
Workflow Management on BFT Blockchains

Joerg Evermann1 and Henry Kim2

1 Memorial University of Newfoundland, St. John’s, Canada
jevermann@mun.ca

2 York University, Toronto, Canada
hkim@york.ca

Abstract. Blockchain technology has been proposed as a new infra-
structure technology for a wide variety of novel applications. Blockchains
provide an immutable record of transactions, making them useful when
business actors do not trust each other. Their distributed nature makes
them suitable for inter-organizational applications. However, proof-of-
work based blockchains are computationally inefficient and do not pro-
vide final consensus, although they scale well to large networks. In con-
trast, blockchains built around Byzantine Fault Tolerance (BFT) algo-
rithms are more efficient and provide immediate and final consensus,
but do not scale well to large networks. We argue that this makes them
well-suited for workflow management applications that typically include
no more than a few dozen participants but require final consensus. In
this paper, we discuss architectural options and present a prototype im-
plementation of a BFT-blockchain-based workflow management system
(WfMS).

Keywords: Byzantine fault tolerance · blockchain · workflow manage-
ment · interorganizational workflow · distributed workflow

1 Introduction

Inter-enterprise business processes may include stakeholders in adversarial rela-
tionships, that nonetheless have to jointly complete process instances. Trust in
the current state of a process instance and correct execution of activities by other
stakeholders may be lacking. Blockchain technology can help in such situations
by providing a trusted, distributed workflow execution infrastructure.

A blockchain cryptographically signs a series of blocks, containing transac-
tions, so that it is difficult or impossible to alter earlier blocks in the chain. In a
distributed blockchain, actors independently validate transactions, add them to
the blockchain, and replicate the chain across different nodes. The independent
and distributed nature of actors requires finding a consensus regarding the valid-
ity and order of transactions and blocks. In workflow execution, it is important
that actors agree on the ”state of work” as this determines the set of next valid
activities in the process. Hence, it is natural to use blockchain transactions to
describe workflow activities or workflow states.



2 J. Evermann and H. Kim

Blockchain technology admits many different system designs, and WfMS can
be implemented in many different ways on blockchain infrastructure. In this
paper, we explore these architectural options. Specifically, we focus on the inter-
face between the blockchain and the workflow engine. In contrast to prior work,
which has focused on transaction ordering through proof-of-work consensus, we
examine the use of consensus protocols based on algorithms for Byzantine Fault
Tolerance (BFT).

Contribution We describe a prototype WfMS system as a proof-of-concept im-
plementation for an architecture that has not yet seen attention in the literature.
First, in contrast to earlier work (Sec. 2) we do not use smart contracts to imple-
ment model-specific workflow engines. We show that generic or existing workflow
engines can be readily adapted to fit onto a blockchain infrastructure and that
smart contracts are not required. Second, as recommended, but not implemented
by [16], we show how a BFT-based blockchain can be used as workflow man-
agement infrastructure. We describe the implementation of a blockchain-based
WfMS that has served as our tool to investigate design choices, problems and
solutions in this research area. While our prototype is an important demonstra-
tion of feasibility, our main contribution is in the identification and discussion
of the different architectural choices.

The remainder of the paper is structured as follows. Section 2 reviews related
work on blockchain-based WfMS. We then describe the principles of distributed
blockchains with a focus on BFT-based consensus (Sec. 3). Section 5 presents our
prototype implementation. The final Sec. 6 discusses implications of BFT-based
blockchain technology for WfMS and an outlook to future work.

2 Related Work

Blockchain-based workflow management has only recently received research at-
tention [13]. The main research challenges are around integration of blockchain
infrastructure into WfMS and ensuring correctness and security of the workflow
execution [13]. A number of prototype implementations have been presented, fo-
cusing on the use of ”smart contracts”. A smart contract is a software application
that is recorded on the blockchain. This application ”listens” for relevant trans-
actions sent to it and executes application logic upon receipt of a transaction. For
example, the Ethereum blockchain has Turing-complete virtual machine (VM)
for smart contracts and compilers for different programming languages.

Driven by a financial institution, a prototype workflow implementation using
smart contracts on the Ethereum blockchain offers digital document flow in
the import/export domain [5, 6]. The project demonstrates significantly lowered
process cost, increased transparency, and trust among trading partners.

