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Abstract—Cloud computing offers readily available, scalable
infrastructure to tackle problems involving high data volume
and velocity. Discovering processes from event streams, especially
when the business processes execute in a cloud environment, is
such a problem. Event stream data is generated rapidly with
varying volume and must be processed on-the-fly, making stream
processing an important use case for cloud computing. This paper
describes a distributed, streaming implementation of the flexible
heuristics miner on Amazon Kinesis, a cloud-based event stream
infrastructure, showing how mining methods can scale effortlessly
to tens of millions of events per minute.

I. INTRODUCTION

Many information systems produce event logs that capture
the actions of their users. Examples are page requests of web-
servers and business-object method calls in ERP systems.
Process discovery deals with the identification of processes
from such event logs, for example the process of ordering
a product on an e-commerce web-site, or the process of
scheduling a manufacturing order in an ERP system [1].

Process discovery in the context of cloud environments is
a largely unexplored topic. In this paper we describe process
discovery in the cloud, not process discovery of cloud data.
Specifically, we are not concerned with mining process models
from data that necessarily originate in cloud-based systems or
the cloud infrastructure. Research questions related to cloud
issues such as multi-tenancy are discussed in [2]. Instead,
we are interested in the use of cloud-based systems to mine
process data that may or may not originate in the cloud.

The rapid creation and increased availability of data has
been captured in the notion of ”big data”. The characteristics
of ”big data”, high volume, high velocity and high vari-
ability makes business process discovery an important cloud
computing use case. The scalability provided by on-demand
computing and data management infrastructure allows rapid
or real-time process discovery of big data. The large volume
of event data, generated at a rapid rate, makes it impractial to

store the data for any length of time and requires that the data
is processed on-the-fly, using data stream processing methods.
A useful abstraction for this are data streams that connect a
set of independent data processors that together implement
a distributed data analysis algorithm. Cloud infrastructure
is ideally suited for dynamically provisioning the required
data streams and computing nodes, making business process
discovery an important cloud computing use case.

The Flexible Heuristics Miner (FHM) [3] is a simple yet
useful and widely used [4] heuristic for constructing process
models from event logs. We implement the FHM algorithm
in a distributed way on indepedent processing nodes that
ingest streaming event data and are also internally connected
by event streams. We use a cloud-based implementation of
the event streaming infrastructure, affording us scalability to
hundreds of megabytes per minute. The individual processing
nodes consist of independent processing threads that do not
manage any information proportional in size to the volume
of incoming events. Scalability is therefore limited only by
processing power and network bandwidth; both limitations are
addressed by the distributed implementation and scalability
features offered by cloud-based processing environments. In
summary, the goals of this research are to demonstrate that

• Process discovery algorithms can be designed or adapted
for streaming event data, operating on an event-by-event
basis,

• The streaming event processing algorithm can be dis-
tributed across multiple processing nodes, in turn con-
nected by event streams,

• The distributed algorithms and the connecting network of
event streams can be readily implemented on commercial
cloud infrastructure, and

• The implementation of the distributed algorithms scales
effortlessly to tens of millions of events per minute.

The remainder of the paper is as follows. Sec. II briefly
discusses prior work on stream process dicsovery. Sec. III9781-5090-1445-3/16$31.00 c© 2016 IEEE (CloudBPM’16)



introduces the main ideas of the FHM. Next, Sec. IV presents
our distributed, scalable implementation of the FHM algo-
rithm. Following this, Sec. V presents our implementation and
experimental results. The paper closes with a brief discussion
in Sec. VI.

II. RELATED WORK

Process mining of big data has only been a very recent
research topic [5] and only a few approaches have been
presented, mostly concerning process mining on stationary
data. Reguieg et al. [6] apply map-reduce to process discovery
with the aim of discovering ”event correlations” in systems
where events are not explicitly associated with cases. However,
the actual process discovery is outside the scope of their map-
reduce based approach. In contrast, [7] describe a map-reduce
implementation for computing event log abstractions, such as
the ”follows” relation (Def. 1 in Sec. III), which are used
by different process discovery algorithms. Also using map-
reduce, [8] present a scalable implementation of the Alpha
miner and the FHM. While dealing with ”big data”, these
approaches operate on static data and can therefore not deal
well with high data velocity.

