian model estimation 

Step 1 Specify the statistical model 

Step 2 Identify prior knowledge and distributional assumptions 

Step 3 Estimate model 

Step 4 Assess MCMC convergence 

Step 5 Remove burn-in iterations and thin samples 

Step 6 Evaluate model quality 

Step 1: Specify the statistical model 

The two constructs of interest in the TAM model are traditionally measured by six observed indicators each [Davis, 
1989; Davis et al. 1989]. The main difference to our earlier regression model is the inclusion of latent variables, i.e. 
variables for which data is missing. Latent variables in a Bayesian model are treated in a similar way to parameter 
estimates: they are assigned a probability distribution and their values are estimated as part of the model estimation 
process. 
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Table 5: CFA model definition in OpenBUGS (part 1, the basic statistical model) 

Line Model definition 

1 model { 

2   for(i in 1:N){ 

3     #measurement equation model 

4     for(j in 1:P){ 

5       y[i,j]~dnorm(mu[i,j],errorprec[j]) 

6     } 

7     mu[i,1]<-lam[1]*xi[i,1] 

8     mu[i,2]<-lam[2]*xi[i,1] 

9     mu[i,3]<-lam[3]*xi[i,1] 

10     mu[i,4]<-lam[4]*xi[i,1] 

11     mu[i,5]<-lam[5]*xi[i,1] 

12     mu[i,6]<-lam[6]*xi[i,1] 

13     mu[i,7]<-lam[7]*xi[i,2] 

14     mu[i,8]<-lam[8]*xi[i,2] 

15     mu[i,9]<-lam[9]*xi[i,2] 

16     mu[i,10]<-lam[10]*xi[i,2] 

17     mu[i,11]<-lam[11]*xi[i,2] 

18     mu[i,12]<-lam[12]*xi[i,2] 

19     #structural equation model 

20     xi[i,1:2]~dmnorm(u[1:2],latprec[1:2,1:2]) 

21   } #end of i 

 

The basic structure of the model specification is similar to the earlier one (Table 2) and is shown in Table 5.  The 
model definition begins on lines 1 and 2. Again, we specify each individual observation 𝑖 of 𝑁 total observations.  
Lines 4 through 6 of Table 5 are a generalization from a single dependent variable to 𝑃 dependent variables. Both 

the sample size 𝑁 as well as the number of dependent variables 𝑃 will be defined in the data file. In our case of the 

TAM model, we have 𝑃 = 12 observed variables, representing the 12 questionnaire items in the original TAM 
instrument. Similar to our earlier regression, we specify a normal likelihood for the observed variables with mean 

mu[i,j] and precision (inverse variance, see footnote 2) errorprec[j]. The error variance is the same for all 

observations, i.e. a homogenous sample/ a homoskedasticity assumption. We will specify the hyper-parameters in 
the next subsection.  

Lines 7 – 18 define the mean of the variables in terms of the loading 𝜆𝑖 (lam[1] – lam[12]) and the latent 

variable that the item loads on, either 𝜉1 or 𝜉2 (xi[i,1] or xi[i,2]). These definitions cannot be moved into the 

“for” loop in line 4, because different items load on different latent variables. Finally, line 20 defines the likelihood for 

the two latent variables in terms of a multivariante normal distribution with means u and precision (inverse variance) 

latprec. Note that u is a vector of two quantities, whereas latprec is a 2x2 matrix of four quantities. We wlil 

define u as fixed, reflecting common practice to assume zero-centered variables, and will specify a prior distribution 

for the variance and covariance of the latent variables, reflecting common practice to estimate them. 

An easy extension to this model is the inclusion of intercepts. In that case, the specification of e.g. line 7 would need 

to change to  mu[I, 1]<-lam[1]*xi[i,1] + alpha[1] where alpha[1] represents the intercept. This 

requires the later specification of a prior distribution for the intercept and it might then also be appropriate to estimate 
the means of the latent variables, rather than fixing them to zero. 

Another easy extension is the inclusion of cross-loadings. In that case, the specification of line 7 would need to 

change to mu[i,j]<-lam[j,1]*xi[i,1]+lam[j,2]*xi[i,2]. In this case, it is possible to include these 

definitions in the “for” loop of line 4.  

While we did not have sufficient data on the TAM outcome variables and estimates for the structural coefficients of 
the TAM model, the above BUGS model is easily extended to a full SEM model. For example, a full structural model 
of TAM can be expressed using the following specification:  

xi[i]~dnorm(mu[i],prec.xi) 

nu[1,i]<-beta[1]*xi[i] 
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nu[2,i]<-beta[2]*xi[i]+gamma*eta[1,i] 

eta[1,i]~dnorm(nu[1, i], prec.eta1) 

eta[2,i]~dnorm(nu[2, i], prec.eta2) 

In this model, xi (𝜉) represents the exogenous TAM latent variable PEoU, eta[1,] (𝜂1) represents the endogenous 

TAM variable PU and eta[2,] (𝜂2) represents the BI (behavioral intention construct). The indicator specifications 

are similar those in Table 5. 

Given the explicit nature of the model specification, it is also easy to see how identity constraints can be imposed on 
the model. For example, to suggest that loadings on the first and second indicator are the same, one would only 

need to change line 8 to read mu[i,2]<-lam[1]*xi[i,1].  

Finally, we note that, with the estimation of all loadings, latent variances and covariances, and error terms, the 
model is strictly not identified. However, as we see later, it is possible to estimate this model when the prior 
distributions sufficiently constrain the posterior parameter estimates. In fact, Muthen and Asparouhov [2012] 
recommend a model in which all cross-loadings are estimated but with small prior probabilities as more realistic and 
appropriate, given that in practice, cross-loadings are hardly ever exactly zero and the zero-constraint in covariance-
based estimation leads to ill-fitting models that are still of practical interest. Moreover, Asparouhov and Muthen 
[2010a] have shown that the parameterization in which both latent variances and all loadings are estimated, as in 
the model in Table 5, provides considerable advantages in parameter accuracy, especially for small sample sizes 
and a large number of indicators.  

Recommendation: For structural equation models 

 Specify a model to estimate latent variances as well as all loadings. 

 Estimate all cross-loadings with realistic small prior probabilities with sufficient precision (inverse variance) 
to ensure the model can be estimated. 

Step 2: Identify prior knowledge and distributional assumptions 

To identify previous estimates for the TAM model parameters, we focus on studies published in five IS journals, 
MISQ, JMIS, ISR, JAIS, and ISJ. Through the ISI web of science we identified papers in these journals that cite 
either Davis [1989] or Davis et al. [1989], revealing 263 papers. Of these, 43 are empirical papers that use at least 
some of the TAM indicators developed by Davis [1989] and Davis et al. [1989]. Figure 1 shows box-and-whisker 
plots of reported standardized loadings by items. That data is presented in Table 6 (all surveyed studies use 7-point 
scales). As many of the 43 studies do not use BI as outcome variable, we have compiled prior values only for the 
loadings of the PEoU and PU constructs. A more sophisticated meta-analysis may also use weighting by sample 
size when calculating the mean and variance; however, our focus is on the use of this data in Bayesian estimation. It 
is clear from the variance of the estimates reported in Table 6, as well as the diagram in Figure 1, that many 
parameter estimates reported in the literature are statistically significantly different from others, and from the mean. 
These outliers occur despite a certain “publication bias” from recommendations that parameter loadings should be 
greater than 0.7. Hence, significant differences in estimated loadings are quite likely to occur.   