A blockchain-based workflow research project in the real-estate domain [11],
also using the Ethereum blockchain and smart contracts, notes that the de-
centralized nature of blockchains and the lack of a central agency will make
it difficult for regulators to enforce obligations and responsibilities of trading
partners.



BFT Blockchain WFMS 3

A complete WfMS, including collaborative workflow modelling and model
instantiation, uses models as contracts between collaborators [8]. The system al-
lows distributed, versioned modelling of private and public workflows, consensus
building on versions to be instantiated, and tracking of instance states on the
blockchain. The blockchain provides integrity assurance for models and instance
states. The authors note that the usefulness of the approach is limited by block
size limits on the blockchain and the latency between new blocks [8].

Another implementation of blockchain-based workflow execution [17, 18] uses
smart contracts on the Ethereum blockchain either as a choreography monitor,
where the smart contract monitors execution status and validity of workflow mes-
sages against a process model, or as an active mediator, where the smart contract
”drives” the process by sending and receiving messages according to a process
model. BPMN models are translated into smart contracts. Local Ethereum nodes
monitor the blockchain for relevant messages from the smart contract and create
messages for the smart contract. Transaction cost and latency are recognized
as important considerations in the evaluation of the approach. A comparison
between the public Ethereum blockchain and the Amazon Simple Workflow Ser-
vice cloud-based environment shows blockchain-based costs to be two orders
of magnitude higher than a traditional infrastructure [14]. Hence, optimizing
the space and computational requirements for smart contracts is important [7].
BPMN models are first translated to Petri Nets, for which minimizing algorithms
are known. The minimized Petri nets are then compiled into smart contracts,
achieving up to 25% reduction in transaction cost [17, 18], while also significantly
improving the throughput time. Building on lessons learned from [17, 18], Cater-
pillar is an open-source blockchain-based business process management system
[12]. Developed in Node.js it uses standard Ethereum tools, like the Solidity
compiler solc and the Ethereum client geth, to provide a distributed execution
environment for BPMN-based process models.

After examining different blockchain consensus mechanisms in terms of ter-
mination time and fault tolerance, BFT-based consensus is recommended for
business process executions [16]. The authors propose an architecture that de-
couples the workflow system from the blockchain by having each blockchain node
listen for workflow-relevant events to be passed to the workflow layer. However,
the authors do not present an implementation of their proposal.

3 Blockchains

A blockchain consists of blocks of transactions. A transaction can be any kind of
content. Information integrity is maintained by applying a hash function to the
content of each block, which also contains the hash of the previous block in the
chain. Hence, altering a block requires changing all following blocks. In a typical
distributed blockchain, nodes are connected using a peer-to-peer network topol-
ogy. New transactions may originate on any peer and must be placed into new
blocks. Blocks are distributed to each peer for independent validation and repli-
cated storage. The key challenge is to achieve a consensus on the validity and



4 J. Evermann and H. Kim

order of transactions and blocks, despite peers that are characterized by ”byzan-
tine faults”: they may not respond correctly, may respond unpredictably, or may
become altogether unresponsive. Additionally, malicious nodes may attempt to
undermine the integrity of the chain.

3.1 Proof-of-Work Consensus

Bitcoin popularized the proof-of-work mechanism for consensus finding and se-
curing the blockchain. New transactions are distributed to all peers, validated
and added to a transaction pool. Validation is based on transactions that exist
in the chain as well as others already in the transaction pool. Each peer can
independently propose new blocks based on its latest block and distribute these
to other peers. Depending on network connectivity, speeds, and topology, each
peer may have a different set of blocks and transactions, and hence may propose
different blocks. These may be based on different previous blocks, may contain
different transactions, or differ in some minor way, e.g. a different transaction
order or creation timestamp. Thus, there may be different blocks referring to the
same previous block, leading to side branches. Each peer considers the longest
branch as the current main branch and proposes new blocks based on this.
Transactions in side branches are not considered valid and are not considered
when validating new transitions or blocks. When a side branch becomes longer
than the current main branch, the chain undergoes a reorganization. What was
the side branch is validated and becomes the main branch. What was the main
branch is considered invalid and becomes a side branch. Transactions no longer
in the main branch are added back to the transaction pool to be included in
other blocks. As a consequence, different peers can at times consider different
blocks and transactions as valid. As proposed blocks are distributed across the
network, peers will eventually converge on a consensus regarding the valid blocks
and transactions and their order in the main branch of the chain.