Among approaches operating on streaming data, [9] presents
a method to discover declarative process models. A declarative
process model is one that does not explicitly specify the pro-
cess control flow, but ”describes a set of constraints that must
be satisfied throughout the process execution.” In contrast, our
work is concerned with the mining of explicit process models.

Three streaming variants of the FHM have already been
proposed. The streaming version described in [10] uses three
event queues to maintain information about the latest ob-
served activities and the resulting latest observed dependency
measures. From this information, a process model is mined
periodically or when required, using any existing process
discovery algorithm. This is in contrast to our approach
which continuously updates not only the occurrence counts of
the log-based ordering relation instances and the dependency
measures (Def. 1, 2 in Sec. III) but the entire process model
with the processing of every event.

Expanding on the earlier approach in [10], [11] uses lossy
counting to count occurrences of activities and instances of
the ”follows” relation (Def. 1 in Sec. III) to then periodically
mine a process model from this information. Again, in contrast
to our work, the algorithm does not continuously update the
discovered model. Instead, the idea is that ”since the two
fundamental measures of Heuristics Miner ... are based on the
directly-follows measure ... our idea is to ’replace’ the batch
version of this frequency measure, with statistics computed
over an event stream.”[11, p. 2423].

Another streaming implementation of the FHM in [12]
stores event counts and information that allows computing the
”follows” relation in trace prefix trees. A number of pruning
strategies are described and implemented to keep the size
of the prefix trees manageable even for streams with many
different events and long traces. But, similar to [10], [11],
[12] and in contrast to our work, only the basic log relations

(Def. 1, 2 in Sec. III) are updated on an event-by-event basis,
the actual FHM discovery algorithm (Def. 3 in Sec. III) is
performed periodically.

Only indirectly concerned with process discovery are event
stream processing applications for process prediction, such as
those in [13], [14].

III. THE FLEXIBLE HEURISTICS MINER

The Flexible Heuristic Miner (FHM) algorithm [3] is de-
signed to be used with noisy event log data in that it allows the
exclusion of rare or unusual event occurrences that should be
considered ”outliers” for the discovery of the process model.
The FHM algorithm defines three log-based ordering relations:

Definition 1. (Log-based ordering relations for the FHM
algorithm) Let T be a set of activities and W be an event
log over T . Let a, b ∈ T :
• a >w b iff there is a trace σ = t1t2t3 . . . tn−1 in W

such that σ ∈ W and ti = a and ti+1 = b for i ∈
{1, . . . , n− 2}

• a >>w b iff there is a trace σ = t1t2t3 . . . tn−1 in W
such that σ ∈ W and ti = ti+2 = a and ti+1 = b for
i ∈ {1, . . . , n− 3}

• a >>>w b iff there is a trace σ = t1t2t3 . . . tn−1 in W
such that σ ∈ W and ti = a and tj = b and i < j for
i, j ∈ {1, . . . , n− 1}

The ”follows” relation (>w) represents direct successors of
activities in the log. The second relation (>>w) represents
loops of length two between activities. The third relation
(>>>w) represents the general successor relationship, either
direct or indirect, irrespective of the distance of the two
activities in the log.

From the occurrence counts of instances of these log-based
ordering relations, the FHM algorithm constructs ”dependency
measures” that express the relative frequency of the occurrence
of instances of each log-based ordering relation. These depen-
dency measures indicate the degree of ”certainty” that there
is a true dependency relation between two events A and B, or
that there is truly a loop of length two.

Definition 2. (Dependency measures for the FHM algorithm)
Let T be a set of activities and W be an event log over T .
Then:

a⇒w b =

(
|a >w b| − |b >w a|
|a >w b|+ |b >w a|+ 1

)
if (a 6= b)

a⇒w a =

(
|a >w a|
|a >w a|+ 1

)

a⇒2
w b =

(
|a >>w b| − |b >>w a|
|a >>w b|+ |b >>w a|+ 1

)
a⇒l

w b = 2

(
|a >>>w b| − abs(|a| − |b|)

|a|+ |b|+ 1

)
The FHM algorithm uses these frequency-based dependency

measures to define a dependency graph, using the following
steps:



Definition 3. (Dependency graph algorithm for the FHM
algorithm) Let T be a set of activities and W be an event
log over T . Then:

C1 = (a, a) ∈ T × T |a⇒w a ≥ σL1L

C2 = {(a, b) ∈ T × T |(a, a) 6∈ C1 ∧ (b, b) 6∈ C1∧
a⇒2

w b ≥ σL2L}
Cout = {(a, b) ∈ T × T |b 6= End ∧ a 6= b∧
∀y∈T [a⇒w b ≥ a⇒w y]}

Cin = {(a, b) ∈ T × T |a 6= Start ∧ a 6= b∧
∀x∈T [a⇒w b ≥ x⇒w b]}

C ′out = {(a, x) ∈ Cout|(a⇒ −wx) < σa∧
∃(b,y)∈Cout

[(a, b) ∈ C2 ∧ ((b⇒w y)− (a⇒w x)) > σr]}
Cout = Cout − C ′out
C ′in = {(x, a) ∈ Cin|(x⇒w x) < σa∧
∃(y,b)∈Cin

[(a, b) ∈ C2 ∧ ((y ⇒w b)− (x⇒w a)) > σr]}
Cin = Cin − C ′in
C ′′out = {(a, b) ∈ T × T |a⇒w b ≥ σa∨
∃(a,c)∈Cout

[((a⇒w c)− (a⇒w b)) < σr]}
C ′′in = {(b, a) ∈ T × T |(b⇒ a) ≥ σa∨
∃(b,c)∈Cin

[((b⇒w c)− (b⇒ wa)) < σr]}
DG = C1 ∪ C2 ∪ Cout ∪ Cin ∪ C ′′out ∪ C ′′in

As the name implies, the dependency graph indicates only
which event types depend on other event types, but does not
indicate whether a particular event type is followed by an
AND, an XOR, or an OR split (or, conversely, whether a
particular event type is preceded by an AND, an XOR, or an
OR join). To identify the splits in the process model, each trace
is run ”forwards” against the dependency graph. For example,
if the dependency graph states that tasks B and C depend on
task A (i.e. they can possibly be activated by the occurrence
of task A), we wish to find out whether A in some traces
activates B and in other traces C, or whether in all traces B
and C are activated, or some combination. The first case would
represent an XOR split, the second case would represent an
AND split, and the third case an OR split. To identify joins in
the process model, the same method is used but the traces are
run ”backwards” against the dependency graph. The result of
this step is an augmenented causal net (CNet) which contains
information about the frequencies with which one set of events
activates another set of events in the workflow log.

Our implementation of the FHM in a distributed architecture
using event streams follows the effects of a single new process
event. Specifically, it examines how a each new process event
affects the occurrence counts of the log-based ordering relation
instances (Def. 1), how changes to these occurrence counts
affect dependency relations (Def. 2), how changes in the
dependency relations affect the various sets considered in the
algorithm in Def. 3, and how changes to the various sets

together with each completed trace affect the final augmented
causal net.

IV. DISTRIBUTED EVENT STREAM FHM

Our contribution in this paper is the separation of the
FHM algorithm into individual processing stages, suitable for
a cloud-based scalable event stream infrastructure, and the
distribution of these stages to different computation nodes in
the cloud infrastructure.

We use Amazon Kinesis, part of Amazon Web Services
(AWS), to provide a scalable stream infrastructure for records
of arbitary form. In Kinesis, a stream is a queue for arbitrary
records. Each record is associated with a key. A Kinesis stream
is logically divided into one or many shards, which are logical
divisions of a stream. When writing to a stream, a producer
provides a key for each record; records with the same key are
written to the same shard. We use the partitioning of records
by shards to separate the processing of events using multiple
independent processing threads for each stage.

Figure 1 presents an overview of the architecture. The event
consumer examines each process trace event and provides
information about how the event affects the occurrence counts
of instances of the log-based ordering relations (Def. 1) via
the relation stream. The relation consumer then updates the de-
pendency relations (Def. 2) and provides updated dependency
values to the update consumer via the update stream. The
update consumer identifies how the changes to dependency
relations affect the dependency graph (Def. 3) and provides
information about any graph changes to the graph consumer
via the graph update stream. Up to this point, information is
logically separated by event pairs, both in the event streams
and the processing threads. Only the final graph consumer
maintains a global dependency graph, and, using completed
traces, computes an updated causal net as final output. The
following subsections provide details of the the different
processing stages.