A researcher using PU and PEoU in a new study, and choosing to adopt the instrument pioneered by Davis [1989] 
and Davis et al. [1989], might be faced with the situation that, despite taking all reasonable precautions, her data 
does in fact show statistically significant differences to previously established values in Table 6. When the 
researcher is certain that her instrument does in fact measure the same construct (e.g. changes to the instrument 
have been ruled out, sample characteristics are comparable), the researcher may choose to use Bayesian statistics 
to estimate her model and thus interpret the knowledge from the newly collected sample in light of the prior 
knowledge about the parameter values.  
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Figure 1: Standardized Loadings for TAM measurement item 

 

Table 6: Standardized Loadings by TAM measurement item  

(S.E.M = Standard Error of Mean) 

Item Minimum Median Mean Maximum Variance S.E.M. 

PEoU1 .6370 .8600 .8432 .9700 .00586 .0095 

PEoU2 .5320 .8550 .8202 .9700 .01261 .0154 

PEoU3 .5610 .8600 .8327 .9600 .01028 .0135 

PEoU4 .4967 .8800 .8217 .9400 .01526 .0211 

PEoU5 .5000 .8800 .8344 .9517 .01260 .0158 

PEoU6 .5300 .8800 .8682 .9700 .00562 .0092 

PU1 .4100 .8250 .8199 .9300 .00743 .0127 

PU2 .7800 .8550 .8652 .9800 .00298 .0105 

PU3 .7300 .8800 .8724 .9800 .00421 .0087 

PU4 .6200 .8940 .8728 .9673 .00451 .0124 

PU5 .6200 .8450 .8309 .9500 .00711 .0124 

PU6 .6400 .8600 .8429 .9800 .00622 .0100 

 

With this prior knowledge, we can now  continue the model specification in Table 7. Lines 24-35 specify normal prior 
distributions for the 12 item loadings. The prior mean is set to that calculated in Table 6. In OpenBUGS, the normal 
distribution is specified with the precision (inverse variance), rather than the variance, and we have used the inverse 
of the standard error of the mean as the precision for our prior belief. Bayesian estimation allows the researcher to 
“weight” the evidence provided by prior information. A higher precision gives relatively more weight to prior 
information, whereas a lower precision gives relatively more weight to the present data. Lines 36 and 37 specify the 
prior distribution of the precision estimate for the indicators, i.e. the inverse error variance. As for the simple 
regression example, because OpenBUGS parameterizes the normal distribution in terms of precision instead of 

variance, we specify a gamma prior distribution. Thus, the specification dgamma(9.0, 4.0) on line 37 yields a 

prior with mean of 2.25 and variance of 9/16 for the error precision (see Table 1), but a prior with mean of 0.5 and 
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variance of 0.0357 for the error variance (see Table 1). We explicitly model the error variances (inverse precision) on 
line 38 as we require samples of this error variance for later analysis. Lines 40 to 47 specify the prior distribution for 
the variances and covariances of the two latent variables. Because of our assumption that these were normally 
distributed, we use the inverse Wishart distribution as conjugate prior of the multivariate normal distribution (Table 
1). However, just as OpenBUGS parameterizes the normal distribution in terms of mean and inverse variance, the 
multivariate normal distribution is also parameterized as mean and inverse variance. Hence, instead of specifying a 

prior inverse Wishart  distribution, we specify a prior Wishart distribution. (dwish(…) on line 41). The relationship 

between the two is simple, and analogous to Equation 8: 

𝑥 ~ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(Ψ, 𝑑)    →   
1

𝑥
 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑖𝑠ℎ𝑎𝑟𝑡(Ψ−1, 𝑑) (Equation 9) 

However, to make matters confusing, the Wishart distribution in OpenBUGS is parameterized with the inverse of the 

Ψ matrix. In effect, this means that the matrix V supplied as parameter to dwish(…) on line 41 serves as our prior 

point belief about the variances and covariances of the latent variables. This matrix V is defined in lines 44 to 47. We 

have again modeled the latent covariance matrix explicitly as the inverse of the precision matrix on line 42, and, to 
make the subsequent model analysis easier still, we estimate the latent correlation directly in OpenBUGS (line 43).  

 

Table 7: CFA model definition in OpenBUGS (part 2, specification of prior probabilities) 

Line Model definition 

22   #priors on loadings 

23   lam[1]~dnorm(0.8432,105) 

24   lam[2]~dnorm(0.8202,64) 

25   lam[3]~dnorm(0.8327,74) 

26   lam[4]~dnorm(0.8217,47) 

27   lam[5]~dnorm(0.8344,63) 

28   lam[6]~dnorm(0.8682,108) 

29   lam[7]~dnorm(0.8199,78) 

30   lam[8]~dnorm(0.8652,95) 

31   lam[9]~dnorm(0.8724,114) 

32   lam[10]~dnorm(0.8728,80) 

33   lam[11]~dnorm(0.8309,80) 

34   lam[12]~dnorm(0.8429,100) 

35   #priors on errors 

36   for(j in 1:P){ 

37     errorprec[j]~dgamma(9.0, 4.0) 

38   errorvar[j]<-1/errorprec[j] 

39   } 

40 #priors on latent (co-)variances 

41   latprec[1:2,1:2] ~ dwish(V[,], 5) 

42   latcov[1:2,1:2] <- inverse(latprec[,]) 

43   latcor <- latcov[1,2]/(sqrt(latcov[1,1])*sqrt(latcov[2,2])) 

44   V[1,1] <- 1 

45   V[1,2] <- 0.5 

46   V[2,1] <- V[1,2] 

47   V[2,2] <- 1 

48 } #end of model 
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Recommendation: To specify prior probability distributions,  

 Research the literature for previous estimates of model parameters 

 Use the appropriate conjugate prior distribution for the type of assumed likelihood 

 Use informative prior distributions when sufficient knowledge exists 

 Use uninformative prior distributions when now previous knowledge exists. Such prior distributions should 
be “skeptical” in the sense that they reflect a null hypothesis of “no effect”, e.g. have a mean of zero for 
regression parameters. 

Step 3: Estimate the Model 

Once the statistical model with all prior probability distributions is specified, the model can be estimated using 
OpenBUGS or WinBUGS. This can be done interactively, but can also be scripted. For easy repeatability of the 
analysis, scripts are preferred. Table 8 shows the script to use for estimating our TAM model. It is similar in structure 
to the one used for the simple example earlier (Table 3). 