To limit the rate of new block proposals and to secure the blockchain against
atttacks, proof-of-work consensus requires block proposers to solve a hard prob-
lem (”proof-of-work”, ”mining”). Typically, this is to require the block hash to
be less than a certain value. A limited block rate allows nodes to achieve even-
tual consensus, and a hard problem prevents attackers from ”overtaking” the
creation of legitimate blocks with fraudulent one. Assuming equal processing
power for each node, the network needs 2f + 1 total nodes to tolerate f faulty
or malicious nodes.

The probability that a transaction in the main branch of the blockchain be-
comes invalid decreases with each block that is ”mined” on top of it, although in
principle it is always possible that a block is invalidated. Blockchain communities
use rules of thumb for the number of additional blocks that is considered to make
a transaction ”safe” enough to act on, for example, six for Bitcoin and twelve for
Ethereum. In addition to the lack of finality of consensus, this approach induces
significant latency as applications must wait not only for one block but many to
be created. Applications must actively monitor the status of all transactions of
interest and must react to chain reorganizations.



BFT Blockchain WFMS 5

3.2 BFT-Based Consensus and State Machine Replication

In response to the drawbacks of the proof-of-work consensus, i.e. latencies, no
finality of consensus, and required processing power, proven correct ordering
algorithms, based on distributed systems research, have seen a resurgence in
interest. Most of the ongoing research can be traced back to a practical method
for achieving byzantine fault tolerance (PBFT) [4]. PBFT orders client requests
using a set of nodes that are fully connected by reliable messaging. Every ordering
consensus is established by a specific set of nodes (”view”), with a leader or
primary node. Tolerating up to f faulty nodes requires 3f + 1 total nodes.

Protocol BPFT is a three-stage protocol. A client sends a request to all nodes.
The leader proposes a sequence number for the request and broadcasts a pre-
prepare message. Upon receipt of a pre-prepare message, a node broadcasts a
corresponding prepare messge if it has itself received the request, has not already
received another pre-prepare message for the same sequence number, and is in
the current view. This indicates the node is prepared to accept the proposed
sequence number. Nodes then wait to receive 2f matching prepare messages, in-
dicating that 2f +1 nodes are prepared to accept the proposed sequence number
for the request. When a node has received 2f prepare messages, it broadcasts a
commit message to all nodes. Each node then waits to reeive 2f commit mes-
sages, indicating that 2f +1 nodes have accepted the proposed sequence number
for the request. Upon committing, the node executes the request and sends the
reply to the client. The client in turn waits for 2f + 1 replies, which indicates
that a consensus has been reached on the sequence number of the request.

In case the leader fails to propose a sequence number, nodes first forward
requests to the leader. When the primary continues failing to act on requests or
proposes sequence numbers too high or too low, nodes trigger a view change.
The view change uses a three-stage protocol similar to the normal operation one
to determine a new leader.

Consensus about request sequencing is closely related to state machine repli-
cation (SMR). Each node maintains a state that can be changed by client re-
quests. When every node begins with the same state and executes requests in the
same order, the state machine is replicated. MOD-SMART [15] is a modularized
system for state machine replication that is independent of the underlying BFT
consensus mechanism and optimal in the number of required messages. To allow
nodes to join a view requires a way to transfer state. Because checkpointing state
information can disrupt normal operation, nodes create a checkpoint at differ-
ent times (”sequential checkpointing”). However, the lack of multiple identical
checkpoints means that a simple quorum protocol cannot be used to transfer
state to a new node. Instead, the ”collaborative state transfer” [2] protocol pro-
vides checkpoint and log information from multiple nodes in a way that allows
a new node to verify its correctness.

BFT SMART BFT-SMART [3] is a software library built around MOD-
SMART, collaborative state transfer and view reconfiguration. It can be con-



6 J. Evermann and H. Kim

figured to provide crash tolerance only, rather than byzantine fault tolerance,
significantly increasing its performance. Adding digital signatures to messages
allows the system to also tolerate malicious nodes.