A. Event Generators

Event generators produce the raw events to
be processed. Events are tuples of the form
(Activity, T imeStamp,CaseId) and are written to the
event stream using CaseId as key, so that a consumer
reading from an event stream shard processes all events for a
particular case.

B. Event Consumer

The event consumer ingests events from the event stream.
Because cases are independent of each other, processing is
performed by independent processing threads, each serving
one shard of the stream. Each thread maintains three separate
hashmaps for active traces (a : CaseId 7→ Trace), mean
interarrival times (i : CaseId 7→ Time), and the times of the
last observed event for each active case (l : CaseId 7→ Time).
When an event is received for an active case, these maps are
updated and the instances of the log-based ordering relations
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Fig. 1. Architecture of Distributed FHM on Amazon Kinesis Infrastructure

(Def. 1) are computed for this new event with respect to the
already processed previous events for the case.

Active cases are periodically retired to conserve memory. In
the absence of explicit end-of-trace markers, trace retirement
is a serious problem in stream processing as business processes
may be long running and events could arrive infrequently or
irregularly. Prior work has dealt with this in different ways.
The case pruning in [12] is based on a fixed maximum number
of active cases. It periodically retires all cases whose time of
last observed event is less than the mean of the times of last
observed events for all cases. Should a late event arrive for a
retired case, it is treated as a new case. The streaming FHM in
[10], [11] use fixed-size queues to limit memory consumption
and retire the oldest events when the queues are full, and [9]
primarily considers explicitly tagged end-of-case events.

In our work, we assume a Poisson distributed event inter-
arrival time. A 99.99% confidence interval for the next event
arrival time is computed from the mean interarrival time for
the case. When the upper bound of this interval is in the past,
the case is retired, its trace is written to the trace stream and
all information for the case is deleted. The event consumer
maintains a hashset of all retired case IDs. When a new event

arrives with a case ID that is not in the active cases, it is
checked against retired case IDs. If it is not found in that set,
a new active case is opened, otherwise the event is discarded
as a late event for an already retired case (with probability of
0.01%). The size of the confidence interval represents a trade-
off between being able to process late events and conserving
thread memory.

Instances of log-based ordering relations for each processed
event are collected and emitted into the relation stream as tu-
ples ((Activity1, Activity2), RelationType, Count) where
RelationType indicates the type of basic relation (Def. 1),
and Count indicates how many instances of each activity pair
(Activity1, Activity2) are added to this log-based ordering
relation based on the currently processed event: Appending
an event to an active trace can generate only one instance
of >w and >>w but can generate multiple instances of
>>>w. These records are written to the relation stream
using (Activity1, Activity2) as key. Because the subsequent
computation of the dependency measures requires information
not only about the pair (Activity1, Activity2) but also about
its ’inverse’ (Activity2, Activity1), these are written with the
same key and so to the same shard.

C. Relation Consumer

The relation consumer reads records from the relation
stream. Because the dependency measures (Def. 2) for a pair
of activities are based only on the occurrence counts of the log-
based ordering relation instances for that pair and its inverse
pair, processing is performed by independent threads, each
serving a shard of the stream. Each thread maintains three
hashmaps that map activity pairs to counts of the instances
of each relation type for each activity pair (c : Event 7→ N,
fcount : Event× Event 7→ N, l2count : Event× Event 7→ N.
ldcount : Event × Event 7→ N). Additionally, each thread
maintains three hashmaps that map activitiy pairs to current
values for each dependency measure (fdep : Event×Event 7→
R, l2dep : Event×Event 7→ R. lddep : Event×Event 7→ R).

Occurence counts and dependency measure values are up-
dated according to Def. 2 when a new record is read from
the relation stream. Updated dependency measure values are
then emitted to the update stream as tuples of the form
(Activity1, Activity2, RelationType, V alue) using the ac-
tivity pair as a key to ensure that tuples for the same activity
pair are processed by the same subsequent consumer. To save
stream capacity, only values that meet a configurable lower
threshold (0.5 by default) are emitted.