 

Table 8: OpenBUGS script to control the estimation 

Line OpenBUGS script 
1 modelSetWD('/home/joerg/OpenBUGSExample') 

2 modelCheck('model.txt') 

3 modelData('data1.txt') 

4 modelCompile(3) 

5 modelGenInits() 

6 samplesSet('lam') 

7 samplesSet('latcov') 

8 samplesSet('latcor') 

9 samplesSet('errvar') 

10 dicSet() 

11 modelUpdate(5000, 1, 1, 'F') 

12 samplesCoda('*', 'coda_output') 

13 samplesStats('*') 

14 dicStats() 

 

Lines 1-3 set the working directory, load and syntactically check the model definition, and load the data. The data file 
also needs to contain definitions for all fixed parameters that are not defined in the model file itself. For example, line 
20 in Table 5 references a vector of value u that is not assigned a probability distribution or fixed in the model 
definition. Thus, OpenBUGS expects to find fixed values for u in the data file. Line 4 in Table 8 instructs OpenBUGS 
to set up the model with three MCMC sampling chains. Initial values are generated in line 5 for all three MCM 
chains. Lines 6 through 9 instruct OpenBUGS to keep samples of important model variables.  

Note that we can sample any variables that we define in the model and for which no fixed values or data are 

provided. For example, the variable latcor was computed in line 43 of Table 7, and we can similarly compute other 

quantities of interest for sampling. More interestingly, if some data was missing completely at random (i.e. there is 
no missingness mechanism to be modelled), one can sample those values, e.g. by specifying 

samplesSet(‘y[198,7]’) to sample the value of the seventh indicator for case 198.  

Line 10 sets up the computation of the DIC (deviance information criterion) for diagnostic purposes later. Line 11 
then instructs OpenBUGS to update the model parameters with 5000 MCMC sampling iterations. Once this is 
completed, line 12 will save all sampled values to a set of files whose names begin with “coda_output”. Lines 13 and 
14 instruct OpenBUGS to display on screen the sample statistics and the DIC statistics. For our example, this script 
took 102 seconds and produced the following output7: 

 

OpenBUGS version 3.2.1 rev 781 

type 'modelQuit()' to quit 

OpenBUGS> OpenBUGS> model is syntactically correct 

OpenBUGS> data loaded 

OpenBUGS> model compiled 

OpenBUGS> initial values generated, model initialized 

OpenBUGS> monitor set 

                                                      
7 Because this is a stochastic process, the exact values will differ a little from repetition to repetition. 
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OpenBUGS> monitor set 

OpenBUGS> monitor set 

OpenBUGS> monitor set 

OpenBUGS> deviance set 

OpenBUGS> 5000 updates took 50 s 

OpenBUGS> CODA files written 

OpenBUGS>  

                         mean      sd        MC_error  val2.5pc  median    val97.5pc start     sample 

 errvar[1]               0.6718    0.06247   6.69E-4   0.5572    0.6684    0.8023    1         15000 

 errvar[2]               0.4839    0.04695   5.031E-4  0.3988    0.4816    0.5821    1         15000 

 errvar[3]               0.3647    0.03699   4.285E-4  0.2977    0.3628    0.4428    1         15000 

 errvar[4]               0.6458    0.05703   5.458E-4  0.5424    0.6431    0.7664    1         15000 

 errvar[5]               0.501     0.04875   5.05E-4   0.4129    0.4982    0.6048    1         15000 

 errvar[6]               0.3263    0.03591   4.991E-4  0.2623    0.3239    0.4031    1         15000 

 errvar[7]               0.2985    0.02839   3.086E-4  0.2465    0.2969    0.3588    1         15000 

 errvar[8]               0.3207    0.03024   3.046E-4  0.2667    0.3191    0.3846    1         15000 

 errvar[9]               0.3637    0.03538   3.878E-4  0.3       0.3618    0.4386    1         15000 

 errvar[10]              0.3174    0.0315    3.508E-4  0.2606    0.3157    0.3831    1         15000 

 errvar[11]              0.5137    0.04801   5.114E-4  0.4265    0.5112    0.6144    1         15000 

 errvar[12]              0.3376    0.03481   4.281E-4  0.2744    0.3357    0.4111    1         15000 

 lam[1]                  0.9117    0.05841   0.00252   0.8024    0.9107    1.023     1         15000 

 lam[2]                  0.8547    0.05657   0.002495  0.7491    0.8536    0.964     1         15000 

 lam[3]                  0.8434    0.05501   0.002467  0.7409    0.8418    0.9504    1         15000 

 lam[4]                  0.7158    0.05147   0.002116  0.6192    0.7149    0.8141    1         15000 

 lam[5]                  0.8485    0.05629   0.002461  0.7439    0.8468    0.957     1         15000 

 lam[6]                  0.9039    0.05673   0.002603  0.7967    0.9028    1.014     1         15000 

 lam[7]                  0.7442    0.04686   0.00141   0.6544    0.7433    0.8375    1         15000 

 lam[8]                  0.8007    0.04883   0.001468  0.7079    0.7999    0.8988    1         15000 

 lam[9]                  0.878     0.05142   0.001544  0.7788    0.8772    0.98      1         15000 

 lam[10]                 0.8712    0.05135   0.001594  0.7718    0.8706    0.9722    1         15000 

 lam[11]                 0.9112    0.05623   0.001605  0.8015    0.9107    1.021     1         15000 

 lam[12]                 0.9709    0.05483   0.001699  0.865     0.9702    1.078     1         15000 

 latcor                  0.613     0.04007   4.101E-4  0.5294    0.6145    0.6867    1         15000 

 latcov[1,1]             2.811     0.4158    0.01707   2.104     2.777     3.735     1         15000 

 latcov[1,2]             1.098     0.1547    0.004086  0.8181    1.087     1.429     1         15000 

 latcov[2,1]             1.098     0.1547    0.004086  0.8181    1.087     1.429     1         15000 

 latcov[2,2]             1.146     0.1529    0.004557  0.8832    1.134     1.475     1         15000 

OpenBUGS>  Dbar Dhat DIC pD  

y 6584.0 6038.0 7130.0 545.7 

total 6584.0 6038.0 7130.0 545.7 

 

The output shows the mean, standard deviation, confidence intervals, and sample sizes for the sampled values. 
However, these values should not be relied upon or reported until the diagnostics in the next two steps are attended 
to.  

There are a number of reasons for performing this many iterations. First, each MCMC sampling chain typically 
requires a few hundred samples to converge to the proper posterior distribution. Hence, early samples must be 
discarded from the subsequent analysis of the estimation results. Second, because of the autocorrelation among 
samples, only every k-th sample should be considered to be independent and used for further analysis, i.e. there will 
be a degree of “thinning” of the samples. The number of remaining samples should be sufficient to provide a stable 
estimate of the posterior probability distributions. Gelman et al. [2004] recommend between 100 and 2000 samples 
be used for inferences, depending on model complexity and desired accuracy. 
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Recommendation: To estimate the model,  

 Use at least 3 MCMC chains 

 Use at least 5000 sampling iterations (possibly fewer for less complex models) 
Optional: For repeatability of results, 

 Set the random number generator seed in OpenBUGS (using modelSetRN(…)) 

 Specify initial values, rather than generating them (using modelInits(…) ) 

Step 4: Assess MCMC Convergence 

As any numerical, iterative algorithm, Bayesian estimation can suffer from convergence problems. Before 
interpreting the results of Bayesian estimation, it is therefore important to perform diagnostic evaluations. Two 
distinct checks are important. First, we need to check whether each sampling chain has converged. Second, we 
need to check whether the sampling chain has converged to the right value. Thus, the first issue is to assess intra-
chain convergence, whereas the second can be assessed by examining inter-chain convergence.  