The BFT-SMART library provides a simple programming interface. The
client-side interface exposes the ability to submit requests for ordered opera-
tions or unordered operations. Generally, state-changing operations should be
ordered, while read-only operations may be unordered, depending on applica-
tion requirements. Applications implement a server-side interface (encapsulating
the state machine) that receives ordered and unordered operations in consensus
sequence from the BFT-SMART library for execution. Any replies are sent back
to the requesting client. Operation requests are opaque to the library and are
simple byte arrays. It is the client- and server-side application’s responsibility to
serialize and deserialize these in a meaningul way.

For state management, the server-side application implements methods for
the library to fetch and set a state snapshot or checkpoint, which is also serialized
as a byte array. State changes (ordered operations) are logged and the state
is periodically checkpointed. When a node joins a view, it is sent the latest
checkpointed state, which it sets for the server-side application, and any ordered
operations after that checkpoint are then replayed as normal operations, allowing
the server state to catch up to the consensus state.

View reconfigurations (adding or removing a node, or changing the level of
fault tolerance) are special types of ordered requests but are treated as any other
ordered request for ordering and consensus purposes.

Summary PBFT-derived ordering, as implemented in BFT-SMART, avoids the
latency, lack of finality and processing requirements of proof-of-work consensus.
On the other hand, its three-stage protocol imposes significant communication
overhead and requires fully-connected nodes. Additionally, proof-of-work con-
sensus guards against a higher proportion of faulty nodes (1/2 versus 1/3 for
PBFT-derived consensus). Fault tolerance in PBFT-derived methods increases
linearly with the number of nodes, but performance tends to decrease due to
additional communication.

4 Architectural Design

The main component of a WfMS is the workflow engine, which interprets the
workflow model and enables work items for manual execution or execution by
external applications [10]. The engine maintains workflow state information and
case data. It may be supported by, or include, services for organizational data
management and role resolution, worklist management, document storage, etc.
Designing a WfMS architecture requires choosing where to locate and how to
implement the workflow engine and other service.

Existing work on blockchain-based workflow management (Sec. 2) has de-
ployed the workflow engine on the blockchain itself. However, by compiling a
workflow model to a smart contract, the contract forms a workflow engine for



BFT Blockchain WFMS 7

only this workflow model. Alternatively, blockchains can be treated as a trusted
infrastructure layer for generic workflow engines, only sharing the state of work
and achieving consensus on that state. To our knowledge, there has been no such
implementation using PBFT-derived ordering mechanisms.

Ordering, block management, and the workflow engine are the three main
services in our system architecture.

Ordering Service The ordering service in our prototype is implemented based
on the BFT-SMART library [3]. It can receive transactions from the workflow
engine, which is the only ordered (state-changing) type of request it supports.
The ordering service maintains a record of the latest block hash and block num-
ber, as well as a queue of transactions that have been added as its state. When
a sufficient number of transactions has been collected, the ordering service cre-
ates a new block and clears the transaction queue. Clients can request the latest
block hash; this is an unordered type of request.

Block Service The block service stores the blockchain, may exchange blocks
with other nodes, and verifies the integrity of the blockchain.

The block service uses a peer-to-peer network for block exchange with new
and recovering peers. This network is distinct from the network layer of BFT-
SMART and is not fully connected. Block exchange is required only when a node
begins operation and enters an ordering view. At that point, the ordering service
state is first updated through the BFT-SMART state replication mechanisms.
The block service then compares its latest block to the latest hash from the
ordering service. The latter is assumed to be authoritative. Verification of the
blockchain then proceeds backwards from the head of the chain, i.e. the block
with the latest hash. Any missing blocks are requested from other peers and
verified prior to adding them.

Workflow Engine The engine is notified by the block service when a new block
is added to the chain. It then executes all transactions in the block, updating the
state of each process instance and creating work items accordingly. It manages
user interactions with work items and execution of external functions by work
items. Upon work item completion, the engine generates a new transaction and
passes it to the ordering service.

Next, we discuss architectural options that we were presented with when de-
signing our prototype system. These affect performance, ease of implementation,
and resilience.

4.1 BFT SMR State

Because BFT-SMART provides a very high abstraction for checkpointing, log-
ging and exchanging state information with new and recovering nodes one ar-
chitectural option is to employ this method also for the blocks of the block-
chain. This means that the entire blockchain is part of the replicated state in



8 J. Evermann and H. Kim

BFT-SMART, effectively removing the need for a separate block service with its
peer-to-peer network and block exchange protocol. While easy to implement by
serializing the blockchain into the BFT-SMART byte array snapshot, this model
becomes infeasible as the blockchain becomes too large to rapidly exchange with
other nodes using the complex and communication-intensive state transfer mech-
anism in BFT-SMART. Instead, it is sufficient for the state to only contain the
hash of the last block, the number of the last created block, and the queue of
transactions waiting to be collected into new blocks.