D. Update Consumer

The update consumer reads records from the update stream,
using independent threads for each shard. Each thread main-
tains a partial dependency graph, and a list of current values for
each dependency measure for each activity pair it processes.

When reading a record containing a new dependency mea-
sure value, the processing thread considers each of the sets that
form the core of the FHM algorithm in Def. 3 and determines



whether the new dependency measure value yields any changes
to the various sets.

The reconceptualization of the core FHM algorithm in terms
of set updates (Algorithms 1–3) is a core contribution of this
paper. There are two notable considerations: First, the loop-
of-length-one and loop-of-length-two dependency measures
can only grow, not shrink (cf. Def 2): Updates to these can
never cause edge removals from the dependency graph, i.e.
there are never any removals from the sets C1 and C2 in
Def. 3. Second, edges in the dependency graph can result
from multiple, different types of dependencies. For example,
an edge may be in the sets C1 and C ′′out. Hence, edges can
only be removed when not supported by any dependency. The
update consumer thread maintains a hashmap that maps each
graph edge (activity pair) to the set of dependency types that
support each graph edge. Edges are removed only when the
last supporting dependency type is removed.

Changes to the graph are emitted as tuples
(Activity1, Activity2, UpdateOp) into the graph update
stream where UpdateOp indicates removal or addition of an
edge. Records are keyed by activity pair.

The thresholds for the algorithm (α, σ>, σ>>, σ>>>) are
increased asymptotically to one because higher thresholds
reflect the increasing requirements for practical significance
in larger event volumes [3].

Data:
α, σ>, σ>>, σ>>> ← 0.9, initial dependency thresholds
ρ← 0.05, initial relative-to-best threshold for dependencies
d : Event× Event 7→ R, a map of direct dependencies for each

event pair
l2 : Event× Event 7→ R, a map of loop-two dependencies for

each event pair
dg : Event×Event 7→ 2{>w,>>w,>>>w}, a map of edges of the

partial dependency graph to the powerset of dependency relation types
Function UpdateConsumer()

while true do
u← UpdateStream.dequeue()
switch u.Type do

case >w do
ProcessDirectFollows(u)

case >>w do
o← l2(u.Event1, u.Event2)
l2(u.Event1, u.Event2)← u.V alue
if
(u.V alue > o)∧(u.V alue ≥ σ>>)∧(o < σ>>)
then
addEdge(u.Event1, u.Event2, >>w)
addEdge(u.Event2, uEvent1, >>w)

case >>>w do
if u.V alue > σ>>> then

addEdge(u.Event1, uEvent2, >>>w)
if u.V alue < σ>>> then

removeEdge(u.Event1, uEvent2, >>>w)
end
updateThresholds()

end
Algorithm 1: Outline of Update Consumer

E. Graph Consumer

The graph consumer processes the dependency graph up-
dates from the graph update stream. While multiple threads

Function ProcessDirectFollows(u)
o← d(u.Event1, u.Event2)
d(u.Event1, u.Event2)← u.V alue
if u.Event1 = u.Event2 then

if (o < σ>) ∧ (u.V alue ≥ σ>) then
addEdge(u.Event1, u.Event2, >w)

else
cout← max(d(u.Event1, b)|b 6= u.Event2)
c← {b|d(u.Event1, b) = cout}
if cout = 0 then

addEdge(u.Event1, u.Event2, >w)
else if (u.V alue > cout) then

removeEdge(u.Event1, c, >w)
addEdge(u.Event1, u.Event2, >w)

cin← max(d(a, u.Event2)|a 6= u.Event1)
c← {a|d(a, u.Event2) = cin}
if cin = 0 then

addEdge(u.Event1, u.Event2, >w)
else if (u.V alue > cin) then

removeEdge(c, u.Event2, >w)
addEdge(u.Event1, u.Event2, >w)

foreach e ∈ {e|(u.Event1, e) ∈ dg ∧ (e, u.Event1) ∈
dg ∧ e 6= u.Event2} do
f ← max(d(e, b)|b 6= u.Event1)
if f − u.V alue > ρ then

removeEdge(u.Event1, u.Event2, >w)
end
foreach e ∈ {e|(e, u.Event2) ∈ dg ∧ (u.Event2, e) ∈
dg ∧ e 6= u.Event1} do
f ← max(d(a, e)|a 6= u.Event1)
if f − u.V alue > ρ then

removeEdge(u.Event1, u.Event2, >w)
end
if d > α then

addEdge(u.Event1, u.Event2, >w)
foreach e ∈ {e|(u.Event1, e) ∈ dg ∧ e 6=
u.Event2 ∧ d(u.Event1, e)− u.V alue < ρ} do
addEdge(u.Event1, u.Event2, >w)

end
Algorithm 2: Update Consumer (part 2)