To aid in this analysis we use the CODA package in the R statistical system [Plummer et al., 2006]. As part of our 
OpenBUGS estimation, we saved our MCMC samples to a set of files in CODA format (line12, Table 8). We read 
these files and analyze them using the R script shown in Table 9. Line 1 in Table 9 loads the “coda” package into the 
R workspace. Line 2 reads the coda format output that OpenBUGS has produced in the previous step (estimation). 

  

Table 9: R Script for data analysis (Part 1: convergence diagnostics) 

Line R script 

1 library(coda) 

2 mcmc.list <- read.openbugs('coda_output') 

3 plot(mcmc.list) 

4 geweke.diag(mcmc.list) 

5 Geweke.plot(mcmc.list) 

6 heidel.diag(mcmc.list) 

7 gelman.diag(mcmc.list) 

8 gelman.plot(mcmc.list) 

 

Line 3 plots a sampling trace and a sampling density for every parameter that was sampled and is present in the 
coda file. These plots are useful for assessing both inter- and intra-chain convergence.  

Figure 2 shows a properly converged solution for one parameter of the model. The trace plot on the left of the figure 
shows the sampled values for each of the three chains for the 5000 samples, while the density plot on the right 
shows the overall frequency of sampled values for the three chains. We can see that all three sampling chains 
converge on the same values and each of the three sampling chains has a stable average. The density plot in 
Figure 2 confirms this by showing an approximately normal distribution.  
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Figure 2: Trace plot and density plot for one parameter of the Bayesian CFA model showing a good solution 

In contrast, Figure 3 shows a trace plot and a density plot for one parameter of the CFA model that shows 
convergence problems of the type that one of the chains produces stable values that differ from those of the other 
chains. We can see that one of the chains converged on a different value, which is also reflected in the bimodal 
density plot on the right of Figure 3. In this situation, the estimation should be re-run with different starting values for 
this parameter.  

 

Figure 3: Trace plot and density plot for one parameter of the Bayesian CFA model showing non-
convergence 

 

The second issue is the convergence of each individual chain around a stable mean. Figure 4 below shows a trace 
plot and density plot for a situation where the individual chains did not converge. We can clearly see that the 
sampled values fluctuate wildly around their sliding-window average (solid lines in the trace plot). 
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Figure 4: Trace plot and density plot for one parameter of the Bayesian CFA model showing non-
convergence of the individual sampling chains. 

 

Recommendation: Use trace and density plots for all parameters. 

 Density plots should reflect the expected posterior distribution (based on the choice of likelihood and prior) 

 Sampling means of each chain become stable 

 Sampling means of all chains converge 

 

More formally, a number of statistics can be computed to help identify convergence problems. For example, Geweke 
[1992] suggested testing the equality of means of the first 10% and the last 50% of the values in the sampling chain 
to assess the stability of the estimates. The test statistic is normally distributed and can be used for a z-test. Line 4 
in Table 9 performs these tests on all sampled parameters and line 5 produces diagnostic plots as shown in Figure 
5. The following is an example output (abbreviated and shown only for a single chain) that shows the z-distributed 
test statistics for our data:  

 

[[1]] 

Fraction in 1st window = 0.1 

Fraction in 2nd window = 0.5  

  errvar[1]   errvar[2]   errvar[3]   errvar[4]   errvar[5]   errvar[6]  

    -0.7398     -0.6226      0.4811     -1.1590      0.7641      0.0302  

... 

     latcor latcov[1,1] latcov[1,2] latcov[2,1] latcov[2,2]  

    -0.5470     -1.5084     -2.2907     -2.2907     -1.5105  

 

Line 4 in our analysis script (Table 9) produces a plot like the one shown in Figure 5 for all sampled parameters. The 
plot shows the test statistics and the 95% confidence interval (1.96 standard deviations). For this plot, the first half of 
the Markov chain is divided into 20 segments, then Geweke’s z-score is repeatedly calculated. The first z-score is 
calculated with all iterations in the chain, the second after discarding the first segment, the third after discarding the 
first two segments, and so on. The last z-score is calculated using only the samples in the second half of the chain. 
This diagnostic tool can show which part of the chain is different from the final part.  
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Figure 5: Plot of Geweke test statistics for a single parameter of a single Gibbs 
sampling chain 

 

Another set of tests has been proposed by Heidelberger and Welch [1983]. The first uses the Cramer-von-Mises test 
to assess whether the sampled values come from a stationary distribution. As with Geweke’s test, this test is also 
successively applied, first to the entire chain, then after discarding the first 10%, 20%, etc. of the chain.  Line 6 in our 
analysis script (Table 9) performs these tests for all sampled parameters. The following is an example output 
(abbreviated and shown only for a single chain):  

 

[[1]] 

            Stationarity start     p-value 

            test         iteration         

errvar[1]   passed       1         0.659   

errvar[2]   passed       1         0.670   

...  

latcov[2,1] passed       1         0.501   

latcov[2,2] passed       1         0.541                                        

            Halfwidth Mean  Halfwidth 

            test                      

errvar[1]   passed    0.671 0.00202   

errvar[2]   passed    0.483 0.00181   

... 

latcov[2,1] passed    1.107 0.01676   

latcov[2,2] passed    1.148 0.01928   

 

The reported start iteration is that iteration at the inclusion of which the stationarity test was passed. In our example, 
the stationarity test was passed even when the entire sample was used (start iteration equals one). The second test 
then takes the sampled values that are accepted by the stationarity test (in our case, the entire sample) and 
constructs a 95% confidence interval for the sampled value. It then compares the half-width of this interval to them 
mean and reports the difference between the two. The half-width of the confidence interval should coincide with the 



 

 

Volume xx Article x 
23 

sample mean. In our example, both the stationarity and the half-width test are passed for all sampled parameters in 
all three chains.  

In contrast to Geweke’s and Heidelberger and Welch’s tests, which examined the intra-chain convergence, 
Gelman’s potential scale reduction factor (PSRF) assesses the inter-chain convergence [Gelman et al., 2004]. The 
PSRF is analogous to an ANOVA in that it compares the between- and within-sequence variances of parameter 
estimates. In the following expression for the PSRF, 𝐵 and 𝑊 refer to the between-chain and within-chain sampling 

variance, respectively, where 𝑛 is the number of samples in each chain, and 𝑚 is the number of chains: 

𝐵 =
𝑛

𝑚 − 1
∑(�̅�.𝑗 − �̅�..)