4.2 Block Creation

As noted above, blocks are created by the ordering service. One design option
is to pass new blocks as replies from the ordering service operation back to the
node that requested to the add-transition operation that triggered the block
creation. That node’s block service is then responsible for exchanging the block
with other nodes using the peer-to-peer network. This creates significant traffic
on that network and may also lead to delays in new block distribution.

A second design option is to have the ordering service server-side application
that creates the new block pass the new block directly to the block service on that
node. This tighter coupling between ordering service and block service reduces
the communication overhead for the peer-to-peer network and latencies due to
the block exchange. The peer-to-peer network is still required for block exchange
with new or recovering nodes.

4.3 Coupling of Block Service and Workflow Engine

One option is for workflow engine and block service to always be present together
on each node. Block service notifying the engine of new blocks, or the engine
validating transactions for the block service can be done with simple and fast
method calls.

While there is little to be gained by separating block service and workflow
engine and running multiples of each, a second option is to operate only a single
block service with multiple, distributed workflow engines. This eliminates the
peer-to-peer network and block exchange communication. Blockchain integrity
can still be verified from the latest hash of the ordering service nodes. However,
this design eliminates the redundancy that is an advantage of a replicated block-
chain. On the other hand, redundancy can be achieved by a replicated storage
layer with the block service, e.g. a distributed file system.

4.4 Workflow State or Workflow Operations

First, a transaction may represent workflow operations such as defining a new
workflow model, launching a new case, executing an activity, aborting or can-
celling a case or removing a workflow model. Activity execution information
includes the activity name and case ID, as well input and output data values.



BFT Blockchain WFMS 9

Alternatively, a transaction can represent a workflow instance state, i.e. data val-
ues and enabled activities, without capturing activity execution itself. Including
both is inefficient and the redundancy may threaten consistency.

The first option requires the engine to maintain its own state of the work-
flow (i.e. information about workflow models, running instances, data values
and enabled activities). Constructing this state means reading the blockchain
forwards from the genesis block and replaying all transactions. State updates
are done by executing transactions in new blocks. While reducing the amount
of information stored on the blockchain, this option requires significant effort in
managing the separate state and ensuring it is consistent with the blockchain
record. The second option makes the workflow state available by reading the
blockchain backwards from the head to identify the latest state for each process
instance. State updates are done simply by copying workflow states from trans-
actions as new blocks are presented. Not maintaining separate state signifanctly
simplifies the workflow engine design.

The first option provides activity information in each transaction. Hence,
data constraints can be specified as post-exeuction constraints and checked when
validating the transaction. The second option does not provide information about
activity execution in a transaction. Hence, only global case data constraints can
be specified and checked as part of transaction validation.

Finally, while transactions are waiting to be included in a block, users can
be made aware of such pending transactions. For the first option, transactions
are informative as they inform the user about activities. In the second option,
such transactions are less informative to the user, as they do not contain specific
activity execution information.

4.5 Block Size

In proof-of-work blockchains, blocks contain multiple transactions. The block size
is a trade-off among transaction arrival rate, available hashing power, desired
block arrival rate, available network bandwidth, and tolerance for latency. A
transaction may be ”pending” for a some time until it is included in a block
and at a ”safe” depth. In contrast, in PBFT-based systems, there is nothing to
prevent blocks from containing only one transaction, i.e. the blockchain becomes
a chain of individual transactions.

Proof-of-work systems order transactions between different blocks, but the
order of transactions within a block is not defined: Transactions may be in-
cluded in a block as long as they are not mutually contradictory. Block miners
ultimately impose an order, but this order is arbitrary. This means that as pend-
ing transactions are collected, they must be validated against the entire set of
pending transactions to ensure they are not mutually conflicting. In contrast,
when a client in a BFT system requests that a new transaction be added to the
pool, this request is totally ordered by the BFT algorithm and the transaction
must be validated only against the immediately prior one.



10 J. Evermann and H. Kim

4.6 Coupling of Block Service and Ordering Service

The ordering and block services (the latter always together with a workflow
engine), can be coupled or integrated to varying degrees. At one extreme, block
management is part of the ordering service, as discussed in Sec. 4.1.