Function addEdge(event1, event2, dep.type)
if dg(event1, event2) 6= ∅ then

dg(event1, event2)← dg(event1, event2) ∪ {dep.type}
else

dg(event1, event2)← {dep.type}
GraphStream.enqeue(event1, event2, ADD)

Function removeEdge(event1, event2, dep.type)
if dg(event1, event2) 6= ∅ then

dg(event1, event2)← dg(event1, event2) \ {dep.type}
if dg(event1, event2) = ∅ then

dom(dg)← dom(dg) \ (event1, event2)
GraphStream.enqeue(event1, event2, REM)

Algorithm 3: Update Consumer (part 3)

read graph updates from each shard, the graph consumer
process maintains a single, complete dependency graph, syn-
chronized across threads. At the same time, trace consumer
threads read the complete retired traces from the trace stream
and run each trace forwards and backwards against the current
dependency graph, as described in [3], to update a single,
complete augmented CNet. Trace consumer threads run traces
independently against the dependency graph, but to prevent
updates to the dependency graph while a trace is being run,
graph consumer threads and trace consumer threads are run
alternatingly. The result of this step is a complete dependency



graph and an augmented CNet, written to file output or
visualized.

V. IMPLEMENTATION AND EXPERIMENT

We implemented our method employing the Amazon Web
Services (AWS) commercial cloud infrastructure. Source code
is available from the first author. AWS Kinesis provides the
stream infrastructure, processors are distributed across differ-
ent AWS EC2 instances, performance data is collected using
AWS CloudWatch and visualized in a CloudWatch dashboard
(Figs. 2, 3).

Each Kinesis shard supports up to 1000 records per second
for writing. Each shard can support up to 5 transactions per
second for reading, with up to 10000 records read in each
transaction. Shards can be dynamically split to increase capac-
ity. There is no limit to the number of shards per stream. Each
shard can be written to by many different client applications
but can only be read from by one client application at a time.

For our experiment, we provisioned an event stream and a
relation stream with a maximum of 20 shards each, for a total
capacity of up to 1,200,000 records per minute for each stream.
Because the relation consumer performs significant data re-
duction, the trace stream, update stream, and graph update
stream were provisioned with a maximum of 2 shards each
for a capacity of up to 120,000 records per minute for each
stream. We further provisioned 5 AWS EC2 instances with
16 compute cores and 32GB memory each (type m4.2xlarge)
to run the event generators, the event consumers, the relation
consumer, the update consumer, and the graph consumer.

Because ours is a faithful implementation of the FHM algo-
rithm, the model generated from the streaming data is the same
as if the streaming data was collected and used as ”stationary”
data in the original FHM algorithm. Hence, our experimental
evaluation does not assess the quality of the mined model,
such as replay fitness, precision, or generalization. Instead,
we focus on demonstrating the scalability of our approach on
a commercial cloud platform.

Each consumer runs one processing thread for each shard of
its input stream, as indicated in Fig. 1. AWS Kinesis provides
consumers with information about how far the current read
transaction is behind the ”tip” of the shard, the latest write
time. The processing threads adapt their read and write rates
to catch up to the tip of the shard while remaining within
the AWS Kinesis limits, and throttle their read rates once the
tip has been reached to match the stream write rate. For this,
threads control the thread sleep time after each read transaction
and processing of the read records, and the number of records
read per read transaction. Each processing shard can persist
its state information (reading position in the shard, retired
and active cases for the event consumer; current dependency
measure values for the relation consumer; partial dependency
graph for the update consumers; augmented CNet for the trace
consumer) and be restarted without loss of information.