2
𝑚

𝑗=1

 (Equation 10) 

𝑊 =
1

𝑚
∑ [

1

𝑛 − 1
∑(�̅�𝑖𝑗 − �̅�.𝑗)

2
𝑛

𝑖=1

]

𝑚

𝑗=1

 (Equation 11) 

𝑃𝑆𝑅𝐹 =  
√

𝑛 − 1
𝑛

𝑊 +
1
𝑛

𝐵

𝑊
 

(Equation 12) 

Line 7 in our analysis script (Table 9) calculates the PSRF for all sampled parameters, and Line 8 in our script 
produces plots of PSRF for all parameters, similar to the one shown in Figure 6 for a single parameter. The following 
is an example output of Gelman’s diagnostic (abbreviated): 

 

Potential scale reduction factors: 

            Point est. 97.5% quantile 

errvar[1]         1.00           1.00 

errvar[2]         1.00           1.00 

... 

latcov[2,1]       1.00           1.00 

latcov[2,2]       1.00           1.01 

 

Multivariate psrf 

1.02 

 

The recommendation is for the PSRF to be less than 1.1 [Gelman et al., 2004] to indicate good convergence, which 
is true for all parameters in our example.  
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Figure 6: Plot of Gelman’s PSR factor for one sampled parameter 

 

Recommendation: To ensure intra- and inter-chain convergence, 

 Geweke’s z-statistics should be less than 1.96 for all parameters 

 Heidelberger and Welch’s stationarity tests should be passed  (note the starting iteration) by all parameters 

 Heidelberger and Welch’s half-width test should be passed by all parameters 

 Gelman’s PSRF should be less than 1.1 for all parameters 

 

Recommendation: If the diagnostics fail to support intra- or inter-chain convergence, go back to step 3 
(Estimate the model) and 

 Increase the number of MCMC iterations, and/or 

 Manually set different starting values 

 Repeat step 4 (Assess MCMC Convergence) 

Step 5: Remove Burn-In Iterations and Thin Samples 

Because of the iterative nature of MCMC sampling, the initial samples in each chain should be discarded prior to 
analysis. In many cases, researchers may discard the initial 10% or 20% or even half of the chain. This initial part of 
the chain where the sampled estimates are still converging is called the “burn-in” period. The results of the 
diagnostics in the previous subsections given an indication how many such “burn-in” samples should be discarded. 

For example, both Geweke’s as well as Heidelberger and Welch’s diagnostics suggest that the entire chain might be 
usable. However, a look at Gelman’s diagnostic (Figure 6) shows that convergence might not have been achieved 
for the first 500 iterations.  

Table 10: R Script for data analysis (Part 2: Assessing auto-correlation, 
removing burn-in iterations and thinning the MCMC samples) 

Line R script 

8 autocorr.diag(mcmc.list) 

9 autorcorr.plot(mcmc.list) 

10 raftery.diag(mcmc.list, q=0.5, r=0.05) 

11 thinned <- window(mcmc.list, 2000, 25000, 50) 
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Because of the nature of the MCMC sampler (see earlier illustration), consecutive samples are not independent, and 
are likely correlated (“autocorrelation”). As we noted above, any inference on the parameter estimates assumes 
independence of observations. This can be achieved approximately by selecting only every k-th sample for analysis, 
where k is chosen to reduce the effect of autocorrelation (“thinning” the MCMC series). On the other hand, 
autocorrelation is in increasingly smaller problem the larger the sample becomes.  

Line 8 in our analysis script (Table 10) computes the autocorrelation among sampled values for each sampled 
parameter at different lag distances. The following is an example output (abbreviated) for our data. It shows that for 
these parameters, a distance or lag of 5 is sufficient to significantly reduce autocorrelation. Line 9 in in our script 
produces a plot of these autocorrelation values, similar to the one shown in Figure 7. 

 

         errvar[1]    errvar[2]    errvar[3]    errvar[4]   errvar[5] 

Lag 0   1.00000000  1.000000000  1.000000000  1.000000000  1.00000000 

Lag 1   0.23631085  0.280117179  0.351692755  0.158127378  0.28515151 

Lag 5  -0.01243173  0.004290029  0.011596124  0.003318055 -0.01460019 

Lag 10 -0.01634735 -0.010678489  0.006672367  0.004160701 -0.01899383 

Lag 50  0.02435305  0.002701307 -0.002208589 -0.001444679  0.01539449 

          lam[5]    lam[6]     lam[7]     lam[8]    lam[9]    lam[10] 

Lag 0  1.0000000 1.0000000 1.00000000 1.00000000 1.0000000 1.00000000 

Lag 1  0.8018296 0.8697411 0.60943472 0.61126568 0.6170946 0.65687820 

Lag 5  0.6715677 0.7354921 0.41965701 0.41188918 0.4237928 0.46294914 

Lag 10 0.5485456 0.6025749 0.28160973 0.26951662 0.2699685 0.29114718 

Lag 50 0.1101499 0.1313006 0.01960327 0.03040368 0.0295588 0.02315531 

 

From Figure 7 (top) we see that the autocorrelation with a lag of 3 is already quite small for one parameter. 
Retaining every 3rd sample of the remaining 4500 would leave us with 1500 retained samples (from each chain), well 
within the recommendation by Gelman et al. [2004], who recommend that between 100 and 2000 samples be used 
for inferences, depending on model complexity and desired accuracy. However, our data and Figure 7 (bottom) also 
indicate that the samples for other model parameters show significantly higher auto-correlation. In our second, 
extreme case, a lag of 50 is required to reduce autocorrelation to acceptable levels, retaining only 90 samples for 
that parameter. 
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Figure 7: Autocorrelation plot for two sampled parameters  

 

A more precise recommendation for the required sample size, given desired margin of errors for the parameter 
inference and the degree of autocorrelation in the samples, is provided by Raftery and Lewis [1992; 1995].  Line 10 
in our analysis script (Table 10, continued from Table 9) computes this information. The parameter q describes the 
quantile to be estimated (here, the mean) and the parameter r describes the required accuracy or precision for the 
estimate. The following is an example output (abbreviated, and for a single chain only): 

 

[[1]] 

Quantile (q) = 0.5 

Accuracy (r) = +/- 0.05 

Probability (s) = 0.95  

                                                    

             Burn-in  Total Lower bound  Dependence 

             (M)      (N)   (Nmin)       factor (I) 

 errvar[1]   4        536   385           1.39      

 errvar[2]   4        550   385           1.43      

... 

 lam[1]      63       8154  385          21.20      

 lam[2]      72       8808  385          22.90      

... 

 latcov[2,1] 16       2168  385           5.63      

 latcov[2,2] 30       3955  385          10.30 

 

The first column (Burn-in M) shows the recommended number of burn-in iterations to discard, the second column 
(N) shows the recommended number of samples to retain. This estimate is based on an estimate of the 
autocorrelation in the last column (Dependence Factor I). The higher the autocorrelation (dependence factor), the 
larger the number of required samples. The third column (lower bound Nmin) gives the minimum required sample 
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size when there is no autocorrelation. In our example, the high auto-correlation for some parameters leads to a very 
large required sample size.  

As the output shows, it is possible to either “thin” the series sufficiently to reduce autocorrelation (keeping in mind 
the lower bound Nmin) or to estimate more samples but without thinning the series (keeping in mind the required 
Total N). Sometimes, both options must be chosen. While the decision how many “burn-in” samples to discard and 
how much to “thin” a MCMC series is within the discretion of the researcher, it is generally better to discard samples 
liberally. If the researcher feels that the remaining samples are insufficient for later analysis, the estimation should 
be repeated with more samples. While perhaps prohibitive even 10 years ago, given the increasing computing 
power available for Bayesian analysis, this kind of “trial-and-error” estimation is easily possible now.  