In a slightly less integrated architecture, every block service and workflow
engine node is also an ordering node and vice versa, but block management is
distinct from ordering and implements its own peer-to-peer network infrastruc-
ture. This allows each ordering node to quickly validate transactions using the
local workflow engine. The drawback of this three-in-one integrated-node design
is that the number of ordering nodes should be determined by the desired level
of fault tolerance, whereas the number of workflow nodes should be determined
based on the business process and/or application. An application requiring more
ordering than workflow nodes is not a problem as the additional nodes are sim-
ply not assigned any workflow tasks. On the other hand, when an application
requires more workflow nodes than ordering nodes, the excess ordering nodes
decrease performance due to the communication overhead.

In a very loosely coupled architecture, ordering nodes and block service/
workflow nodes are separated. Newly created blocks are passed to the block
server as replies from BFT operations and are communicated using the block
service peer-to-peer network. However, because the ordering service validates
transactions after ordering but before accepting them, each ordering node would
require a reliable connection to at least one workflow engine. Managing these
connections as workflow engines join and leave the network, and managing the
additional communication, adds significant complexity and introduces additional
latency in validating transactions.

5 Prototype Implementation

Given the architectural design options discussed in the previous section and
their advantages and disadvantages, we chose to implement our initial prototype
by storing only the latest block hash, block number, and transaction pool as
BFT-SMART state (Sec. 4.1). The workflow engine and block service are al-
ways present together at each node (Sec. 4.3) and both are always co-located
with an ordering service node (Sec. 4.6). The ordering service passes new blocks
directly to the local block service upon block creation, but a peer-to-peer net-
work supports block exchange with new or recovering nodes (Sec. 4.2). We store
workflow states on the blockchain, instead of workflow operations (Sec. 4.4) so
as not having to maintain a separate workflow state in the engine. The block
size is user configurable (Sec. 4.5). We developed the prototype in Java. Source
code is available3. Fig. 1 shows a screenshot of our prototype.

We implemented a private peer-to-peer infrastructure with a pre-defined list
of participating actors. To keep our prototype simple, actors are identified by
their internet address rather than their public keys, so that we can omit an

3 https://joerg.evermann.ca/software.html



BFT Blockchain WFMS 11

Fig. 1. Screenshot of prototype

address resolution layer. The P2P layer is implemented using Java sockets and
serialization. Each P2P node has an outbound server that establishes connec-
tions to other peers, and an inbound server that accepts and verifies connection
requests from peers. Each connection is served by a peer-connection thread,
which in turn uses inbound and outbound queue handler threads to receive and
send messages. Incoming messages are submitted to the inbound message han-
dler which passes them to the appropriate service. Nodes can join and leave the
peer-to-peer network at will. When a node joins, it tries to open connections to



12 J. Evermann and H. Kim

running peers. The first peer to be contacted will initiate a view change in the
BFT-SMART odering service to include the new peer on that level as well.

Upon starting of a node, the BFT-SMART layer will first update state in-
formation from other nodes in the view. Next, the block service will identify
missing blocks and request them from peers. Once the blockchain is complete
and verified, the workflow engine reads the blockchain to get the latest state
for each workflow instance. Peer-to-peer messages are cryptographically signed
and verified upon receipt. Table 1 lists the message types on our peer-to-peer
network.

BlockRequest Requests a block with a specific hash from one or more peers

BlockSend Sends a block to one or more peers

BlockChainRequest
Requests multiple blocks within a hash range from one or more
peers

BlockChainSend Sends multiple blocks to one or more peers
Table 1. Message types

Our blockchain has two transaction types. A ModelUpdate transaction installs
a new workflow model definition. An InstanceState transaction contains a state
of a workflow instance. It is submitted after a new case has been launched or
an activity instance has been executed. Extensions to cancel cases and uninstall
model definitions are readily possible.

To keep our prototype simple, our workflow models are based on plain Petri
nets [1]. Each Petri net transition specifies a workflow activity. The workflow
engine keeps track of the Petri net markings and case data, and can detect
deadlocked and finished cases to remove them from the worklist.