Using the PLG process log generator [15], we produced
an event log stored on AWS S3. To simulate random event
arrivals for our experiment, a set of event generator threads

inserted events from this log into the event stream with a
Poisson-distributed interarrival rate. To change the rate of
event production two parameters could be configured: the
number of concurrent traces that are simulated, and the mean
time between successive events for each simulated trace.

We gradually increased the rate at which events are written
to the event stream, from ≈ 2, 000, 000 events per minute
to ≈ 5, 500, 000 events per minute. Fig. 2 shows the AWS
CloudWatch dashboard with read and write rates for the event
and relation stream over the 3 hour period during which
we conducted our experiment. The figure shows that, as the
event generators increase the rate at which events arrive, the
event consumer matches this rate in reading events from the
stream. It also shows that the read and write rates for the
relation stream are independent of the rate at which events are
processed: The data volume for the relation stream depends
on the complexity of each trace (i.e. how many instances of
the log-based ordering relations are generated for each event),
and the number of separate shards. In our experiment that rate
was ≈ 3, 500, 000 records per minutes.

Figure 3 shows the AWS CloudWatch dashboard with read
and write rates for the trace stream, the update stream, and the
graph update stream, over the same 3 hour period. These are
graphed in a separate diagram because of their much lower
data volumes. The volume for the trace stream mirrors that
of the event stream: As more events arrive (either faster, or
for more cases), more cases per minute will be retired and
their traces emitted into the trace stream, from a low of ≈
57, 000 traces per minutes, to a high of ≈ 160, 000 traces per
minute. On the other hand, the update and graph update stream
volumes mirror that of the relation stream, but at significantly
lower rates as more and more data reduction is performed. The
data rate for the update stream fluctuated around ≈ 110, 000
update records per minute and that of the graph udpate stream
around ≈ 87, 000 graph update records per minute.

Both figures show that there is significant variation around
the mean data rate for each stream, especially as consumers
adjust to variations in the inbound data rate, so that it is
important to provision sufficient stream capacity. The CPU
load and memory consumption for most processing nodes was
negligible even at the highest data volume; only the event
consumer experienced a significant CPU load of ≈ 10%.

VI. DISCUSSION AND CONCLUSIONS

This research had four distinct goals (cf. Sec. I). We have
demonstrated that a popular and widely used process discovery
algorithm can be adapted to process events on an event-by-
event basis. For the FHM algorithm, this is primarily the
adaptation of the dependency graph construction algorithm
in Def. 3 in our algorithms 1–3. We have demonstrated that
the event processing algorithm can be distributed. Each of
the processors in our algorithm works independently on a
separate compute node, connected only by the event stream
infrastructure. We have provided an implementation on a
commercially available compute cloud, which demonstrates



Fig. 2. Records per minute for event and relation streams, 5 minute averages

Fig. 3. Records per minute for trace, update and graph update streams, 5 minutes averages



the practical utility of this work. Finally, we have demonstrated
the scalability of the solution.

Figures 2 and 3 show that only the event stream requires
significant capacity. As the event consumer uses independent
threads for each shard, there is in practice no limit to the
throughput capacity of our implementation: More shards can
be added to the stream as required, and more processing
threads can be added, even across multiple AWS EC2 in-
stances. As the description in Section IV indicates, only the
event consumer maintains state information that depends on
the inbound event volume. However, only the set of case IDs
for retired traces grow continuously, whereas the remainder
of the state information concerns active cases and is not
retained once those cases are retired. With the assumption of a
consecutive numbering of case IDs, only the latest retired case
ID would need to be stored. The other parts of the algorithm
maintain state information that grows with the number of
different event types in the trace data, which is significantly
smaller, of the order of tens to hundreds.

Our research has some limitations that need to be addressed
in further research work. For example, while our distributed
implementation on an event stream infrastructure clearly aids
the scalability of our approach, the present implementation
does not deal with ”concept drift” [16], i.e. changes in
structure of the process underlying the event stream. Other
streaming implementations of the FHM, such as those in
[10], [11] are able to identify and react to concept drift
by means of ”aging” or ”decaying” values for log relations
and dependency measures. Another area of further work is
to empirically explore the relationship between the event
stream characteristics (for example, number of event types,
complexity of the underlying process) and the relative data
volume and therefore the requirements for the various event
streams in our architecture.
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