For our example, we decided to re-estimate the model with 25,000 iterations, to discard (generously) the first 2,000 
iterations and to thin (also generously) with a distance of 50, i.e. retain only every 50th sample. This leaves a total 
sample size of 460 for each of the three chains. The coda package provides a convenient function for selecting from, 
and thinning a set of MCMC samples, as shown in line 11 in Table 10.  

Recommendation: After the model estimation, 

 Based on the results from step 4 (Assess MCMC Convergence), discard (generously) the burn-in iterations 
from the sample. 

 Assess autocorrelation within MCMC series 

 Use Raftery and Lewis’ method to identify required number of samples for desired accuracy 
Then, either 

 Thin the series to avoid autocorrelation, and/or 

 Increase the sample size (MCMC iterations) and rerun the model estimation (step 3) 

Step 6: Evaluate Model Quality 

Bayesian structural equation modeling, unlike covariance based SEM analysis, does not offer a simple test of overall 
model fit like the χ2 test statistic [Evermann and Tate 2011]. Instead, the recommended way to assess the fit to data 
of a Bayesian model is to use the posterior-predictive p-value (PPP) [Asparouhov and Muthen, 2010a; Asparouhov 
and Muthen, 2010b; Gelman et al., 1996; Muthen and Asparouhov, 2012; Scheines et al., 1999]. The idea is to 
define a discrepancy function that represents the fit between data 𝑌 and model. It is common to use the traditional 𝜒2 

fit function for this. The discrepancy function 𝑓(𝑌, 𝜃) is calculated at each sampling iterations, based on the currently 

sampled values 𝜃 of the model parameters. At the same time, a new data set �̃� is drawn from a multivariate-normal 

distribution that is based on the currently sampled values 𝜃 of the model parameters. Note that the new data set is 
sampled from the posterior distribution with sampling error. It is data that is predicted by the model and the posterior 

probability values. The discrepancy function 𝑓(�̃�, 𝜃) is then also evaluated using this new data set. The PPP value is 

defined as the probability that 𝑓(𝑌, 𝜃) < 𝑓(�̃�, 𝜃), i.e. that the original data fits the model better than the predicted 

data, formally: 

𝑃𝑃𝑃 = 𝑝(𝑓(𝑌, 𝜃) < 𝑓(�̃�, 𝜃) 

This probability is approximated as the proportion of sampling iterations for which 𝑓(𝑌, 𝜃) < 𝑓(�̃�, 𝜃). Low PPP values 

indicate that original sample data fits the model significantly worse than data that is predicted from the model. An 
excellent fit is characterized by a PPP of 0.5, i.e. the original data fits the model as well as data that is predicted from 
it. Muthen and Asparouhov [2012] suggest that a PPP of 0.05 is a reasonable indicator of acceptable fit. In 
simulation studies [Asparouhov and Muthen, 2010a], the PPP has been shown to perform with less bias than the 

classical 𝜒2 fit statistic for small sample sizes. However, at the same time, it was also less powerful to reject 
misspecified models for all sample sizes, although this effect diminishes as sample size increases.  

Because the discrepancy function is specific to structural equation models, it is not available in OpenBUGS nor in 

any standard R package. Thus, we have implemented the 𝜒2 fit function for a CFA analysis in our analysis script 
(Table 11).  

Line 1 in Table 11 loads the MASS package, which is required to draw a sample from a multivariate-normal 
distribution. Line 2 loads the original data set and lines 3 through 7 set up some variables needed for the later 
computation. In line 9, we move the thinned MCMC samples into an R data frame for easier access. Line 11 begins 
a loop over all MCMC samples so that we can assess the discrepancy functions. Based on the parameter estimates 
for that iteration (mean across all chains, line 13), we calculate the model matrices for the CFA model in lines 14 – 
19. The model-implied covariance matrix is computed in line 21 for the CFA model. The expression for the general 
SEM can be found in any SEM textbook, e.g. [Bollen, 1989]. With this matrix in hand, we can compute the chi-
square discrepancy function f in line 23 [Bollen, 1989]. Next, in line 25 we simulate data by drawing from a 
multivariate normal distribution with the model-implied covariance matrix and compute the covariance of the 
simulated (predicted) data (line 27). Again, we calculate the same chi-square discrepancy function, this time for the 
simulated/predicted data (line 29). Lines 30 to 35 provide some output and keep track of the differences in the 
discrepancy functions, as well as the PPP. Once the loop over all MCMC iterations is completed, line 38 computes 
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the 95% confidence interval on the differences in discrepancy function, and line 40 outputs the PPP, approximated 
as the proportion of iterations for which the fit of the actual data to the model was better than the fit of the 
simulated/predicted data. 

Table 11: R Script for data analysis (Part 3: Calculating the PPP) 

Line Script file 

1 library(MASS) 

2 data <- read.csv('simulated.data.283.csv') 

3 # set up some variables 

4 n <- nrow(data) # Number of observations 

5 S.f <- cov(data) # Covariance matrix of data 

6 c <- 0 # Counter for PPP 

7 diff <- matrix(0) # Store differences in fit 

8 # Move thinned MCMC samples into data frame for easier access 

9 d <- as.data.frame(as.matrix(thinned, iters=TRUE, chains=TRUE)) 

10 # Loop over all retained MCMC samples 

11 for (l in seq(start(thinned), end(thinned), thin(thinned))) { 

12   # Calculate the mean parameter values over all chains 

13   m <- apply(d[d$ITER==l,], 2, mean) 

14   # Matrix ephat.mat is the error variance matrix 

15   ephat.mat <- diag(m[3:14], nrow=12, ncol=12) 

16   # Matrix phi.mat is the latent covariance matrix 

17   phi.mat <- matrix(m[28:31], nrow=2, ncol=2, byrow=TRUE) 

18   # Matrix lambda.mat is the loading matrix 

19   lambda.mat <- matrix(c(m[15:20], rep(0,12), m[21:26]), nrow=12, ncol=2, 

byrow=FALSE) 

20   # Calculate predicted covariance matrix 

21   Sigma.pred <- lambda.mat %*% phi.mat %*% t(lambda.mat) + ephat.mat 

22   # The chi-square discrepancy based on current model and actual covariance 

23   f <- (n - 1) * (log(det(Sigma.pred)) + sum(diag(solve(Sigma.pred) %*% S.f )) - 

log(det(S.f)) - 12) 

24   # Simulate data set from current model 

25   sim.data <- mvrnorm(n=n, mu=rep(0,12), Sigma=Sigma.pred, empirical=FALSE) 

26   # Calculate simulated data covariance matrix 

27   S.pred <- cov(sim.data) 

28   # The chi-square discrepancy based on current model and predicted data 

29   f.pred <- (nrow(sim.data) - 1) * (log(det(Sigma.pred)) + 

sum(diag(solve(Sigma.pred) %*% S.pred)) - log(det(S.pred)) - 12) 

30   # Some output to see what is going on 

31   cat('Iteration', l, ': f.pred = ', f.pred, ' // f = ', f, ' \n') 

32   # Keep track of the differences in discrepancy function values 

33   diff[ (l - start(thinned))/thin(thinned) + 1] <- abs(f.pred-f) 

34   # Keep track of whether model fits better to actual than to predicted data 

35   if (f < f.pred) c <- c + 1 

36 } 

37 # Report 95% confidence interval on fit differences 

38 quantile(diff, c(0.05, 0.95)) 

39 # Report the PPP 

40 c/length(diff) 
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For our example, the 95% confidence interval of the difference in discrepancy values (across 461 MCMC iterations) 
was [35.134; 76,924] and the PPP was 0. While this indicates that the model does not fit, this results comes as no 
surprise as the original model, estimated using covariance analysis, also shows lack of fit [Evermann and Tate, 
2011].  