Each activity is associated with a single node. This partitioning of the pro-
cess to different nodes does not form the resource perspective of the workflow
but is used only to signal each node whether to act on a transaction. Each
node can provide its own resource management by defining roles or other or-
ganizational concepts and performing further work item allocation within each
node. Our models allow the process designer to specify this information. Exter-
nal method calls are specified as calls to static Java methods, and are performed
synchronously by the workflow engine on work item enablement.

The data perspective is implemented as a key–value store. We currently admit
only simple Java types as we implement a GUI for these; an extension to arbitrary
types is readily possible. Each workflow instance has a set of data variables.
When a transition is enabled, an activity instance (work item) is created for
it and its input values are filled from the values of the workflow instance. The
activity instance is then added to the local worklist or externally executed. After
an activity instance is completed (manually or through execution of an external
application), output values are written back to the workflow instance.

The ordering service, workflow engine and the block service have a simple
interface (Table 2). The ordering and block services can call on the workflow en-
gine to validate transactions against the current workflow state, and optionally,



BFT Blockchain WFMS 13

against the most recent pending transaction. Validation checks that a transac-
tion’s instance marking is reachable from the marking of the current workflow
instance state or that of the pending transaction. It also checks for data con-
straint violation. The block service receives new blocks from the ordering service
and passes them to the workflow engine. In the other direction, the workflow
engine can submit new transactions to the ordering service after a work item
has been completed. Finally, the block service can request the latest hash from
the ordering service on joining the network or recovering from a fault.

→ validateTransaction(tx[, pendingTx])

Ordering service asks workflow engine to val-
idate a transaction, given the current work-
flow state and optionally the most recent
pending transaction

→ receiveBlock(block)
Block service receives a new block and passes
relevant transactions to the workflow engine

← addTransaction(tx)
Workflow engine submits a new transaction
to the ordering service

← getLatestHash()
Block service requests the latest hash from
the ordering service

Table 2. Interfaces between ordering service, block service and workflow engine (di-
rections from the perspective of the ordering service)

6 Discussion and Conclusions

Previous work on blockchain-based WfMS has focused on creating smart con-
tracts to represent specific workflow models. In particular, the Ethereum proof-
of-work-based blockchain is widely used. However, proof-of-work-based systems
have significant drawbacks in terms of processing power requirements, latency,
and the lack of final consensus. In this work, we have shown that a PBFT-derived
ordering and consensus method is a suitable WfMS infrastructure.

Through the development of our prototype, we have identified architectural
design options with their advantages and disadvantages. Our chosen design, in
which we integrate ordering service, block service, and workflow engine on every
node, strikes a balance between architectural and implementation simplicity on
the one hand, and performance and scalability on the other.

A limitation in our chosen model is that the number of nodes must strike
a balance between the requirements of the workflow (the number of actors in-
volved), the desired level of fault tolerance, and the performance of the system.
The major advantages are the low communication overhead on the P2P block ex-
change and the ability of local workflow engines to validate transactions quickly.

While our approach has lower resilience against faults and malicious attacks
than proof-of-work chains, it also has lower latency and higher throughput. Un-
like proof-of-work chains, the PBFT-based approach does not scale to a very
large number of nodes. Given these characteristics, systems such as ours are



14 J. Evermann and H. Kim

suitable for private blockchain applications where extreme levels of malicious-
ness are unlikely. The low latency makes them suitable for fast-moving processes,
where activities are of short duration and must follow each other quickly. Our
system is cheaper to operate than public proof-of-work blockchains that incen-
tivizes block mining through cryptocurrencies. While one can implement private
proof-of-work chains, these lose their resilience against attacks in small networks
as it is easy for a single actor to acquire the majority of processing power in a
single high-performance node. To attack a PBFT-derived system requires con-
trol of more than 1/3 of all nodes, which is more difficult to achieve, especially
in the absence of trust among actors.

From the user’s perspective, our system is little different from traditional
WfMS. Because transactions need not wait to be included in the blockchain or
to be mined to a ”safe” depth and consensus is final, latency is low and the
execution status of workflow activities cannot change and does not need to be
monitored and reported to the user.

Our work on the prototype implementation has shown some avenues for fu-
ture research.

– We currently assign single peer nodes statically to workflow activities. In
the future, we hope to extend this to dynamic peer node assignment and to
integrate this with the workflow’s resource perspective.

– Porting existing workflow engines, such as the open-source YAWL system [9],
to blockchain infrastructure allows a richer workflow language and leverages
existing implementations.