Another measure of model fit is the DIC (deviance information criterion) [Gelman et al., 2004; Spiegelhalter et al., 
2002]. The deviance itself is defined in terms of the log-likelihood  

𝐷(𝑥, 𝜃) = −2 log 𝑝(𝑥 | 𝜃) (Equation 13) 

Using the mean of the posterior distributions for each parameter �̂�, one can estimate an overall summary of the 
deviance as 

𝐷�̂�(𝑥) = 𝐷(𝑥, �̂�) (Equation 14) 

On the other hand, one can compute the deviance for each MCMC sample of the posterior 𝜃𝑙, and then compute the 
mean of those: 

𝐷(𝑥)̂ =  
1

𝐿
∑ 𝐷(𝑦, 𝜃𝑙)

𝐿

𝑙=1

 (Equation 15) 

The DIC is then defined in terms of the difference between the two: 

𝐷𝐼𝐶 =  2 𝐷(𝑥)̂ − 𝐷�̂�(𝑥) (Equation 16) 

The DIC, similar to the better known Akaike information criterion (AIC), does not provide an absolute criterion of 
model fit, but is used to compare competing models. Specifically, the model with the lower DIC should be preferred. 
It can be used for hypothesis testing by comparing (nested or non-nested) models that embody the Null and 
alternate hypotheses. Lunn et al. [2013] suggest that differences in DIC between 5 and 10 are important. The DIC 
for our example model was 7129.0 and is shown at the end of the OpenBUGS script output, together with its 
components, as per equations 13 and 14: 

  Dbar Dhat DIC pD  

y 6584.0 6039.0 7129.0 545.2 

Because the model quality and fit can always be improved with a more complex model, a measure of complexity 
should be used. The pD measure reported by OpenBUGS (in our example 545.2) is called the “effective number of 
parameters” and differs from the number of parameters as traditionally counted to reflect the fact that the prior 
distributions effectively acts to restrict the freedom of the model parameters [Lunn et al., 2013]. 

Results for small sample sizes may depend strongly on the specified prior probability distributions of model 
parameters. Perhaps counterintuitively, this is especially the case when different uninformative priors are used  
[Asparouhov and Muthen, 2010a]. However, this is because for small sample sizes, the likelihood plays a relatively 
smaller role in determining the posterior, so that different types of priors can exert their influence. While there are no 
guidelines as to which models are affected at which sample size, researchers should check for this “prior 
assumption dependence” by estimating the model with different uninformative priors [Asparouhov and Muthen, 
2010a]. 

Recommendation:  

 Use the PPP to assess model fit 

 Use the DIC to compare alternative/competing models 

 Especially for small sample sizes, re-estimate model with different uninformative priors (step 2)  

Results 

Only when the above steps of convergence assessment, thinning, and model quality evaluation are completed, 

should the results be reported. In our example, we can simply use “summary(thinned)” to get a summary of the 

parameter estimates in our thinned MCMC sample set. 

To show the effect that the prior probability specifications have on the estimation results, we ran the Bayesian 
estimation with three different variances of the normal prior probability distributions for the loadings. These 
correspond to different degrees of certainty about the prior model parameter values. The initial estimation used the 
standard error of the mean (S.E.M.) of the published estimates from Table 1. This expresses relatively little certainty 
about the prior values. The second estimation used 1/10 times the standard error of the published estimates, 
expressing greater certainty about the published estimates, while the third estimation used 1/100 times the standard 
error of the published estimates, expressing even more certainty about the published estimates.  
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The results of the ML and Bayesian estimations are shown and compared in Table 12. The table shows that the 
Bayesian estimates and standard errors are of the same order of magnitude as the traditional ML estimates (column 
“Bayesian 1” in Table 12, variance of prior probability distribution on factor loadings equals the standard error of the 
mean from Table 1). In the Bayesian perspective, the ML estimates could be viewed as posterior estimates with an 
uninformative prior distribution because they make no use of existing information about parameter distributions, only 
of the sample data. When the certainty of the prior information is increased (column “Bayesian 2” in Table 12, 
variance of prior probability distribution on factor loadings equals 1/10 the standard error of the mean from Table 1) 
estimates for most parameters tend to be closer to the prior estimates, showing the influence of prior information on 
the estimates. When the certainty of the prior estimates is further increased (column “Bayesian 3” in Table 12, 
variance of prior probability distribution on factor loadings equals 1/100 the standard error of the mean from Table 
1), the estimates tend to be still closer to the prior estimates. Table 12 also shows that the standard errors for the 
estimate are smaller when the prior means are more certain, and larger when the prior means are less certain. 

Table 12: CFA model loadings for different estimation methods 

Param. ML Estimate Prior Estimates 

(From Table 1) 

Bayesian 1 Bayesian 2 

(greater certainty) 

Bayesian 3 

(much greater 
certainty) 

 Est. Std. 
Err. 

Est. Std. 
Err. 

Est. 
(Mean) 

Std. 
Dev. 

Est. 
(Mean) 

Std. Dev. Est. 

(Mean) 

Std. 
Dev. 

Eou1 .881 .0468 .8432 .0095 .9143 .05294 .8723 .02285 .8489 .009182 

Eou2 .899 .0462 .8202 .0154 .8553 .05065 .8313 .02444 .8237 .011295 

Eou3 .922 .0453 .8327 .0135 .8455 .04804 .8274 .02209 .8316 .010390 

Eou4 .827 .0486 .8217 .0211 .7185 .04655 .7317 .02744 .7967 .013656 

Eou5 .895 .0463 .8344 .0158 .8507 .05082 .8318 .02483 .8341 .011489 

Eou6 .939 .0446 .8682 .0092 .9066 .05026 .8809 .02110 .8721 .008987 

Use1 .828 .0390 .8199 .0127 .7454 .04697 .7701 .02564 .8110 .010786 

Use2 .837 .0406 .8652 .0105 .7986 .05012 .8233 .02523 .8580 .010057 

Use3 .845 .0498 .8724 .0087 .8761 .05162 .8696 .02375 .8722 .008967 

Use4 .861 .0466 .8728 .0124 .8705 .05182 .8655 .02611 .8721 .010731 

Use5 .809 .0595 .8309 .0124 .9113 .05822 .8634 .02887 .8363 .010998 

Use6 .880 .0594 .8429 .0100 .9685 .05537 .8998 .02550 .8520 .009949 

Phi1,2 .612 .0403 NA NA .6130 .03902 .6130 .03900 .6137 .038984 

 

Using Bayesian estimation methods, it is thus possible to build cumulative evidence of model parameter estimates 
and to incorporate prior knowledge in a statistically sound way. This allows researchers to keep a “running tally” of 
the best estimates of model parameters. 

The substantive interpretation of the model and its estimated parameters, in terms of validity and reliability of 
indicators, the adequacy of the structural model in terms of explanatory value, etc. are the next steps a researcher 
needs to attend to. However, the fact that Bayesian estimation of the model was used has no effect on these and 
existing guidelines [e.g. Gefen et al., 2011] remain largely applicable.  

In terms of reporting of results, our key recommendation is to report the choice of prior distribution. Because there is 
no “correct” prior and the prior can have a potentially strong effect on the results, especially at small sample sizes, 
researchers at the very least need to report and justify their choice of prior if it is an informative prior. At best, 
researchers report results of different models for different priors, including a “skeptical” one that represents a “no-
effect” hypothesis [Lunn et al., 2013] . Researchers should also report the different diagnostics and the decisions 
based on them, like increasing the sample size, thinning the MCMC series, or discarding burn-in iterations. Finally, 
researchers should not only recommend the estimated mean or mode of the posterior distribution, but also credibility 
intervals, e.g. the 2.5% and 97.5% bounds. In case of severely skewed posteriors, researchers may want to include 
a plot of the distribution, as in Figure 2. 

Recommendation:  

 Report and justify the choice of informative prior distributions 

 Report all diagnostics and the estimation decisions based on them 

 Report the estimated mean or mode of the posterior distribution and credibility intervals for important 
parameters. 
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VI. CONCLUSION 

Our specific contribution with this tutorial is to present a collection of best practices for Bayesian estimation and 
diagnostics to Information Systems researchers. These best practices are summarized in Figure 8 and Table 13. We 
used the OpenBUGS and R software packages for their flexibility and expressiveness in modeling, their wide-
ranging support for diagnostics and their easy availability. This tutorial provides detailed instructions on how best 
practices can be instantiated with these software packages.  

Our tutorial shows that Bayesian statistics is not inherently more difficult to apply than traditional methods. The 
often-cited computational requirement is no longer an impediment, and expressing a SEM in Bayesian terms is 
made easier with the availability of expressive software such as OpenBUGS. Given this, we believe that IS 
researchers should add Bayesian methods to the arsenal of tools used to evaluate their theories. We agree with 
Rupp et al. [2004] who suggest that “the appropriate question that a contemporary psychometrician should ask is not 
whether to Bayes but instead when to Bayes” (pg. 447). In other words, there are situations when a Bayesian 
approach is just one possible method, and other situations when it should be the preferred method. We hope that 
this tutorial will provide guidance to IS researchers to recognize when and how to use a Bayesian approach to 
structural equation modeling. 

We believe that any research discipline is interested in meaningfully accumulating knowledge, rather than merely 
piling up results. Thus, the ability to reconcile different parameter estimates that occur when our theoretical and 
measurement models are reused and re-estimated, is important. From this perspective, Bayesian estimation is a tool 
to integrate our existing knowledge into the estimation and provide updated knowledge, in effect keeping a “running 
tally” of our best knowledge of model parameters. In the larger picture, Bayesian methods allow researchers to pay 
increasing attention to the parameter estimates produced by their models. They are, after all, part of the theory that 
is being proposed. Only by paying such attention to parameter estimates can we successfully refine our theories and 
build truly cumulative knowledge. 
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Figure 8: Recommended process for Bayesian estimation of SEM 
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Table 13: Summary of recommended best practices 

Pre-Study   

 Recommended: Use Bayesian analysis for 

 non-standard models that are difficult to express in covariance 
or partial-least squares  models (such as multi-level models, under-
identified models, models with missing values and/or non-continuous 
variables) 

 estimation that allows the use of prior knowledge about 
parameter values, and/or estimation from small sample sizes 

 Recommended:  Meta-analysis is a valuable pre-cursor to Bayesian estimation. 
Use the meta-analytic results to aggregate data from former studies 
for use in Bayesian estimation 

 Recommended: Use the OpenBUGS software for Bayesian estimation because it is 

 Flexible 

 Expressive 

 Extendable 

 Free and open-source 

 Cross-platform 

 Scriptable 

Step 1 Specify the basic statistical model 

 Recommended: Specify a model to estimate latent variances as well as all loadings. 

 Recommended: Estimate all cross-loadings with realistic small prior probabilities with 
sufficient precision (inverse variance) to ensure the model can be 
estimated. 

Step 2 Identify prior knowledge and distributional assumptions  

 Option 1: Research literature for prior estimates 

 Option 2: Theoretically motivate informative prior distributions 

 Option 3: Use non-informative prior distributions. Such prior distributions should 
be “skeptical” in the sense that they reflect a null hypothesis of “no 
effect”, e.g. have a mean of zero for regression parameters. 

Step 3 Estimate model 

 Recommended: Use at least 3 MCMC chains 

 Recommended: Use at least 5000 sampling iterations 

 Optional: Set random number seed in OpenBUGS (using modelSetRN(…)) and 

specify initial values (using modelInits(…) ) for repeatability 

Step 4 Assess MCMC convergence 

 Recommended: Visually assess convergence of MCMC chains using trace plots, 
sampling means of all chains should converge 

 Recommended: Visually assess posterior sampling distribution using density plots, 
should be similar to expected theoretical posterior distribution 

 Recommended: Use Geweke’s [1992] test for convergence, the z-statistic should be 
less than 1.96 for all parameters 

 Recommended: Use Heidelberger and Welch [1983] tests for stationarity. Stationarity 
and half-width tests should be passed by all parameters. 

 Recommended: Use Gelman’s Potential Scale Reduction (PSR) criterion for 
convergence, ensure all PSR values are less than 1.1.  

Step 5 Remove burn-in iterations and thin samples 

 Recommended: Discard the “burn-in” iterations from the sample, based on the results 
from step 4. 

 Recommended: Assess autocorrelation of samples within MCMC series 

 Recommended: Use Raftery and Lewis’ [1992; 1995] method to estimate required 
sample size 

 Option 1: Thin the series to reduce auto-correlation 
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Table 13: Summary of recommended best practices 

 Option 2: Increase the number of sampling iterations. 

Step 5 Evaluate model quality 

 Recommended: Assess posterior-predictive probability (PPP) 

 Optional: Compare different models using Deviance Information Criterion (DIC) 

 Optional: Perform sensitivity analysis to assess the impact of prior distribution 
dependence (especially for non-informative priors with small samples) 

Reporting   

 Recommended: Report and justify the choice of informative prior distributions 

 Recommended: Report all diagnostics and the estimation decisions based on them. 

 Recommended: Report the estimated mean or mode of the posterior distribution and 
credibility intervals for important parameters. 
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