To conclude, this paper has described a prototype implementation for an ar-
chitecture that has not yet seen any attention in the blockchain-based workflow
literature. We have implemented PBFT-based system as recommended by [16]
and shown that this infrastructure is suitable for WfMS. We have shown how
generic workflow engines can be readily adapted to fit onto a blockchain infra-
structure without implementing these as smart contracts. The interfaces between
components are quite simple. In contrast to [13], who suggest that blockchain-
specific modelling languages need to be developed, our work shows that workflow
engines do not need to be implemented using smart contracts, as done by [17,
18], but that traditional workflow engines be easily adapted to use blockchains
as infrastructure for communication, persistence, replication, and trust building.

References

1. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998).

2. Bessani, A.N., Santos, M., Felix, J., Neves, N.F., Correia, M.: On the efficiency of
durable state machine replication. In: Birrell, A., Sirer, E.G. (eds.) 2013 USENIX
Annual Technical Conference, San Jose, CA, USA, June 26-28, 2013. pp. 169–180.
USENIX Association (2013)



BFT Blockchain WFMS 15

3. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses
with BFT-SMART. In: 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014.
pp. 355–362. IEEE Computer Society (2014)

4. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

5. Fridgen, G., Sablowsky, B., Urbach, N.: Implementation of a blockchain workflow
management prototype. ERCIM News 2017(110) (2017)

6. Fridgen, G., Radszuwill, S., Urbach, N., Utz, L.: Cross-organizational workflow
management using blockchain technology - towards applicability, auditability, and
automation. In: 51st Hawaii International Conference on System Sciences HICSS.
AIS Electronic Library (2018)

7. Garćıa-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution
of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.)
Business Process Management - 15th International Conference, BPM, Proceedings.
Lecture Notes in Computer Science, vol. 10445, pp. 130–146. Springer (2017).

8. Härer, F.: Decentralized business process modeling and instance tracking secured
by a blockchain. In: Bednar, P.M., Frank, U., Kautz, K. (eds.) 26th European
Conference on Information Systems ECIS. p. 55. AIS Electronic Library (2018)

9. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Mod-
ern Business Process Automation. Springer (2010)

10. Hollingsworth, D.: The workflow reference model. Tech. rep., Workflow Manage-
ment Coalition (1995)

11. Hukkinen, T., Mattila, J., Seppälä, T., et al.: Distributed workflow management
with smart contracts. Tech. rep., Research Institute Finnish Economy (2017)

12. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: A
blockchain-based business process management system. In: Clarisó, R., Leopold,
H., Mendling, J., van der Aalst, W.M.P., Kumar, A., Pentland, B.T., Weske, M.
(eds.) Proceedings of the BPM Demo Track co-located with 15th International
Conference on Business Process Modeling. CEUR vol. 1920 (2017)

13. Mendling, J., Weber, I., van der Aalst, W.M.P., vom Brocke, J., Cabanillas, C.,
et al.: Blockchains for business process management - challenges and opportunities.
ACM Trans. Management Inf. Syst. 9(1), 4:1–4:16 (2018).

14. Rimba, P., Tran, A.B., Weber, I., Staples, M., Ponomarev, A., Xu, X.: Comparing
blockchain and cloud services for business process execution. In: 2017 IEEE Inter-
national Conference on Software Architecture, ICSA. pp. 257–260. IEEE Computer
Society (2017).

15. Sousa, J., Bessani, A.N.: From byzantine consensus to BFT state machine repli-
cation: A latency-optimal transformation. In: Constantinescu, C., Correia, M.P.
(eds.) 2012 Ninth European Dependable Computing Conference, Sibiu, Romania,
May 8-11, 2012. pp. 37–48. IEEE Computer Society (2012).

16. Viriyasitavat, W., Hoonsopon, D.: Blockchain characteristics and consensus in
modern business processes. Journal of Industrial Information Integration (2018)

17. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Using
blockchain to enable untrusted business process monitoring and execution. Tech.
rep., Technical Report CSE-TR-201609, University of New South Wales (2016)

18. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: Rosa,
M.L., Loos, P., Pastor, O. (eds.) Business Process Management - 14th International
Conference, BPM, Proceedings. Lecture Notes in Computer Science, vol. 9850, pp.
329–347. Springer (2016).


